

DETAILED SITE INVESTIGATION

146-154 O'Riordan Street, Mascot, NSW

Prepared for:

Toplace Pty Ltd

Revision	Date	Author	Approver	Issued
Draft	19/10/18	JE	KH	19/10/18
Rev0	1/11/18	JE	KH	1/11/18

Author	Reviewed and Approved

Jack Ellis

Environmental Scientist

B.Sc. M.Geol. (Geological Sciences)

Ken Henderson

Principal Environmental Scientist

und Kinderson

B.Sc. (Hons Geology) EIANZ CEnvP (SC) #795

`Table of Contents

Ex	cecutiv	e Summary	iv			
1	Introd	ductionduction	1			
	1.1	Objectives	1			
	1.2	Scope of Works	1			
	1.3	Statutory and Regulatory Framework	2			
2	Site [Description and Setting	4			
	2.1	Site Identification	4			
	2.2	Site Description	4			
	2.3	Surrounding Land Use	6			
	2.4	Surface Water Bodies	6			
	2.5	Regional Geology & Hydrogeology	6			
	2.6	Acid Sulfate Soils	7			
	2.7	Registered Groundwater Bore Search	7			
3	Site I	History and Background	8			
	3.1	Certificates of Title	8			
	3.2	Historical Aerial Photograph Review	. 11			
	3.3	Relevant Planning Information	. 13			
	3.4	Contaminated Land Record Review	. 13			
	3.5	SafeWork NSW Storage of Hazardous Chemicals Search	. 14			
	3.6	Historical Business Directories	. 14			
	3.7	Heritage Database Searches	. 15			
4	Samp	oling and Analysis Quality Plan (SAQP)	. 16			
	4.1	Data Quality Objectives	. 16			
	4.2	Data Quality Indicators	. 19			
	4.3	Sampling Plan	. 20			
5	Adop	ted Assessment Criteria	. 22			
	5.1	Soil Criteria	. 22			
	5.2	Groundwater Beneficial Uses	. 23			
	5.3	Groundwater Investigation Levels	. 24			
6	Field	Program	. 25			
	6.1	Soil Investigation Program	. 25			
	6.2	Groundwater Investigation Program	. 26			
	6.3	Soil Analytical Program	. 27			
	6.4	Groundwater Analytical Program	. 28			
7	Asse	ssessment Results				

	7.1	Site Observations and Lithology			
	7.2 Soil Analytical Results				
	7.3 Hydrogeological Conditions				
	7.4	Groundwater Analytical Results	32		
	7.5	Acid Sulfate Soils Analysis	32		
	7.6	Quality Assurance/Quality Control	33		
		7.6.1 Laboratory QA/QC	34		
		7.6.2 Data Useability	34		
8	Cond	ceptual Site Model	35		
	8.1	Preliminary CSM	35		
	8.2	Preliminary CSM Summary and Risk Assessment	37		
	8.3	Data Gaps and Uncertainties	38		
9	Cond	clusions and Recommendations	40		
	9.1	Summary and Conclusions	40		
	9.2	Recommendations	41		
10	Refe	rences	43		
11	Limit	ations	45		
		—··			
		Figures			
Ti	tle	Figures	Figure		
	tle		Figure		
Si	te Loc	ality Plan	1		
Si Si	te Loc te Ma _l	p	1		
Sit Sit	te Loc te Ma _l orehol	eality Plan pe and Groundwater Monitoring Well Locations	2		
Sit Sit	te Loc te Ma _l orehol	p	2		
Sit Sit Bo So Gr	te Loc te Map oreholo oil Hur ound	eality Plan pe and Groundwater Monitoring Well Locations	1 3 4		
Sit Sit Bo So Gr	te Loc te Map oreholo oil Hur ound	eality Plan pe and Groundwater Monitoring Well Locations	1 3 4		
Sit Sit Bo So Gr	te Loc te Map oreholo oil Hur ound	eality Plan pe and Groundwater Monitoring Well Locations	1 3 4		
Sit Sit Bo So Gr	te Loc te Map oreholo oil Hur ound	rality Plan p	1 3 4		
Sit Sit Bo So Gr	te Loc te Map oreholo oil Hur ound	eality Plan pe and Groundwater Monitoring Well Locations	1 3 4		
Sit Sit Sc Gr Int	te Loc te Map oreholo oil Hur ound	rality Plan p	1 3 4		
Sit Sit Sit Sit Sit Tit	te Locate Maporeholo bil Hurrounds Ferred	rality Plan p e and Groundwater Monitoring Well Locations man Health Criteria Exceedances water Human Health Criteria Exceedances Groundwater Flow Direction Tables	13456		
Sit Sit Sit Sit Sit Tit	te Locate Maporeholo Hurroundvierred	rality Plan	13456		
Sit Sit Sit Sit Sit Sit	te Locate Maporeholo Hurrounds Ferred tile	rality Plan p	13456		
Sitt Sitt Sitt Sitt Sitt Sitt Sitt Sitt	te Locate Maporeholo bil Hurroundv ferred ttle umma	rality Plan p	1356 Table12		
Sit	te Locate Maporehold Hurrounds Ferred Limma	rality Plan p	Table 13512A2B3		

Summary of Soil Analytical Results – OCPs and OPPs	5
Summary of Soil Analytical Results – PCBs and Phenols	
Summary of Soil Analytical Results – VOCs	7
Summary of Soil Analytical Results – Asbestos	8
Summary of Soil Analytical Results – Acid Sulfate Soils	g
Summary of Soil Analytical Results – TCLP	10
Summary of Soil Quality Assurance/Quality Control Data	11
Summary of Trip Blank, Trip Spike and Rinsate Analytical Data (Soil and Groundwater Sampling)	12
Summary of Groundwater Analytical Data	13

Appendices

litle	Appendix
Site Photographs	A
Lotsearch Environmental Risk and Planning Report	B
Certificates of Titles	C
Planning and Zoning Reports	D
Contaminated Land Register	E
SafeWork NSW Storage of Hazardous Chemicals Search	F
Field Data (Including Bore Logs and Groundwater Sampling Logs)	G
Laboratory Analytical Reports	H
QA/QC Summary and Calibration Certificates	ı

Executive Summary

Toplace Pty. Ltd. engaged TRACE Environmental to undertake a Detailed Site Investigation (DSI), at 146-154 O'Riordan Street, Mascot, NSW ('the site'). The site is identified as Lot 1 of DP85597 (146 O'Riordan Street) and Lot A of DP320192, Lot A of DP402876 and Lot A of DP364217 (154 O'Riordan Street). The investigation was conducted to assess the site condition relative to the current commercial/light industrial land uses and proposed redevelopment of the site for medium to high density residential land use.

The scope of works undertaken for this investigation included:

- Undertake a review of available historical information, such as Certificates of Title, Council records and Environment Protection Authority New South Wales (EPA NSW) contaminated land registers;
- Undertake a field investigation including advancement of 21 boreholes across the site (utilising a
 Geoprobe drilling rig and/or hand auger) and analysis of selected soil samples for a selection of
 contaminants of potential concern (COPCs); as well as installation of four groundwater monitoring
 wells across the site and analysis of water samples for a selection of COPCs;
- Develop a preliminary conceptual site model (CSM) of the site outlining potential contamination sources and exposure pathways and receptors which may be impacted; and
- Preparation and submission of this report, which also includes recommendations for additional investigations.

Based on the findings of this investigation, TRACE Environmental provides the following summary and conclusions:

- The site has been used for a variety of light industrial and commercial purposes since the mid-1970's, prior to which, the site appears to have consisted of a mix of commercial/industrial-type structures, vegetated land and farmland (circa 1940s). The site has historically been used for a variety of purposes, including several types of manufacturing (e.g. fork lift trucks, electronic equipment, motor garage equipment, lubricating equipment and spraying equipment). The site is currently used for commercial/light industrial purposes, including electronics repair, fashion distribution, broadcasting, air freight transport, rail maintenance organisation workshop and food production/distribution. A potential underground stormwater detention basin is located in the south-western corner of the site, indicated by the land topography;
- Historical site uses, including a variety of manufacturing operations, are potential sources of subsurface impact. Additionally, the likely historical importation of fill material from unknown sources has the potential to impact the sub-surface;
- Fill material was encountered during the investigation across the site to depths up to 3.0mbgs, and was observed to contain anthropogenic waste materials at most soil bore locations;
- Fill and natural soil samples were collected from 21 soil bores advanced across the site. A total of 87 soil samples were analysed for a variety of COPCs to determine if historical site uses had impacted the sub-surface at the site, of these 22 natural soil samples submitted for acid sulfate soil (ASS) analysis;

- Four of the soil bores were completed as permanent groundwater monitoring wells (MW-1 to MW-4) and were developed, gauged, purged and sampled. Groundwater was encountered at depths between approximately 3.7 and 4.6 mBTOC. Groundwater was calculated to flow south-westerly, towards Alexandra Canal;
- The results of the soil assessment showed COPCs at levels exceeding human health assessment criteria for the proposed medium to high density residential land use in fill material at locations across the site, with some COPCs reported above the ecological assessment criteria for urban residential and public open space from fill materials across the site;
- Asbestos (ACM and/or FA+AF) was identified in shallow fill material in the western and central areas
 of the site above the human health assessment criteria for the proposed land use;
- The results of the groundwater assessment showed heavy metal COPCs at levels exceeding the applicable guideline criteria in samples collected from all groundwater monitoring wells. Due to the urban setting of the site, these impacts are likely representative of background conditions at the site and surrounding site area; and
- Based on the laboratory analytical results for soil samples analysed for ASS parameters, it is considered likely that potential or actual acid sulfate soils are present in natural materials sampled at the site. As such, an Acid Sulfate Soil Management Plan (ASSMP) will be required prior to future development works or disturbance of the natural material at the site.

Based on the findings of the DSI, it is considered that the site can be made suitable for the proposed medium to high density residential land use following implementation of a Remedial Action Plan (RAP) for the site, incorporating a Data Gap Investigation (DGI), and the delineation, remediation and validation of identified soil impacts on the site. It is expected that implementation of the RAP would occur following demolition of site structures at the commencement of site redevelopment activities.

Based on the findings of the DSI, TRACE Environmental provides the following recommendations:

- A RAP should be prepared which outlines the remediation and/or management strategy for the identified impacts in fill material at the site for the proposed medium to high density residential land use. The remediation and/or management requirements outlined in the RAP should consider the findings of the current DSI in the context of the final redevelopment design, including ecological considerations as well as aesthetic observations made during the DSI fieldworks. The RAP should also include an unexpected finds protocol for the discovery of previously unidentified soil and/or groundwater impacts (including ACM and ASS) during hardstand removal and site redevelopment works;
- Due to access restrictions at some areas of the site, assessment of soil conditions could not be completed at all locations during the DSI. As such, the RAP should also incorporate a DGI which includes additional intrusive soil (and/or groundwater) investigations are required at the site to address current data gaps and to meet the recommended sampling densities outlined in NSW EPA 2006. This should also include additional investigation of areas of the site currently containing buildings, and shallow fill materials across the site should also be inspected following removal of concrete hardstand to assess for potential residual impacts relating to previous site infrastructure/operations;
- Prior to any disturbance of the sub-surface being undertaken at the site as part of the proposed site redevelopment, an Asbestos Management Plan (AMP) should be prepared in accordance with SafeWork NSW Codes of Practice, which identified the locations of the ACM, FA and AF detected

during this DSI and outlines how the asbestos risks will be controlled during work (including any air monitoring procedures that may be required);

- Due to the age and construction of the on-site structures, a hazardous materials survey should be conducted, and a hazardous materials register be prepared for the site prior to commencement of any demolition activities;
- Prior to any disturbance of the sub-surface being undertaken at the site as part of the proposed site
 development, an ASSMP should be prepared which identifies the locations of potential and/or actual
 ASS detected during this DSI and outlines how the ASS risks will be controlled during work;
- Any material to be removed must be classified in accordance with the NSW EPA (2014) Waste Classification Guidelines, and the soil be disposed appropriately to a facility licensed to accept the material; and
- Any imported material brought onto the site for any purpose must first be validated as being suitable for the intended land use, prior to being imported onto the site.

1 Introduction

Toplace Pty. Ltd. (Toplace) engaged TRACE Environmental to undertake a Detailed Site Investigation (DSI), incorporating a Preliminary Site Investigation (PSI) and Limited Soil Sampling Program for the property located at 146-154 O'Riordan Street, Mascot, NSW ('the site'). The site is identified as Lot 1 of DP85597 (146 O'Riordan Street) and Lot A of DP320192, Lot A of DP402876 and Lot A of DP364217 (154 O'Riordan Street).

A Locality Plan is presented in **Figure 1** showing the location of the site, and a Site Layout Plan is presented in **Figure 2**.

The investigation was conducted to assess the site condition relative to present and historical land uses, in particular the site condition relating to current commercial/light industrial land uses and proposed redevelopment of the site for medium to high density residential land use.

This investigation was completed in accordance with the National Environment Protection Measure (Assessment of Site Contamination) Measure, Amendment 2013 (NEPM) and relevant Environment Protection Authority New South Wales (EPA NSW) Guidelines.

1.1 Objectives

The specific objectives of this investigation are to:

- Assess the site condition relative to present and historical land uses;
- Identify any current or historical potentially contaminating activities;
- If applicable, identify the potential types and nature of contamination;
- If applicable, identify potential human and ecological receptors;
- Develop a preliminary Conceptual Site Model (CSM) to identify potential risks to human health and/or
 ecological receptors that may affect the suitability of the site for proposed residential land use with
 open space areas, and to inform further assessment at the site (if required); and
- Provide conclusions and recommendations regarding the contamination status of the site, and identify any further investigation, management and/or remediation measures for potential site contamination, if considered warranted.

1.2 Scope of Works

In order to achieve the objectives, the following scope of works were undertaken at the site:

- Undertake a review of historical information for the site, including:
 - Current and historical Certificates of Title;
 - o Local Council records, including Planning Certificates;
 - EPA NSW administered environment management and contaminated land registers; and
 - Historical city directories; and

- Available historical aerial photographs.
- Undertake a review of the following information for the site and surrounds:
 - o Registered groundwater bore database for groundwater bores in the vicinity of the site to assist in gaining an understanding of the local and regional hydrogeology;
 - o Acid Sulfate Soils (ASS) and potential salinity risk maps; and
 - o Available geological and hydrogeological information.
- Undertake a field investigation, including the following:
 - Conduct an inspection of the site to assist with the identification of potential on- and off-site sources of contamination:
 - Advancement of 21 boreholes (SB-1, SB-4, SB-6 to SB-12, SB-13, SB-14 and SB-17 to SB-27) at locations across the site and collection of fill and natural soil samples from each of the boreholes;
 - o Analysis of selected soil samples for a selection of contaminants of potential concern (COPCs);
 - Conversion of four soil bores to permanent groundwater monitoring wells and collection of groundwater samples from each newly installed monitoring well; and
 - Analysis of collected groundwater samples for a selection of COPCs.
- Based on the results of the investigation, develop a preliminary CSM of the site, outlining potential contamination sources, exposure pathways and receptors which may be impacted, and undertake a preliminary environmental risk assessment; and
- Provide conclusions and recommendations regarding the contamination status of the site, and identify any further investigation, management and/or remediation measures for potential site contamination, if considered warranted.

Refer to **Sections 4** and **6** below for additional detail of the undertaken field investigation.

1.3 Statutory and Regulatory Framework

Field activities and reporting were carried out in accordance with the following guidelines, regulations and standards:

- CRC CARE (2011) Technical Report No. 10 Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater Part 1: Technical Development Document, September 2011;
- National Environmental Protection Council (NEPC), National Environmental Protection (Assessment of Site Contamination) Measure (NEPM), 1999, Amendment 2013;
- NEPM (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, NEPM, 1999, Amendment 2013;
- NEPM (2013) Schedule B(2) Guideline on Site Characterisation, NEPM, 1999, Amendment 2013;

- National Health and Medical Research Council (2018) Australian Drinking Water Guidelines (ADWG), Updated August 2018;
- NSW ASSMAC (1998) Acid Sulfate Soils Manual, New South Wales Acid Sulfate Soils Management Advisory Committee (ASSMAC), August 1998;
- NSW ASSMAC (1998) Acid Sulfate Soils Assessment Guidelines, ASSMAC, August 1998;
- NSW Department of Environment and Conservation (DEC) (2006) Guidelines for the NSW Site Auditor Scheme (2nd Ed.), April 2006;
- NSW Department of Urban Affairs and Planning (1998) *Managing Land Contamination: Planning Guidelines: SEPP 55 Remediation of Land*, August 1998;
- NSW EPA (1995) Sampling Design Guidelines, September 1995;
- NSW EPA (2014), Waste Classification Guidelines. Part 1: Classifying Waste. NSW EPA, November 2014;
- NSW OEH (2011), Guidelines for Consultants Reporting on Contaminated Sites. NSW Office of Environment & Heritage (OEH), November 1997, Reprinted September 2000 and August 2011;
- NSW EPA (2015), Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act. NSW EPA, September 2015;
- Standards Australia. Guide to the investigation and sampling of sites with potentially contaminated soil.
 Part 1: Non-volatile and semi-volatile compounds, AS4482.1 (2005) and Part 2: Volatile substances, AS4482.2 (1999);
- NSW WorkCover 2011a, How to Manage and Control Asbestos in the Workplace Code of Practice, WorkCover NSW, December 2011; and
- NSW WorkCover 2011b, How to Safely Remove Asbestos Code of Practice, WorkCover NSW, December 2011.

2 Site Description and Setting

2.1 Site Identification

Details of the site are included in **Tables 2-1** and **2-2** below. Photographs of the site are included in **Appendix A**.

Table 2-1: Summary of Site Identification Details - 146 O'Riordan Street

ID Element	Description
Site Address	146 O'Riordan Street
Standard Parcel Identifier	Lot 1 of DP85597
Local Council	Bayside Council
Site Coordinates	-33.926458, 151.189119
Zoning	Business Development (B5)
Approximate Site Elevation	17m AHD
Approximate Site Area	2,500 m ²

Table 2-2: Summary of Site Identification Details - 154 O'Riordan Street

ID Element	Description	
Site Address	154 O'Riordan Street	
Standard Parcel Identifier	Lot A of DP320192, Lot A of DP402876 and Lot A of DP364217	
Local Council	Bayside Council	
Site Coordinates	-33.926987, 151.188651	
Zoning	Business Development (B5)	
Approximate Site Elevation	17m AHD to 9m AHD	
Approximate Site Area	13,800 m ²	

The Locality Plan is presented in **Figure 1** and the Site Layout Plan is presented in **Figure 2**. Refer also to **Section 3.3** below for additional detail of each property comprising the site.

2.2 Site Description

A site inspection was completed by TRACE Environmental personnel on 3 August 2018. Photographs taken during the inspection are included in **Appendix A**. Details of the site, as observed during the inspection, are outline in **Table 2-3** below and are shown on **Figure 2**.

Table 2-3: Site Description

Category	Findings
Current Use and Users/Occupiers	The 146 O'Riordan Street site parcel currently comprises a large warehouse/office building with a car parking area in the western portion of the site. The warehouse is used for a variety of commercial purposes, including IT training and electronics repair and refurbishment.

Future Use and	The 154 O'Riordan Street site parcel currently comprises of three large warehouse/office buildings, located in the northern, southern and eastern portions of the site parcel. Car parking areas are located in the western, central and south-eastern portions of the site. The on-site buildings are used for a variety of commercial and/or light industrial purposes, including fashion distribution, broadcasting, air freight transport, food production/distribution and rail maintenance organisation workshop.
Users/Occupiers	It is understood that the proposed future land use of the site is medium to high density residential land use. The future users of the site will be third parties/visitors/customers/employees of the building or future residents (should the site be redeveloped for residential purposes). Intrusive maintenance workers would also be expected to undertake works periodically at the site.
Current Site Features	146 O'Riordan Street – Access to this portion of the site is from the western boundary, from O'Riordan Street. An irregular shaped warehouse/office building is present in the central and eastern portions of the site parcel. A car parking area with landscaped areas at the boundaries is present in the western portion of the site parcel. 154 O'Riordan Street – Access to this portion of the site is from the western boundary,
	from O'Riordan Street. An oblong shaped warehouse/office building is located in the northern portion of the site parcel and borders the 146 O'Riordan Street warehouse building. A larger warehouse building is present in the southern portion of the site parcel and extends for approximately 80% of the southern site boundary. A smaller warehouse building is located in the eastern portion of the site parcel. Car parking areas are located in the north-west, central and south-east portions of the site parcel, with a driveway linking them through the centre of the site (orientated west to east). A small landscaped area is located in the south-western portion of the site, with access from O'Riordan Street. An underground storage tank (UST) (likely a stormwater detention basin) appears to be located in this area, however its presence could not be confirmed by a service locator and underground service plans relating to the on-site infrastructure were unavailable to TRACE Environmental during the site investigation.
Proposed Site Features	It is understood that the site may potentially be redeveloped to medium to high density residential land use.
Chemicals, raw materials and intermediate products storage and use	A potential UST was identified in the south-western portion of the 154 O'Riordan Street site parcel; however, the potential uses of this UST are unknown (and appears to be associated with the on-site stormwater drainage). In addition, other chemicals such oils may have been stored at some locations across the site (e.g. workshops).
Waste Management	No hazardous waste is currently generated or stored on-site. Light commercial waste is temporarily stored in bins prior to off-site disposal.
Reported spills, chemical losses, discharges to land/water and/or incidents/accidents	No visible evidence of significant chemical spills was observed on the site. A review of available EPA databases indicates that the site has not been listed by the EPA NSW (refer to Section 3.4).
Surface covering/Vegetation	The majority of the 146 and 154 O'Riordan Street site parcels comprises concrete or bitumen hardstand associated with the on-site buildings and car parking areas. Landscaped areas are present along the eastern and western site boundaries and between car parking spaces in the western and central car parking areas. A larger landscaped area is present in the south-west corner of the 154 O'Riordan Street site parcel.
Electrical transformers/power generation	The site is provided power via underground services. No electrical transformers were observed at the site. An electrical substation is located in the south-western corner of the 154 O'Riordan Street site parcel.
Topography and infilling	The 146 O'Riordan Street site parcel is generally flat, and the 154 O'Riordan Street site parcel generally slopes towards the east. No visible areas of significant infilling

	were observed or suspected during the site inspection, however, it is noted that a small mound was observed at the south-west corner of the site which appeared to be associated with a suspected underground stormwater detention basin.
Surface drainage	Details of the on-site surface water drainage system were not provided. However, based on site observations, surface water from the building roof areas is expected to drain to the municipal storm drainage system. Sheet flow across the car park areas is expected to flow to storm drains located within the car parks and central driveway and discharge to the municipal storm drainage system.
	The discharge point of the on-site surface water drainage in the site area is likely the municipal stormwater system.

2.3 Surrounding Land Use

The current adjoining properties of the site comprised:

- North of the site: Mascot Oval;
- East of the site: low to medium density residential properties;
- South of the site: commercial/light industrial properties; and
- West of the site: O'Riordan Street and a construction site beyond (at the time of investigation, construction of a multi-story building was near completion across O'Riordan Street).

2.4 Surface Water Bodies

The nearest surface water body is an unnamed drain, located approximately 600m west of the site, that empties into the Alexandria canal, located approximately 1km north-west/west of the site. The nearest natural surface water body is Mill Stream, approximately 1.5km south-east of the site.

It is also noted that Botany Bay is located approximately 3km south of the site.

2.5 Regional Geology & Hydrogeology

The Lotsearch Pty Ltd (Lotsearch) *Environmental Risk and Planning Report* (provided in **Appendix B**) provides details of the geological information at the site, sourced from NSW Department of Industry, Resources and Energy.

The Lotsearch report indicates that the site is underlain by Quaternary age marine sands with podsols. No geological faults, dykes, marker beds, veins or shear zones are indicated to be located beneath or within a 1km radius of the site.

The Lotsearch report indicates that the on-site soil type consists of Podosol; coastal sand plains and dunes, lagoons and swampy areas. The chief soil type is indicated to be leached sands.

The Lotsearch report also indicates that the aquifer directly underlying the site is porous and an extensive highly productive aquifer. Based on the location of the nearest natural surface water body to the site (Mill Stream), and the close proximity to Botany Bay, it is inferred that regional groundwater at the site likely flows to the south/south-west.

2.6 Acid Sulfate Soils

The Lotsearch report indicates that the site is located within Acid Sulfate Soil (ASS) Plan Class 4, indicating that works more than 2m below natural ground surface present an environmental risk and works by which the water table is likely to be lowered more than 2m below natural ground surface present an environmental risk. In addition, a review of the maps provided online by the Australian Soil Resource Information System (ASRIS) (http://www.asris.csiro.au/) shows the site to be in a zone of low probability of occurrence for ASS. An ASS map is included in the Lotsearch report, provided in **Attachment B**.

Given the high risk of ASS at the site, an ASS investigation was undertaken.

2.7 Registered Groundwater Bore Search

Searches of the NSW Department of Primary Industries – Office of Water/Water Administration Ministerial Corporation and Commonwealth of Australia (Bureau of Meteorology) were conducted by Lotsearch on 6 August 2018 and identified 148 registered bores within a 1km radius of the site. Of these bores, 12 are listed as domestic bores, four are listed as recreation bores, 110 are listed as monitoring bores, 10 are listed as industrial bores, two are listed as dewatering bores, one is listed as a groundwater exploration bore, six are listed as general use bores and three are listed as groundwater remediation bores. The approximate depths of the bores with available data ranges between 0.90 and 20.10 metres below ground surface (mbgs). It is noted that the nearest bore to the site (a domestic bore located 24m east of the site) was drilled to a maximum depth of 42mbgs, however, no data regarding the final depth of the installed well was provided.

3 Site History and Background

Historical information was obtained for the site from a number of sources as presented in **Table 3-1**, below. The results of the site historical and background information are further discussed in the following sections.

Table 3-1: Historical and Background Information Search

Item	Source	Comments
Current Certificate of Title	Advance Legal Searchers Pty. Ltd.	Current Certificate of Title documents are discussed below, and copies are included in Appendix C .
Historical Certificate of Title	Advance Legal Searchers Pty. Ltd.	Historical Certificate of Title documents are discussed below, and copies are included in Appendix C .
Planning and Zoning Information	NSW Department of Planning & Environment Property Report	The Property Reports are discussed below, and copies are included in Appendix D .
Contaminated Land Register	NSW EPA	No records were found for the site. The search results are included in Appendix E .
SafeWork NSW Storage of Hazardous Chemicals Search	SafeWork NSW	Storage of Hazardous Chemicals search is discussed below, and a copy of the search results is included in Appendix F .
Aerial Photographs	NSW Department Finance, Services and Innovation, Google Earth	Aerial Photographs are discussed below, and the images are included in the Lotsearch report in Appendix B .

3.1 Certificates of Title

Current and historical Certificates of Title were obtained for the lots comprising the site including Lot 1 of DP85597 (146 O'Riordan Street) and Lot A of DP320192, Lot A of DP402876 and Lot A of DP364217 (154 O'Riordan Street). It is noted that the search for certificates of titles indicated that the folio identifiers of the site parcels appears to have been recently changed and are referred to Lot 15 of DP1232496 (146 O'Riordan Street) and Lots 13 and 14 of DP1231496 and Lot A of DP402876. Copies are included in **Appendix C**. Details are provided in **Tables 3-2**, **3-3**, **3-4** and **3-5** below.

Table 3-2: Summary of Titles - 146 O'Riordan Road - Lot 1 DP85597 / Lot 15 DP1232496:

Year	Proprietor(s)
	(Lot 15 DP 1232496)
2018 – to date	JKN Park Pty Ltd
	(Lot 1 DP 85597)
2013 – 2018	JKN Park Pty Ltd
2003 – 2013	Stead Denton
1994 – 2003	Balfour Grange Pty Limited
(1989 – 2018)	(various leases shown on Historical Folio 1/85597)
1988 – 1994	Tohaha Pty Limited
	(Lot 1 DP 85597 – CTVol 12181 Fol 96)
1987 – 1988	Tohaha Pty Limited

1980 – 1987	State Superannuation Board
1973 – 1980	CDL Developments (No.1) Pty Limited
1973 – 1973	J.E.L Developments (Australia) Pty Limited
	(Part Portion 136 Parish Botany – Area 2 Roods 30 ¼ Perches – CT Vol 5565 Fol 36)
1972 – 1973	J.E.L Developments (Australia) Pty Limited
(1968 – 1972)	(lease to Dowel Industries (NSW) Pty Limited)
1950 – 1972	Westcott Hazell Engineering & Steel Limited
1946 – 1950	Norge Investments Pty Limited
1946 – 1946	Peder Martin Andersen, mechanical engineer
	(Part Portion 136 Parish Botany – Area 2 Roods 30 ¼ Perches – Conv Bk 1917 No 776)
1942 – 1946	Peder Martin Andersen, mechanical engineer
	(Part Portion 136 Parish Botany – Area 2 Roods 30 ¼ Perches – New Trustee Bk 1917 No 79)
1942 – 1942	William James Lodge, carter / trustee
	Charles Henry Lodge, retired Gardner / trustee
	John Lodge, estate

Table 3-3: Summary of Titles - 154 O'Riordan Road - Lot A DP364217 / Lot 14 DP1232496:

Year	Proprietor(s)
	(Lot 14 DP 1232496)
2018 – todate	JKN Park Pty Ltd
(2018 – todate)	(various current leases shown on Folio Identifier 14/1232496)
	(Lot A DP 364217)
2013 – 2018	JKN Park Pty Ltd
2013 – 2013	Dexus Funds Management Limited
2002 – 2013	Perpetual Trustee Company Limited
2002 – 2002	Paladin Australia Limited
1997 – 2002	Trust Company of Australia Limited
1991 – 1997	Fai Life Insurance Society Limited
1989 – 1991	Fai Properties Pty Limited
(1989 – 2018)	(various leases shown on Historical Folio A/364217)
	(Lot A DP364217 – CTVol 15474 Fol 100)
1987 – 1989	Fai Properties Pty Limited
(1987 – 1989)	(various leases shown on CTVol 15474 Fol 100)
	(Part Portion 136 Parish Botany – Area 1 Rood 30 ¼ Perches – CT Vol 6084 Fol 26)
1982 – 1987	Lexane Pty Limited
1950 – 1982	Gearin O'Riordan Limited
1950 – 1950	Norge Investments Pty Limited
	(Part Portion 136, Parish Botany – Area 1 Acre 1 Rood 20 Perches – CTVol 5826 Fol 128)

1949 – 1950	Norge Investments Pty Limited
1948 – 1949	The Council of the Municipality of Mascot
	(Part Portion 136, Parish Botany – Area 1 Acre 1 Rood 20 Perches)

Table 3-4: Summary of Titles - 154 O'Riordan Road - Lot A DP320192 / Lot 14 DP1232496:

Year	Proprietor(s)
	(Lot 13 DP 1232496)
2018 – todate	JKN Park Pty Ltd
(2018 – todate)	(various current leases shown on Folio Identifier 13/1232496)
	(Lot A DP 320192)
2013 – 2018	JKN Park Pty Ltd
2013 – 2013	Dexus Funds Management Limited
2002 – 2013	Perpetual Trustee Company Limited
2002 – 2002	Paladin Australia Limited
1997 – 2002	Trust Company of Australia Limited
1991 – 1997	Fai Life Insurance Society Limited
1989 – 1991	Fai Properties Pty Limited
(1989 – 2018)	(various leases shown on Historical Folio A/364217)
	(Lot A DP320192 – CTVol 15474 Fol 99)
1987 – 1989	Fai Properties Pty Limited
(1987 – 1989)	(various leases shown on CTVol 15474 Fol 99)
	(Part Portion 136, Parish Botany – Area 1 Acre 1 Rood 13 ¼ Perches – CT Vol 4142 Fol 133)
1982 – 1987	Lexane Pty Limited
1967 – 1982	Gearin O'Riordan Pty Limited
1928 – 1967	Gearin-O'Riordan Limited
	(Part Portion 136, Parish Botany – Area 4 Acres 2 Rood 8 Perches – CT Vol 1383 Fol 199)
1922 – 1928	M.Gearin and Sons Limited
1901 – 1922	Michael Gearin, fat extractor

Table 3-5: Summary of Titles - 154 O'Riordan Road - Lot A DP320192 / Lot 14 DP1232496:

Year	Proprietor(s)
	(Lot A DP 402876)
2015 – todate	JKN Park Pty Ltd
2013 – 2015	Dexus Funds Management Limited
2013 – 2013	Perpetual Trustee Company Limited
(2008 – todate)	(various current leases shown on Folio Identifier A/402876)
2002 – 2013	Paladin Australia Limited
2002 – 2002	Trust Company of Australia Limited
1997 – 2002	Fai Life Insurance Society Limited

1991 – 1997	Fai Properties Pty Limited
(1991 – todate)	(various leases shown on Historical Folio A/402876)
	(Lot A DP402876 – CTVol 15474 Fol 101)
1987 – 1991	Fai Properties Pty Limited
(1987 – 1989)	(various leases shown on CTVol 15474 Fol 101)
	(Part Portion 136 Parish Botany – Area 1 Acre 1 Rood 0 Perches – CT Vol 7457 Fol 156)
1982 – 1987	Lexane Pty Limited
1967 – 1982	Gearin-O'Riordan Pty Limited
1958 – 1967	Gearin-O'Riordan Limited
	(Part Portion 136 Parish Botany – Area 2 Acres 2 Rood 19 Perches – CT Vol 5564 Fol 144)
1946 – 1958	W.F.Campbell Pty Limited
	(Part Portion 136, Parish Botany – Area 2 Acres 2 Rood 33 ¾ Perches – CT Vol 5297 Fol 24)
1942 – 1946	M.Gearin and Sons Limited
	(Part Portion 136, Parish Botany – Area 4 Acres 2 Rood 8 Perches – CT Vol 1383 Fol 199)
1922 – 1942	M.Gearin and Sons Limited
1901 – 1922	Michael Gearin, fat extractor

3.2 Historical Aerial Photograph Review

Aerial photographs of the site for the years 1943, 1951, 1955, 1961, 1965, 1970, 1976, 1982, 1991, 2000, 2009 and 2015 were sourced from NSW Department of Finance, Services and Innovation. Aerial photographs for the years 2000, 2009 and 2015 were sourced from Google Inc.

A summary of the photographs is provided in **Table 3-6**, below. Aerial photograph extract images are presented in the Lotsearch report in **Appendix B**.

Table 3-6: Summary of Historical Aerial Photographs

Aerial Photograph	Description
1943 Black and White	Several irregular shaped buildings were present in the western portion of the site at this time and were potentially used for commercial/light industrial purposes. An additional building of unknown purpose was present in the north-west corner of the site. The remaining portion of the western half of the site appeared to be covered in vegetation, with an area of possible cleared land (or possible excavation) visible in the south-central west portion of the site. The eastern half of the site consisted of apparent agricultural fields (possible market gardens), with small buildings (possible sheds) located in the south-eastern corner of the site.
	The surrounding land use appeared to be a mix of industrial, residential and agricultural (possible market gardens). Several warehouse-style buildings were present approximately 30m and 120m north of the site and agricultural land directly south of the site. Residential properties are visible to the east (100m) and south (150m) of the site. A large plot of vacant land, which appeared to be cleared of vegetation, was present to the west of the site during this time.

Aerial Photograph	Description
1951 Black and White	The buildings in the north-west corner of the site had been extended eastwards and appear to be warehouses or industrial (possible factory-style) buildings. Remaining areas of the site appear generally consistent with the 1943 aerial photograph.
	An apparent factory building had been constructed on the vacant land to the west of the site, with the space between structures used for what appears to be container storage. The present-day Mascot Oval is visible to the north of the site.
1955 Black and White	The site layout is generally consistent with the 1951 aerial photograph, with less vegetation cover visible in the western portion of the site. An apparent drainage ditch oriented north-south appears to be located at the south-central portion of the site (immediately west of the on-site agricultural fields).
	Further development is visible at the formerly vacant property to the west of O'Riordan Street, with at least three additional warehouse-style buildings visible.
1961 Black and White	An apparent driveway is visible at the western portion of the site, providing access from O'Riordan Street to the eastern side of the warehouses in the western half of the site. The agricultural portion of the site (at the eastern portion of the site) appears partially overgrown.
Black and Trinks	Further development of warehouses to the west and north-west of the site (across O'Riordan Street). Additional industrial land had been developed to the east and south of the site
1965 Black and White	An additional rectangular building is visible immediately east of the warehouses located in the southern half of the site. An apparent driveway is visible at the western portion of the site, extending south-east to the central portion of the site from O'Riordan Street. The eastern portion of the site appears to be used for miscellaneous storage (possibly miscellaneous debris).
	Further industrial development to the west and north and south of the site.
1970 Black and White	The site remained generally unchanged, with the exception that the central area of the site appears to have been paved
DIACK AND WINE	The area surrounding the site remained generally unchanged.
1976 Black and White	The warehouses in the northern half of the site had been demolished. The eastern portion of the site was now in use as a car park.
	The area surrounding the site remained generally unchanged.
1982 Colour	Almost all warehouse buildings in the south-western portion of the site had been demolished, with the exception of a warehouse in the south-west corner and centre of the site. A warehouse building had been constructed in the northern portion of the site (at the 146 O'Riordan Street parcel).
	The present day carpark located immediately north-east of the site had been constructed.
1991	The southern half of the site (i.e. 154 O'Riordan Street site parcel) had been developed to its present day configuration, with warehouse buildings constructed in the southern, northern and eastern portions of the site parcel.
Colour	Bourke Road had been developed to the west of the site. Redevelopment of the area north-west of the site, with new buildings similar to the present day hotels, offices and shops. The warehouses previously located immediately adjacent to the east of the site had been replaced with residential property.
2000	The site remained generally unchanged.
Colour	The area surrounding the site remained generally unchanged.
2009 Colour	The warehouse in the northern portion of the site (i.e. 146 O'Riordan Street site parcel) had been developed to its present-day configuration (it is unclear if this is the same building that

Aerial Photograph	Description
	was first visible in the 1982 aerial photograph and was renovated, or if the original building was replaced).
	The area surrounding the site remained largely unchanged.
2015 Colour	The site remained generally unchanged.
	The area surrounding the site remained generally unchanged.

3.3 Relevant Planning Information

The property reports for the site were obtained from Bayside Council on 13 September 2018. A review of the property reports for the site indicates the following Lot and TP/LP information associated with the site:

- 146 O'Riordan Street:
 - o Land Use Zone: B5 Business Development;
 - Acid Sulfate Soils: Class 4
 - o The land is not situated in a designated bushfire prone area;
- 154 O'Riordan Street:
 - o Land Use Zone: B5 Business Development;
 - Acid Sulfate Soils: Class 4
 - The land is not situated in a designated bushfire prone area;

It is also noted that the site is not listed on the property reports as being the subject of an environmental audit.

Copies of the property reports are provided in **Appendix D**.

3.4 Contaminated Land Record Review

The List of NSW Contaminated Sites Notified to EPA was accessed online on 16 August 2018 (https://www.epa.nsw.gov.au/your-environment/contaminated-land/notification-policy/contaminated-sites-list) and is provided in **Appendix E**. No notices or declarations under Section 60 of the Contaminated Land Management Act 1997 (CLM Act) were listed for the site.

The current list of activities licensed by NSW EPA under Schedule 1 of the Protection of the Environment Operations Act 1997 (POEO Act) was accessed online on 15 October 2018 (https://www.epa.nsw.gov.au/licensing-and-regulation/public-registers/about-prpoeo/list-of-licences). No activities are currently licensed by NSW EPA at the site. In addition, the current list of unlicensed premises regulated by NSW EPA under the POEO Act was accessed online on 15 October 2018 (https://www.epa.nsw.gov.au/licensing-and-regulation/public-registers/about-prpoeo/unlicensed-premises-epa-reg). No unlicensed premises regulated by NSW EPA are listed at the site.

The NSW EPA Contaminated Land Management (CLM) register was accessed online on 15 October 2018 (https://apps.epa.nsw.gov.au/prclmapp/searchregister.aspx). No notices were listed for the site.

The nearest property relative to the site listed on the List of Contaminated Sites is a former zinc smelter and paint manufacturing facility at 163 O'Riordan Road, approximately 50m north of the site. This site is listed as 'Regulation under CLM Act not Required'. Based on distance and direction, this site is considered a potential source of contamination for the site.

No other properties listed on the register were in the site area which are considered to have the potential to impact the site.

3.5 SafeWork NSW Storage of Hazardous Chemicals Search

A search on Storage of Hazardous Chemicals for the site was conducted by SafeWork on 10 August 2018, with no records identified. A copy of the SafeWork Storage of Hazardous Chemicals Search is presented in **Appendix F**.

3.6 Historical Business Directories

A search of historical UBD Business Directories for the years 1950, 1961, 1965, 1970, 1975, 1978, 1982 and 1991 was conducted by Lotsearch on 6 August 2018 (refer to **Appendix B**).

A summary of the historical UBD Business Directories for the site is provided in Table 3-7, below:

Table 3-7: Summary of UBD Business Directories Search

Year	Business Activity	
1950	No business activities were recorded for the site at this time.	
1961	Steam generator manufacturers	
1965	Fork lift truck manufacturers Electronic equipment manufacturers and/or distributors Motor garage equipment manufacturers and/or distributors Spraying equipment manufacturers Motor foundation hard trim Lawn mowers importer and/or distributor Lubricating equipment manufacturers Material handling equipment manufacturers Conveyors and conveying equipment manufacturers Motor testing/tuning equipment manufacturers/distributors Battery charging and testing equipment distributors	
1970	No business activities were recorded for the site at this time.	
1975	No business activities were recorded for the site at this time.	
1978	No business activities were recorded for the site at this time.	
1982	Air cargo agents	
1991	Freight forwarders Air cargo agents	

Several businesses with potential to cause subsurface contamination were also identified within the surrounding area of the site that may or may not have potential to impact the site. These include motor service stations, a joinery, a crane hire yard and a variety of manufacturers (including paints, machinery and adhesives).

3.7 Heritage Database Searches

A review of available NSW Department of Finance, Services and Innovation was conducted by Lotsearch on 6 August 2018 to determine if the site contains any heritage items on statutory lists in New South Wales. No notices or heritage items were listed for the site (refer to the Lotsearch report in **Appendix B**).

4 Sampling and Analysis Quality Plan (SAQP)

4.1 Data Quality Objectives

Data Quality Objectives (DQOs) were adopted for this assessment. The DQO process is described within US EPA (2000) Guidance for the Data Quality Objectives Process and Data Quality Objectives Process for Hazardous Waste Site Investigations.

The DQOs for the site investigation are summarised in **Table 4-1**, below.

Table 4-1: Data Quality Objectives

Data Quality Objective	Description
Step 1 State the Problem	An intrusive investigation is required to assess the contamination status of soil and groundwater at the site. The results of the investigation will show the type, concentrations, and extent of potential contamination impacting the site, in exceedance of applicable guideline criteria (if any) as a preliminary assessment. Appropriate remedial measures, if required, to ensure the site is made suitable for the current and future land use, cannot be devised until a subsurface investigation has been completed.
Step 2 Identify the Decisions	 The decisions that must be made are: Is the site potentially contaminated from historical land use? What is the risk posed to potential on-site (and off-site) receptors from the concentrations of COPCs identified at the site (if any)? Are site soils and groundwater suitable for the intended land uses from a land
	 contamination perspective? If not, is remediation of site soils and/or groundwater necessary to ensure the site is made suitable for the intended land use?

Data Quality Objective	Description
Step 3 Identify Inputs to the	This investigation has been devised to obtain the contamination status of the site. The primary inputs to the decisions described above are:
Decision	Conduct database searches and review of historical information;
	Determine the local environmental sensitivity, including geological, hydrogeological and hydrological information and identification of nearby sensitive receptors;
	Assessment of fill and natural soils, with samples collected from soil boreholes advanced across the site;
	 Assessment of groundwater beneath the site, with samples collected from monitoring wells installed following advancement of soil bores across the site;
	 Ensuring a sufficient number of samples are collected, in accordance with regulatory guidelines, to characterise site soils and groundwater, where present (i.e. as required as part of this investigation with an assessment to be made following review of the investigation results for any additional works that may be required at the site);
	 Laboratory analysis of soil and groundwater samples for relevant COPCs, based on current and historical land use;
	Assessment of the analytical results against applicable guideline criteria, based on the current and future anticipated land use;
	Assessment of the suitability of the analytical data obtained, against the Data Quality Indicators (DQIs); and
	Aesthetic observations of soils and groundwater, including odours, staining, sheen and/or waste inclusions.
Step 4 Define the Study Boundaries	The site is located at 146 O'Riordan Street (identified as Lot 1 of DP85597) and 154 O'Riordan Street (identified as Lot A of DP320192, Lot A of DP402876 and Lot A of DP364217, respectively). The lateral extent of the study is the site boundaries (as shown on Figure 2). The vertical extent of the study extends to the depth of maximum drilling at 12.0 metres below ground surface (mbgs) in natural sands.
Step 5	The decision rules for this investigation include:
Develop a Decision Rule	 If the concentration of a soil and/or groundwater COPC in a sample is below the applicable guideline criteria, then no further assessment/remediation will be required with respect to that COPC;
	If soil and/or groundwater COPCs exceed the applicable guideline criteria, the site will be deemed to potentially contain 'hot spots' of contamination;
	• If the 95% upper confidence limit (UCL) of a soil and/or groundwater COPC is less than applicable guideline criteria, standard deviation is less than 50%, and no reported concentration is greater than 250% of criteria, then no further assessment/remediation will be required with respect to that COPC; and
	If the concentration of a soil and/or groundwater COPC in a sample exceeds the applicable guideline criteria, the additional works (e.g. remediation or quantitative risk assessment) may be required to minimise the risk.

Data Quality Objective	Description				
Step 6	Data Quality Indicators (DQIs) are used to assess the reliability of field procedures and analytical results. DQIs are described as follows and are presented in Table 4-2 , below:				
Specify Limits on Decision Errors	Completeness – a measure of the amount of useful data (expressed as %) from a data collection activity;				
	Comparability – the confidence (expressed qualitatively) that data may be equivalent for each sampling and analytical event;				
	• Representativeness – the confidence (expressed qualitatively) that data are representative of each media present on the site;				
	Precision – a quantitative measure of the variability (or reproducibility) of data; and				
	• Accuracy (bias) – a quantitative measure of the closeness of reported data to the true rule.				
	In addition, this step should include the following considerations to quantify tolerable limits:				
	• If 95% UCLs are adopted for a particular soil COPC, a decision can be made based on a 95% probability that the 'true' arithmetic average contaminant concentration within the sampling area will not exceed the value determined by this method. Therefore, the limit on the decision error will be that there is a 5% probability that the calculated arithmetic average contaminant concentration may be incorrect; and				
	• If the minimum soil sampling points required for site characterisation based on detected circular hot spots by using a systematic sampling pattern is adopted (Standards Australia (2005) <i>Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds</i>), a decision can be made based on a 95% confidence of detecting a hot spot of a particular diameter. Therefore, the limit on the decision error will be that there is a 5% probability that a hotspot of a particular diameter may not be detected. However, as noted above in Step 3, this investigation is devised to obtain a preliminary overview of the contamination status of the site and an assessment to be made following review of the investigation results for any additional works that may be required at the site.				

Data Quality Objective	Description			
Step 7 Optimise the Design for	To achieve the DQOs and DQIs, the following sampling procedures will be implemented to optimise the design for obtaining data:			
Obtaining Data	Primary, duplicate and triplicate soil and groundwater samples will be analysed at NATA accredited laboratories;			
	 Field and laboratory quality assurance/quality control (QA/QC) results will indicate reliability and representativeness of the data set; 			
	 Laboratory LORs will be below the applicable guideline criteria for the analysed COPC, where possible; 			
	Applicable guideline criteria will be sourced from NEPM (2013) guidelines and other EPA NSW endorsed guidelines (as necessary);			
	 Any soil and/or groundwater aesthetic issues will be evaluated including areas of discolouration, odour, sheen and/or hazardous waste inclusions; 			
	Fill and natural soil samples will be collected, where possible, from 21 soil bores advanced at the site to target potential areas of impact at the site;			
	 Groundwater samples will be collected from 4 groundwater monitoring wells installed at the site during investigation works, to obtain a representative view of groundwater conditions beneath the site; 			
	 Soil and groundwater COPCs will be selected based on a review of historical activities at the site and the surrounding area. Based on current and known historical site uses, the COPCs are considered to include asbestos, total recoverable hydrocarbons (TRH)/total petroleum hydrocarbons (TPH), benzene, toluene, ethyl-benzene, xylenes and naphthalene (BTEXN), heavy metals (arsenic, cadmium, copper, chromium, nickel, mercury and zinc), polycyclic aromatic hydrocarbons (PAHs), phenols, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), volatile organic compounds (VOCs) and/or per -and poly-fluoroalkyl substances (PFAS); 			
	Samples will be collected by suitably qualified and experienced environmental consultants;			
	Soil and groundwater samples will be collected and preserved in accordance with relevant standards/guidelines;			
	Soil observations including odours, staining and photoionization detector (PID) readings will assist with selection of samples for laboratory analysis; and			
	Field and laboratory QA/QC procedures will be adopted and reviewed to indicate the reliability of the results obtained.			

4.2 Data Quality Indicators

The DQIs outlined in Table 4-2 below assist with decisions regarding the contamination status of the site, including the quality of the laboratory data obtained.

Table 4-2: Data Quality Indicators

Data Quality Indicator	Frequency	Data Acceptance Criteria
Completeness		
Field documentation correct	All samples	All samples
Soil bore logs complete and correct	All samples	All samples
Suitably qualified and experience sampler	All samples	All samples
Appropriate lab methods and LORs	All samples	All samples

Data Quality Indicator	Frequency	Data Acceptance Criteria
Chain of custodies (COCs) completed appropriately	All samples	All samples
Sample holding times complied with	All samples	All samples
Proposed/critical locations sampled	-	Proposed/critical locations sampled
Comparability		
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All samples
Experienced sampler	All samples	All samples
Climatic conditions (temp, rain etc.) recorded and influence on samples quantified (if required)	All samples	All samples
Consistent analytical methods, laboratories and units	All samples	All samples
Representativeness	1	1
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	All Samples
Samples homogenous	All samples	All Samples
Detection of laboratory artefacts, e.g. contamination blanks	-	Laboratory artefacts detected and assessed
Samples extracted and analysed within holding times	All samples	-
Precision	'	
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	<30% RPD (Inorganics) <50% RPD (Organics) No Limit RPD Result <10 × LOR
Split duplicates (inter-laboratory duplicates)	1 per 20 samples	<30% RPD (Inorganics) <50% RPD (Organics) No Limit RPD Result <10 × LOR
Laboratory duplicates	1 per 20 samples	<20% RPD Result > 20 × LOR <50% RPD Result 10-20 × LOR No Limit RPD Result <10 × LOR
Accuracy (Bias)		
Trip blanks	1 per sampling event	COPCs <lor< td=""></lor<>
Trip Spikes	1 per sampling event	70-130%
Surrogate spikes	All organic samples	50-150%
Matrix spikes	1 per 20 samples	70-130%
Laboratory control samples	1 per 20 samples	70-130%
Method blanks	1 per 20 samples	<lor< td=""></lor<>
Rinsate Blanks	1 per day of sampling	<lor< td=""></lor<>

4.3 Sampling Plan

The NSW EPA (1995) Sampling Design Guidelines state that 27 sampling points are required for a site the size of 1.7ha, however, due to accessibility across the site (i.e. high traffic areas and/or permission to some building areas not provided by tenants), 21 sampling locations were possible. The investigation includes advancement of soil borings at 21 strategic locations across the site with soil samples collected for analysis of

the COPCs outlined above in **Table 4-1**. In addition, four of these soil bores advanced were converted into permanent groundwater monitoring wells, with groundwater samples collected for analysis of the COPCs outlined above in **Table 4-1**.

Details of the undertaken sampling program, including the soil and groundwater investigation methodology, the undertaken soil and groundwater analytical program, and the undertaken QA/QC program, are outlined below in **Section 6**. Soil boring and groundwater monitoring well locations are shown on **Figure 3**.

5 Adopted Assessment Criteria

In consideration of the potential redevelopment of the site to medium-high density residential land uses (which may include gardens/accessible soils), the following soil criteria have been selected for this investigation.

5.1 Soil Criteria

- TRH and BTEXN:
 - NEPM (2013) Soil Health Screening Levels (HSLs) for Vapour Intrusion (VI) for residential (HSL A & B) and recreational/open space (HSL C) land use. Based on the soil characteristics recorded at the time of sampling, the sand HSLs are applicable at the site;
 - CRC CARE (2011) Soil HSLs for VI for Intrusive Maintenance Workers (Shallow Trench).
 Based on the soil characteristics recorded at the time of sampling, the sand HSLs are applicable at the site. These criteria are relevant for workers involved in shallow trenches of depths 0-<2m, 2-<4m and >4m;
 - CRC CARE (2011) Soil HSLs for Direct Contact for Intrusive Maintenance Workers and Low Density Residential land users; and
 - NEPM (2013) Management Limits for TPH fractions F1 F4 in soil for residential, parkland and public open space land use. A review of the bore logs indicates that fine and coarse soil texture is applicable, dependent upon the sampling depth.
- Heavy metals, OCPs, OPPs, PAHs, phenols and PCBs:
 - NEPM (2013) Health Investigation Levels (HILs) for soil contaminants for residential land use with minimal opportunities for soil access (HIL B) and recreational/public open space land use (HIL C).

Asbestos:

- NEPM (2013) HSLs for asbestos contamination in soil for residential with minimal opportunities for soil access (HSL B) and recreational/public open space land use (HSL C).
- Ecological Investigation Levels/Ecological Screening Levels:
 - ESLs and EILs for urban residential and public open spaces included in NEPM (2013), Schedule B1, Tables 1B (1) to (6). The EILs for Cr, Cu, Ni, and Zn were calculated based on the methodology detailed in Schedule B1 in the NEPM (2013), and based on the average soil pH and conservative values of CEC and Organic Carbon Content.
- Acid Sulfate Soils:
 - Action criteria for coarse texture sands to loamy sands included in Acid Sulfate Soil Management Advisory Committee (1998) Acid Sulfate Soils Assessment Guidelines.

A list of collected soil samples is included in **Table 1**. A summary of the soil analytical results compared to applicable human health and environmental criteria are presented in **Tables 2** to **9**.

5.2 Groundwater Beneficial Uses

This section details the applicable guideline criteria utilised as groundwater investigation levels (GILs) for comparison to the groundwater analytical data collected during this DSI. The GILs are utilised as initial screening values only to determine if there is potential risk to human health and the environment associated with the dissolved phase impacts. The adopted GILs were based on an evaluation of potential beneficial groundwater uses both on and off site. For the purposes of evaluating groundwater conditions at the site, a review of the potential on-site and off-site groundwater beneficial uses has been conducted. The results of the review are provided in **Table 5-1**.

Table 5-1: Data Quality Indicators

Beneficial Use		Likelihood of Use		Comment	
		On site	Off site	_	
Aquatic Ecosystems	Groundwater	Nil	Unlikely	There are no aquatic ecosystems on site and none are anticipated after site redevelopment. An unnamed drain, located approximately 600m west of the site, drains into Alexandra Canal approximately 1km north-west/west of the site, which eventually discharges into Cooks River and Botany Bay. Based on the distance to these surface water bodies, they are considered unlikely to be receptors of groundwater impacts at the site (if any). However, as a conservative approach, the protection of aquatic ecosystems off-site has been evaluated as part of this DSI.	
Human Uses	Potable Water	Unlikely	Potential	Although the site and surrounding suburb have an established reticulated water supply, 12 domestic bores are registered within a 1km radius of the site (the nearest located 24m east of the site) (refer to Section 2.7). As such, potential risks to human health from drinking water have been evaluated.	
	Primary/Secondary Contact/Recreation/ Aesthetic	Unlikely	Unlikely	The site and surrounding area have no rivers, creeks or other surface water bodies that would potentially be utilised for swimming and other recreational activities within a 500 m radius of the site.	
	Irrigation	Unlikely	Unlikely	At its closest point, Mascot Oval is located approximately 18m north-east of the site and may extract water for irrigation purposes. However, no irrigation use groundwater bores were identified within 1km of the site (refer to Section 2.7). Irrigation beneficial uses have not been considered for this DSI.	
	Stock Watering	Unlikely	Unlikely	Given that the site is located within the Sydney metropolitan area, it is unlikely that groundwater will be extracted for stock watering purposes.	
	Industrial Use	Unlikely	Potential	The potential exists for off-site industrial use of groundwater.	
	Aquaculture	Unlikely	Unlikely	The nearest surface water bodies (i.e. unnamed drain and Alexandra Canal, located approximately 600m west and 1km north-west/west of the site) are considered unlikely to be utilised for aquaculture.	
Intrusive Maintenance/Trench/Excavation Worker		Potential	Potential	On-site and off-site sub-surface activities have the potential for workers to come in direct contact with groundwater and COPCs if it is impacted.	

5.3 Groundwater Investigation Levels

Based on **Table 5-1**, there are no on-site beneficial uses to be protected. However, the potential exists for on-site sub-surface workers to come in direct contact with groundwater in the future, both on and off site. The groundwater analytical data have been compared to the following criteria to account for the most conservative use of groundwater on site and potential off-site uses:

- NEPM (2013) Drinking Water GILs;
- NEPM (2013) Maintenance of Aquatic (Freshwater) Ecosystems;
- NEPM (2013) Groundwater HSLs for low to high density residential land use (HSL A/B);
- NEMP (2018) Health based guidance values; and
- NEMP (2018) Guidance values for 95% species protection slightly to moderately disturbed systems.

Given that groundwater was encountered within sand during drilling of boreholes MW1 to MW4, the sand HSLs have been adopted for this DSI. The applicable guideline criteria with the groundwater analytical data are listed in **Table 13**.

Specific guidance on water quality parameters for industrial use are not provided in ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters but are provided in the ANZECC (1992) Australian Water Quality Guidelines for Fresh and Marine Waters. However, the applicable criteria for industrial water uses are highly specific to the type of process, and therefore criteria for industrial water use have not been specified for the site.

6 Field Program

The field program included an intrusive investigation to assess the subsurface conditions at the site. Soil samples were collected from the 21 boreholes drilled at the site for laboratory analysis. The sampling methodologies are outlined in the following sections. Field documentation (borehole logs) is included in **Appendix G**.

6.1 Soil Investigation Program

The initial site inspection was conducted on 3 August 2018, with the soil environmental investigation undertaken on 8, 9, 10, 13 and 14 August 2018 by TRACE Environmental Scientists who are trained and experienced in the supervision and direction of drilling works, environmental logging and collection of environmental soil samples. All subsurface investigations were conducted with reference to the NEPM (2013) Schedule B2 and EPA VIC guidelines, as necessary.

Due to site restraints, including warehouse access restrictions, several areas of the site could not be investigated (i.e. the north-eastern portion of 146 O'Riordan Street and the eastern portion of 154 O'Riordan Street). As a result, the number of soil bores completed as part of the DSI does not conform to the minimum number of sampling points required to assess site contamination for a site area of approximately 1.6 ha, as defined in NSW EPA (1995) *Sampling Design Guidelines*. This is further discussed in **Section 8.3**. Borehole locations, including planned boreholes that could not be advanced due to access restrictions; are shown on **Figure 3**.

The sampling methodology adopted for the soil investigation conducted is detailed in **Table 6-1** below. Laboratory analytical results are discussed in **Section 7** and laboratory analytical reports are provided in **Appendix H**.

Table 6-1: Soil Investigation Methodology

Activities	Details
Concrete Coring	Concrete/bitumen coring was required at sixteen (SB-1, SB-6 to SB-8, SB-10, SB-11, SB-14, SB-17 to SB-20 and SB-23 to SB-27) locations to access the underlying soils during borehole drilling. Concrete/bitumen thickness ranged between 0.11 and 0.175m at these locations.
Borehole drilling	Soil bores were advanced at 21 locations (SB-1, SB-4, SB-6 to SB-11, SB-13, SB-14 and SB-17 to SB-27, refer to Figure 3) across the site. Eleven of the soil bores (SB-6, SB-11, SB-14, SB-17 to SB-22, SB-26 and SB-27) were advanced to depths between 0.8 and 12.0 mbgs using a combination of a hand auger and a Geoprobe drilling rig (using push tubes and rotating auger). Ten of the soil bores (SB-1, SB-4, SB-7 to SB-10, SB-13 and SB-23 to SB-25) were advanced to depths between 0.25 and 1.1 mbgs using a hand auger. Soil samples were collected directly from the hand auger, push tube liners and/or rotating auger at each location.
Field Logging	Logging of soil samples was conducted in general accordance with the Unified Soil Classification System. Soil materials were logged, and the following information was recorded in the field: soil/rock type, colour, grain size, inclusions, moisture conditions, staining and observation of any anthropogenic material (e.g., odours, and waste materials).

Activities	Details
Sampling Intervals	Samples were collected from each borehole from: • the surface (0.15 to 0.25 mbgs);
	• 0.3-0.9 mbgs;
	At one metre intervals to the end of each borehole;
	at changes in lithology;
	at evidence of contamination (e.g. odours, staining, waste inclusions) (if any); and
	at areas of elevated PID readings (if any).
Soil Sampling Procedures	Soil samples were collected from each borehole by hand (protected by a dedicated nitrile glove) from the hand auger and/or push tube liner. The soil samples were collected in laboratory supplied 250 mL jars and were labelled and immediately stored on ice for transport to the laboratory. Samples collected for asbestos analysis were collected in laboratory supplied 500mL plastic bags with a press ('Ziploc') seal.
	A total of 119 primary soil samples were collected for field screening and potential laboratory analysis from the soil bores advanced on 8, 9, 10, 13 and 14 August 2018. Based on a review of depth of sample, future land use, lithology, presence of staining, odours, waste inclusions and PID results, laboratory analysis was requested for 87 primary samples. Of these 22 natural soil samples were submitted for ASS analysis.
Field QC Samples	Field duplicates and triplicates of the soil samples were prepared in the field by collecting split samples of the same material from the same depth. Samples were not mixed or homogenised during collection or splitting. Samples for duplicate analyses were selected from sampling locations characterised by indicators of contamination, odour and/or elevated PID responses (if encountered). Additionally, a trip blank and trip spike sample was transported with the samples during the soil sampling and were analysed at the laboratory. Duplicates and triplicates were collected at the minimum rate of one per 20 primary samples analysed at the laboratory. A full discussion of the QA/QC procedures is included in Section 7.6 and Appendix I . Laboratory analytical reports are provided in Appendix H .
Sample Labelling, Storage and Transport	All samples were clearly labelled with a unique sample identification consisting of the date, sample location, depth of sample and sampler's initials. In the case of field duplicates and triplicates, sample containers were labelled in a manner that did not reveal which primary sample the duplicate or triplicate belonged to.
Field Screening for VOCs	Additional soil from each sample depth range was placed in a sealed plastic bag for field screening purposes. After waiting approximately five minutes for the sample and the headspace to equilibrate, the headspace in the bagged samples was assessed by a calibrated (100 \pm 3 parts per million (ppm) isobutylene) PID with a 10.6 eV lamp to measure the presence of total VOCs. PID readings are included Table 1 . The PID calibration certificate is provided in Appendix G .
Decontamination	The hand auger was decontaminated between each borehole location, and a clean pair of disposable nitrile sampling gloves was used between collection of each sample. Rinsate samples were collected during soil sampling as discussed in Appendix I .
Waste Disposal	Soil cuttings generated during borehole drilling were returned to the borehole following sampling and boreholes were reinstated with concrete (where required).

6.2 Groundwater Investigation Program

Four of the boreholes advanced during the DSI were converted into permanent groundwater monitoring wells (MW1 to MW4) and were sampled to determine the condition of groundwater at the site. The groundwater monitoring well locations are shown on **Figure 3**.

Groundwater sampling was undertaken on 15 August 2018 by a TRACE Environmental Scientist who is trained and experienced in the collection of environmental groundwater samples. All groundwater installation works, and investigations were conducted with reference to the NEPM (2013) Schedule B2 and relevant guidelines

endorsed by NSW EPA. The sampling methodology adopted for the groundwater investigation conducted is detailed in **Table 6-2**, below.

Table 6-2: Groundwater Sampling Methodology

Activities	Details
Monitoring Well Construction	The four newly installed monitoring wells (MW1 to MW4) were constructed using Class 18 uPVC 50 mm inside diameter machine threaded casing and 0.4 mm slotted screen and casing. Well construction, including screen lengths, was based on observations made during drilling. Once the well screen was installed, a filtered sand of 2 mm in diameter was introduced as a filter pack to reduce sediment infiltrating the well annulus. The filter pack was placed around the screened section of the well to approximately 0.5 m above the top of the screen. Fine-grained bentonite pellets were placed above the sand filter pack around the well to approximately 0.5 m above the top of the filte pack and was slightly wetted to ensure an adequate seal was formed to prevent surface infiltration into the well. The annulus was subsequently backfilled using grout to approximately 0.1 mbgs. A well cap was then inserted and a steel gatic cover was installed flush mounted to the ground surface and secured with concrete at the top of the monitoring well to prevent tampering and damage. The bore logs are included in Appendix G .
Monitoring Well Development	The newly installed monitoring wells were developed using a bailer as soon as practical following installation. The bailer was used to disturb the water column within the well annulus to remove any groundwater and well debris that may have been introduced during the installation process.
Monitoring Well Gauging	Measurement of the standing water level in the groundwater monitoring well was undertaken prior to purging using an electronic interface probe. Both the standing water level and the depth to the base of the well were measured. Groundwater gauging data is presented in the groundwater sampling logs in Appendix G .
Monitoring Well Purging	The four monitoring wells were purged prior to sampling using low-flow sampling equipment on 15 August 2018. Water quality parameters including temperature, electrical conductivity, dissolved oxygen, redox potential and pH were measured during purging using a calibrated water quality meter. Sampling was completed following the stabilisation of the water quality parameters. Pospurging water quality parameters and purging data is shown in Appendix G .
Monitoring Well Sampling	Sampling of the monitoring wells was completed using the same methods as for purging (i.e. low flow sampling technique) and was completed following stabilisation of water quality parameters Samples were collected into appropriate laboratory supplied sample containers. Samples collected for analysis for metals were first filtered through a 0.45 micron filter prior to being dispensed into an appropriate laboratory supplied sample container. All bottles were then sealed immediately using a Teflon lined cap, labelled and placed on ice.
Field QC Samples	Groundwater field duplicate and field triplicate samples were prepared in the field by collecting spli samples from the same monitoring well. To meet the QA/QC program objectives, one duplicate was analysed at the laboratory for the COPCs and one triplicate sample was analysed at a secondary laboratory for the COPCs. Trip blank and trip spike samples that were transported with the samples during the groundwater sampling were also analysed at the laboratory.
Sample Labelling, Storage and Transport	All samples were clearly labelled with unique sample identification numbers consisting of the date sample location and sampler's initials. In the case of field duplicates, sample containers were labelled so as to not reveal their purpose or sample location to the laboratory. All samples were kep chilled in an ice-filled esky prior to dispatch and during transport to the NATA registered laboratory under chain-of-custody procedures.
Decontamination	During the gauging of monitoring wells, an interface probe was used. The interface probe was decontaminated prior to its use by scrubbing with PFAS-free decontamination water. New tubing was used to purge the monitoring well during sampling. No reusable equipment was used during groundwater sampling.

6.3 Soil Analytical Program

The collected fill and natural soil samples were submitted for laboratory analysis of various COPCs potentially related to the current food distribution and historical transport and logistics operations, as well as the site located within an area primarily used for industrial purposes. Primary and intra-laboratory duplicate samples

were submitted to Eurofins-mgt of Lane Cove West, NSW and the inter-laboratory duplicate samples were submitted to ALS in Smithfield, NSW. A summary of the soil analytical program is provided in **Table 6-3**, below.

Table 6-3: Summary of Soil Analytical Program

Analysis	Analytical Method	LORs (mg/kg)	# Primary Samples	# QA/QC Samples
TRH Fraction F1 and F2 TPH C ₆ to C ₄₀	TRH C6-C40 - LTM-ORG- 2010	20 to 100	33	6
BTEXN	TRH C6-C40 - LTM-ORG- 2010	0.1 to 0.5	33	6
Polycyclic Aromatic Hydrocarbons	LTM-ORG-2140 PAH and Phenols in Soils by GCMS	0.5	43	6
Metals (As, Cd, Total Cr, Cu, Pb, Hg, Ni, Zn)	LTM-MET-3040_R0	0.1 to 5	43	6
OCPs/OPPs	LTM-ORG-2220 OCP & PCB in Soil/LTM-ORG-2200 Organophosphorus Pesticides by GC-MS	0.05 to 2	21	0
PCBs	LTM-ORG-2220 OCP & PCB in Soil	0.1 to 0.5	21	0
Phenols	LTM-ORG-2140 PAH and Phenols in Soils by GCMS	0.2 to 20	18	0
VOCs	LTM-ORG-2150 VOCs in Soils	0.1 to 0.5	7	0
Asbestos	LTM-ASB-8020	0.001 %	24	4
pН	LTM-GEN-7090 pH in soil by ISE	0.1 units	5	0
Electrical Conductivity	LTM-INO-4030	10 μS/cm	5	0
ASS – SPOCAS	LTM-GEN-7050	Various	13	0
ASS – Scr	LTM-GEN-7070 LTM-GEN-7050/7070	Various	14	0
TCLP	(TCLP) USEPA Method 1311 (ASLP) AS 4439.2; AS 4439.3	0.1	9	0

6.4 Groundwater Analytical Program

The collected groundwater samples were submitted for laboratory analysis of various COPCs potentially related to the current and historic site uses as identified during the DSI completed by TRACE Environmental (2017). A summary of the overall groundwater analytical program is presented in **Table 6-4**, below.

Table 6-4: Summary of Groundwater Analytical Program

Analysis	Analytical Method	LORs (mg/L)	# Primary Samples	# QA/QC Samples
TRH Fraction F1 and F2 TPH C ₆ to C ₄₀	TRH C6-C40 - LTM-ORG- 2010	0.02 to 0.1	4	2

Analysis	Analytical Method	LORs (mg/L)	# Primary Samples	# QA/QC Samples
BTEXN	TRH C6-C40 - LTM-ORG- 2010	0.001 to 0.01	4	2
Polycyclic Aromatic Hydrocarbons	LTM-ORG-2130 PAH and Phenols in Water by GCMS	0.001	4	2
Metals (As, Cd, Total Cr, Cu, Pb, Hg, Ni, Zn)	LTM-MET-3040 Metals in Waters by ICP-MS	0.0001 to 0.005	4	2
OCPs/OPPs	LTM-ORG-2220 OCP & PCB in Soil and Water/LTM-ORG-2200 Organophosphorus Pesticides by GC-MS	0.0001 to 0.02	4	0
PCBs	LTM-ORG-2220 OCP & PCB in Soil and Water	0.001 to 0.005	4	0
Phenols	LTM-ORG-2130 PAH and Phenols in Water by GCMS	0.001 to 0.1	4	2
VOCs	LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices	0.005	4	0
PFASs	USEPA Method 537	0.05 to 0.01	4	0

7 Assessment Results

7.1 Site Observations and Lithology

The soil profile encountered by TRACE Environmental during drilling of boreholes at the site is summarised below:

- Fill (consisting of sand, gravel, cobbles, sandy gravel, silty sand and/or sandy clay) with bricks, concrete, glass, metal, organic material (such as wood and roots) and/or slag, to between 0.8 and 3.0 mbgs; overlying
- Natural sand, medium grained, white/grey to orange/brown to black.

In addition to the anthropogenic material described above, hydrocarbon odour was noted in fill and natural material at borehole SB-26 at depths between 1.5 and 6.0 mbgs.

PID measurements of 0.4 ppm and 0.3 ppm in soil samples SB-14/0.4 and 2.0, 0.8 ppm and 1.0 ppm in soil samples SB-19/0.8 and 1.5 and 2.0 ppm to 8.9 ppm in the soil samples obtained from soil bore SB-26 at depths ranging between 1.0 and 8.0 mbgs were recorded during borehole drilling. All other PID measurements for soil samples collected during borehole drilling were recorded at 0.0 ppm.

Boreholes SB-4, SB-7, SB-8, SB-9, SB-13, SB-23, SB-24 and SB-25 encountered hand auger refusal in fill material at depths ranging between 0.25 (SB-4) and 0.6 These boreholes were terminated at the hand auger refusal depth. Boreholes SB-1 and SB-21 encountered rotating auger refusal in fill material at depths of 0.75 and 0.8 mbgs, respectively, on potential concrete material. Boreholes SB-10 and SB-18 were terminated at depths of 1.1 and 1.0 mbgs in sand potentially indicating service trenches in close proximity to these locations (based on on-site observations and available Dial Before You Dig plans).

Borehole logs are provided in **Appendix G**.

7.2 Soil Analytical Results

Soil analytical results are summarised in **Tables 2A** to **10** and laboratory analytical reports are included in **Appendix H**. A summary of the soil analytical results is presented below:

- TPH/TRH compounds were reported at concentrations exceeding the laboratory LORs in various analysed soil samples across the site. Of these, TRH C₁₀-C₁₆ (Fraction F2) was detected at concentrations exceeding the NEPM (2013) ESL (Urban Residential and Public Open Space) criteria in soil samples SB-4/0.2, SB-18/1.0 and SB-26/1.5-2.0. In addition, TRH Fraction F2 in soil sample SB-26/1.5-2.0 was reported at a concentration exceeding the NEPM (2013) Management Limits for TPH in residential, parkland and public open space criteria (for coarse and fine soils);
- TRH compound C₁₀-C₁₆ (Fraction F2) in soil samples SB-4/0.2, SB-18/1.0 and SB-26/1.5-2.0 were reported at concentrations exceeding the NEPM (2013) soil HSL for vapour intrusion criteria for low to high density residential land use (in sand depths of 0 to <1m and 1 to <2m) (HSL A & B). All other samples were reported below the laboratory LORs and applicable guideline criteria for TPH/TRH compounds in soil;

- Ethylbenzene, m&p-xylenes, o-xylenes and total xylenes were detected at concentrations exceeding the laboratory LORs, but below applicable guideline criteria, in the analysed soil sample SB-26/1.5-2.0. Naphthalene was also detected in this sample at a concentration exceeding the NEPM (2013) HSL A & B criteria. In addition, toluene was detected at a concentration exceeding the laboratory LOR, but below applicable guideline criteria, in the analysed soil sample SB-7/0.25. BTEXN compounds were not reported at concentrations exceeding the laboratory LORs in any other analysed soil sample;
- PAH compounds were reported in various analysed soil samples at concentrations exceeding the laboratory LORs. Of these, benzo(a)pyrene TEQ was reported at a concentration exceeding the NEPM (2013) HIL B criteria (Residential B) in analysed soil sample SB-14/1.2, and benzo(a)pyrene was reported at concentrations exceeding the NEPM (2013) ESL (Urban Residential and Public Open Space) in analysed soil samples SB-1/0.5, SB-6/1.0, SB-14/1.2, SB-19/1.5 and SB-26/1.5-2.0. It is noted that the concentration of benzo(a)pyrene in soil sample SB-19/0.8 was reported at a concentration equal to the NEPM (2013) ESL criteria;
- Heavy metals arsenic, chromium, copper, lead, mercury, nickel and/or zinc were reported at concentrations exceeding the laboratory LORs in all analysed soil samples, with the exception of soil samples SB-11/4.4, SB-14/10.0, SB-19/3.7, SB-20/3.8 and SB-27/6.0. Arsenic, copper, lead, nickel and/or zinc were reported at concentrations exceeding the NEPM (2013) EILs (Urban Residential and Public Open Space) in analysed soil samples SB-1/0.5, SB-6/1.0, SB-7/0.25, SB-11/0.5, SB-11/1.2, SB-11/1.6, SB-14/1.2, SB-18/1.0, SB-19/0.8, SB-19/1.5, SB-20/0.3, SB-20/1.0, SB-20/1.5, SB-21/0.15, SB-21/0.15, SB-22/0.5, SB-25-0.25, SB-26/0.2, SB-26/1.5-2.0 and/or SB-27/0.5. In addition, the concentration of lead reported in soil samples SB-1/0.5, SB-14/1.2 and SB-18/1.0 exceeds the NEPM (2013) HIL C criteria (recreational/open space land use) and SB-26/1.5-2.0 exceeds the NEPM (2013) HIL B (residential land use);
- No OCPs or OPPs were reported at concentrations exceeding the laboratory LORs and/or applicable guideline criteria in any of the analysed soil samples;
- No PCBs or phenols were reported at concentrations exceeding the laboratory LORs and/or applicable guideline criteria in any of the analysed soil samples;
- VOCs were not reported at concentrations exceeding the laboratory LORs in any of the analysed soil samples. It is noted that EPA NSW has not endorsed applicable guideline criteria for VOCs in soil; and
- Asbestos was detected in soil samples SB-1/0.5 (ACM), SB-6/0.4 (ACM and FA+AF), SB-8/0.3 (AF), QA1A (FA+AF) and SB-27/0.2 (ACM). Of these samples, ACM and FA+AF in soil sample SB-6/0.4 and FA in soil sample SB-7/0.25 were reported at weight percentages exceeding the NEPM (2013) HSLs for Residential B (bonded/non-friable ACM) and for FA and AF asbestos. In addition, ACM in soil sample SB-1/0.5 was reported at a weight percentage exceeding the NEPM (2013) HSLs for Recreational C (bonded/non-friable ACM). No respirable fibres were detected in any of the analysed soil samples.

The soil samples with COPCs that have been reported at concentrations exceeding the applicable guideline criteria are summarised in **Figure 4**.

7.3 Hydrogeological Conditions

Monitoring wells MW1 to MW4 were installed at the site between 8 and 13 August 2018. Groundwater well installation details are shown on the bore logs presented in **Appendix G**. Details regarding the encountered site hydrogeological conditions are summarised in **Table 7.1**, below.

Table 7-1: Site Hydrogeology

Component	Description
Depth to Groundwater	Gauged between 3.682 mbtoc (MW1) and 4.596 mbtoc (MW4)
Non-aqueous phase liquid (NAPL)	No measurable NAPL was detected at the site
Inferred Flow Direction	Based on the measured depth to groundwater and monitoring well survey data (refer to Appendix G), the calculated groundwater flow direction is to the west/south-west, with apparent mounding in the centre of the site. Groundwater flow direction is presented in Figure 6 .
Water Bearing Unit	Sand
Lateral Hydraulic Gradient	0.0099 m/m
Total Dissolved Solids	Between approximately 737 mg/L (MW-1 and MW2) and 1407 mg/L (MW-4)
Potential Groundwater Discharge Zones	Alexandra Canal located approximately 1 km west/north-west of the site

Notes:

mbtoc: metres below top of casing

7.4 Groundwater Analytical Results

Based on review of the laboratory analytical results for groundwater samples collected at the site, the following summary of identified COPCs and assessment criteria exceedances is provided:

- Arsenic, copper, lead, nickel and/or zinc were reported at concentrations exceeding the laboratory LORs in groundwater samples MW-1, MW-2, MW-3 and/or MW-4. Of these, arsenic (MW-2) and lead (MW-1) were reported at concentrations exceeding the NEPM (2013) Drinking Water GILs, and copper (MW-1 to MW-4), lead (MW-2 and MW-3) and zinc (MW-1 to MW-4) were reported at concentrations exceeding the NEPM (2013) Freshwater GILs;
- PFAS compounds were reported at concentrations slightly exceeding the laboratory LORs, but below the applicable guideline criteria, in the groundwater samples analysed (MW-1 to MW-4); and
- BTEXN, PAHs, OCPs, OPPs, phenols, PCBs and VOCs were not reported above laboratory LORs in the groundwater samples analysed.

A summary of laboratory analytical data for groundwater samples collected at the site is presented in **Table 13**, and guideline exceedances are further discussed in **Section 8**.

The groundwater samples with COPCs that have been reported at concentrations exceeding the applicable guideline criteria are summarised in **Figure 5**.

7.5 Acid Sulfate Soils Analysis

A total of 22 natural soil samples collected from boreholes drilled across the site were submitted for ASS field screening analysis to investigate the potential for ASS to be present at the site. Laboratory analytical results for ASS field screening showed pH-F and pH-FOX values ≥5.6 and ≥2.2, respectively, for the analysed soil

samples. Of the samples analysed, pH-FOX was reported between 2.2 and 3.3 in soil samples SB-6/5.0, SB-14/8.0, SB14/10.0, SB-17/8.0, SB-17/10.0, SB-20/8.0, SB-20/10.0, SB-20/12.0, SB-26/6.0, SB-26/8.0 and SB-26/10.0.

Based on the above results, 17 of the 22 natural soil samples were submitted for chromium reducible sulfur (S_{CR}) and/or SPOCAS analysis to further assess the potential for ASS to be present at the site. The results of the S_{CR} and SPOCAS analysis reported that net acidity and sulfur – peroxide oxidisable sulfur exceeded the ASSMAC criteria in multiple soil samples collected from across the site. This indicates that PASS or AASS are likely to be present in natural materials sampled at the site. As such, an Acid Sulfate Soil Management Plan (ASSMP) will be required prior to future development works or disturbance of the natural material (refer to **Section 9** below for additional detail).

A summary of ASS laboratory analytical data for soil samples collected at the site is presented in Table 9.

7.6 Quality Assurance/Quality Control

The overall project QA/QC program included collecting of duplicate, triplicate and field blanks and internal laboratory QA/QC. A summary of the results of the QA/QC results are included in the following sections. The full QA/QC evaluation is in included in **Appendix I**.

Three intra-laboratory soil duplicates (QS1, QS2 and QS3) and three inter-laboratory soil duplicates (QS1A, QS2A and QS3A) were collected during this investigation. In addition, two intra-laboratory soil duplicates for asbestos analysis (QA1 and QA2) and two inter-laboratory soil duplicates for asbestos analysis (QA1A and QA2A) were collected during this investigation. Furthermore, one intra-laboratory water duplicate (QW1) and one inter-laboratory water duplicate (QW1A) was collected during this investigation.

A summary of the QA/QC samples is included in Table 7-2, below.

Table 7-2: Summary of QA/QC Samples

Parent Sample	Date	Blind Duplicate	Blind Triplicate	Analysis
SB-27/3.8	08/08/2018	QS1	QS1A	BTEXN, vTRH, PAHs, Metals
SB-14/0.2	10/08/2018	QS2	QS2A	BTEXN, vTRH, PAHs, Metals
SB-22/6.0	13/08/2018	QS3	QS3A	BTEXN, vTRH, PAHs, Metals
SB-21/0.4	13/08/2018	QA1	QA1A	Asbestos
SB-23/0.4	14/08/2018	QA2	QA2A	Asbestos
MW2	15/08/2018	QW1	QW1A	BTEXN, vTRH, PAHs, Metals, Phenols

The Relative Percent Difference (RPD) was calculated between the primary and QA/QC samples (groundwater) and the QA/QC samples (soil) and are shown on **Table 11**.

Standards AS 4482.1-1997, AS 4482.2-1999, AS/NZ 5667.1-1998, AS/NZ 5667.11-1998 and NEPM (2013) state that replicate and original sample RPDs should generally be within 30%. However, this variation can be expected to be higher for organic compounds than for inorganics. In addition, greater variation is observed where low concentrations of analytes are present. Therefore, the following RPD acceptance criteria were adopted during this investigation:

- Inorganics 30% RPD;
- Organics 50% RPD; and
- If primary and/or duplicate concentration <10 × LOR No Limit.

A discussion of the RPD results is included in **Appendix I**.

7.6.1 Laboratory QA/QC

The chosen analytical laboratories undertake internal QA/QC procedures which include the analysis of method blanks, internal duplicate samples, laboratory control samples, matrix spikes and surrogate recovery. Additionally, laboratory QA/QC procedures include sample receipt, logging, storage, preservation and analysis within the method specified holding time. The full review of the laboratory QA/QC program is included in **Appendix I**. A review of the laboratory QA/QC procedures indicated that the laboratory QA/QC samples percent recoveries were generally within the laboratory recommended range for acceptable reproducibility. Additionally, samples were received and stored appropriately, and all samples were analysed within the specified holding times.

7.6.2 Data Useability

Assessment of the field and laboratory QA/QC procedures and results indicates that the DQOs were met and therefore that the analytical data is considered representative of site conditions at the time of the investigation and suitable to enable an investigation of the site. The majority of internal laboratory QA/QC procedures were met. The data validation procedure employed in the assessment of the field and laboratory QA/QC data indicated that the reported analytical results are representative of the conditions at the sample locations and that the analytical data can be relied upon for the purpose of this investigation. It is concluded that overall the quality of the analytical data produced is reliable for the purposes of evaluating the potential risks posed by subsurface impacts to human health and the environment at the site.

8 Conceptual Site Model

8.1 Preliminary CSM

The environmental risk assessment is based on a contaminant (source) - exposure pathway - receptor methodology. This relationship allows an assessment of potential environmental risk to be determined, in accordance with the current national guidelines. Central to the requirements for the assessment of risk is the development of an initial CSM, identifying each contaminant source and the associated receptor exposures.

Generally, a CSM provides an assessment of the fate and transport of COPCs relative to site-specific subsurface conditions with regard to their potential risk to human health and the environment. The CSM considers site specific factors including:

- Sources of subsurface impacts;
- Identification of COPCs derived from the sources;
- Vertical and lateral distribution of COPCs;
- Site specific lithologic information including soil type(s), depth to groundwater, effective porosity, and groundwater flow velocity; and
- Actual or potential receptors focusing on future and current land use both of the site and adjacent properties and sensitive ecological receptors.

Based on the information sourced in this investigation, a preliminary CSM has been developed and is outlined in **Table 8-1**, below. Additional details are included in the sections that follow as necessary.

Table 8-1: Preliminary Conceptual Site Model

Conceptual Site Model Element	Description
Site History/Contaminant Sources	The site historically comprised of a mix of structures, vegetated and farmed land from circa 1940's to mid-1970's. the vegetated/farm land was developed into a car park until the early 1990's when a warehouse was developed in the southern portion of the site (remaining largely unchanged to present day). The northern portion of the site was developed into its current configuration circa 2009. The site is currently used for a variety of commercial and light industrial purposes, such as electronics repair, fashion distribution, office space, broadcasting, air freight transport, food production/distribution and rail maintenance organisation workshop. Historical site operations, including a variety of manufacturers (such as fork lift truck, electronic equipment, motor garage equipment, lubricating equipment, and spraying equipment) is a potential source of subsurface impact at the site (i.e. via storage of hazardous chemicals, refuelling of machinery and/or vehicles etc.). Additionally, the likely historical importation of fill material from unknown sources has the potential to impact the subsurface.
Site Current and Future Use	The site is currently occupied by a large warehouse/office building in the northern portion of the site (146 O'Riordan Street) and large warehouses in the central, eastern and southern portions of the site (154 O'Riordan Street). These warehouses/office spaces are used for a variety of commercial and light industrial purposes, as noted above. It is understood that the intended future land use of the sight is medium to high density residential with open space areas.

Conceptual Site Model	Description
Element	
Site Geology	The results of the investigation showed a range of fill materials across the site, including sands and gravels, extending to a maximum depth of approximately 3.0 mbgs. Underlying the fill materials were natural sands. Further details of the site lithology are outlined above in Section 7.1 , with bore logs provided in Appendix G .
Site Hydrogeology	Groundwater was gauged between 3.682 mbtoc (MW1) and 4.596 mbtoc (MW4) in the four groundwater monitoring wells installed by TRACE Environmental during this DSI and was encountered in natural sand beneath the site at depths between 3.5 mbgs (SB-11/MW3) and 4.2 mbgs (SB-22/MW4). The inferred groundwater flow direction at the site is towards the west/south-west, with apparent mounding in the centre of the site.
	Based on topography and the location of surrounding surface water bodies, groundwater beneath the site would be expected to flow toward an unnamed drain, located approximately 600m west of the site that drains into Alexandra Canal approximately 1km north-west/west of the site. Alexandra Canal eventually discharges into Cooks River and Botany Bay
COPCs – Soil	The following COPCs were detected at concentrations above applicable site assessment criteria for human health:
	• TRH C ₁₀ -C ₁₆ (fraction F2) exceeded the NEPM (2013) HSL A/B criterion for VI in fill samples SB-4/0.2, SB-18/1.0 and SB-26/1.5-2.0;
	• Naphthalene exceeded the NEPM (2013) HSL A/B criterion for VI in fill sample SB-26/1.5-2.0;
	 Benzo(a)pyrene TEQ exceeded the NEPM (2013) HIL B criterion in fill sample SB- 14/1.2;
	• Lead exceeded the NEPM (2013) HIL B criterion in fill sample SB-26/1.5-2.0 and HIL C in fill samples SB-1/0.5, SB-14/1.2 and SB-18/1.0;
	ACM exceeded the NEPM (2013) HSL B criterion in fill sample SB-6/0.4 and HSL C in fill sample SB-1/0.5;
	FA and AF exceeded the NEPM (2013) HIL B criterion in fill sample SB-6/0.4; and
	AF exceeded the NEPM (2013) HIL B criterion in fill sample SB-7/0.25.
	The following COPCs were detected at concentrations above applicable ecological assessment criteria for the site:
	• TRH C ₁₀ -C ₁₆ (fraction F2) exceeded the NEPM (2013) ESL criteria for urban residential and public open space land use in fill samples SB-4/0.2, SB-18/1.0 and SB-26/1.5-2.0;
	• TRH C ₁₀ -C ₁₆ (fraction F2) exceeded the NEPM (2013) management limits for TPH in residential, parkland and public open space criteria in fill sample SB-26/1.5-2.0;
	Benzo(a)pyrene exceeded the NEPM (2013) ESL for urban residential and public open space land use in fill samples SB-1/0.5, SB-6/1.0, SB-14/1.2, SB-19/0.8, SB-19/1.5 and SB-26/1.5-2.0;
	• Arsenic exceeded the NEPM (2013) EIL criterion for urban residential and public open space land use in fill samples SB-1/0.5, SB-6/1.0, SB-11/1.6 and SB-26/1.5-2.0;
	• Copper exceeded the NEPM (2013) EIL criterion for urban residential and public open space land use in fill samples SB-1/0.5, SB-6/1.0, SB-11/1.6, SB-14/1.2, SB-21/0.15 and SB-26/1.5-2.0;
	• Lead exceeded the NEPM (2013) EIL criterion for urban residential and public open space land use in fill sample SB-26/1.5-2.0;
	• Nickel exceeded the NEPM (2013) EIL criterion for urban residential and public open space land use in fill samples SB-6/1.0, SB-7/0.25, SB-11/1.6, SB-19/0.8, SB-19/1.5, SB-20/0.3, SB-20/1.0, SB-20/1.5, SB-26/1.5-2.0 and SB-27/0.5; and
	• Zinc exceeded the NEPM (2013) EIL criterion for urban residential and public open space land use in fill samples SB-6/1.0, SB-7/0.25, SB-11/0.5, SB-11/1.2, SB-11/1.6, SB-14/1.2, SB-18/1.0, SB-19/0.8, SB-20/0.3, SB-21/0.15, SB-22/0.5, SB-25/0.25, SB-26/0.2, SB-26/1.5-2.0, SB-27/0.5.
	COPCs were not detected at concentrations above the applicable human health or ecological site assessment criteria in natural soil samples collected at the site.

Conceptual Site Model Element	Description
COPCs – Groundwater	The following COPCs were detected at concentrations above applicable site assessment criteria for human health:
	 Arsenic exceeded the NEPM (2013) Drinking Water GILs criterion in groundwater sample MW-2; and
	• Lead exceeded the NEPM (2013) Drinking Water GILS criterion in groundwater sample MW-1.
	The following COPCs were detected at concentrations above applicable ecological assessment criteria for the site:
	 Copper exceeded the NEPM (2013) Freshwater GILs criterion in groundwater samples MW-1, MW-2, MW-3 and MW-4;
	 Lead exceeded the NEPM (2013) Freshwater GILs criterion in groundwater samples MW-2 and MW-3; and
	• Zinc exceeded the NEPM (2013) Freshwater GILs criterion in groundwater samples MW-1, MW-2, MW-3 and MW-4.
COPCs – Soil Vapour	While a soil vapour assessment was not undertaken as part of the DSI, a potential VI risk may be present to future high density residential site users in the vicinity of boreholes SB-4, SB-18 and SB-26, based on the identified NEPM (2013) HSL A/B criteria exceedances in fill samples collected at these locations.
	Concentrations of analysed volatile compounds were reported below the respective criteria for the proposed medium to high density redevelopment of the site in the analysed groundwater samples.
Extent of Impacts – Soil	Based on the laboratory analytical results for soil samples collected at the site, fill material appears to be impacted by the COPCs at levels exceeding human health assessment criteria for the proposed medium to high density residential land use in the north-east (SB-4 and SB-6), central (SB-7), east (SB-14) and central south (SB-18 and SB-26) areas of the site, and at concentrations above ecological assessment criteria across the general site area.
	Soil impacts exceeding human health and ecological assessment criteria appear to be generally limited to the shallow fill material.
	Data gaps have been identified relating to the assessment of soil conditions at the site following the DSI works and are discussed further in Section 8.3 .
Extent of Impacts – Groundwater	With the exception of arsenic, lead, copper and/or zinc reported above the NEPM (2013) Drinking Water and/or Freshwater GILs in the groundwater samples collected from monitoring wells MW-1 to MW-4, no COPCs were reported above the groundwater assessment criteria.

8.2 Preliminary CSM Summary and Risk Assessment

The site has been used for a variety of light industrial and commercial purposes since the mid-1970's, prior to which, the site appears to have consisted of a mix of structures, vegetated land and farmland circa 1940s. The site has historically been used for a variety of purposes, including several types of manufacturing (e.g. fork lift trucks, electronic equipment, motor garage equipment, lubricating equipment and spraying equipment). The site is currently used for commercial/light industrial purposes, including electronics repair, fashion distribution, broadcasting, air freight transport, food production/distribution and rail maintenance organisation workshop.

The following potential sources of subsurface contamination have been identified at the site:

- Historical land uses on site and in the vicinity of the site;
- Potential import of fill from unknown sources to facilitate construction of the site's current configuration;
 and

Based on the results of the soil investigation conducted at the site by TRACE Environmental, fill material appears to be impacted by COPCs at levels exceeding human health assessment criteria for the proposed medium to high density residential land use in the north-east (SB-4 and SB-6), central (SB-7), east (SB-14) and central south (SB-18 and SB-26) areas of the site, and may present a health risk to future site users in a medium to high density residential setting in the vicinity of these hot spots.

Asbestos was identified in shallow fill material (<0.5mbgs) in the centre (SB-7) and north-west (SB-7) of the site at concentrations exceeding the NEPM (2013) HIL B criterion for asbestos in soils. It is likely that fill material on the site will be removed during future excavation completed as part of the site redevelopment and will require delineation and appropriate classification (in accordance with NSW EPA (2014) *Waste Classification Guidelines*) prior to off-site disposal of fill material.

COPCs were also identified at concentrations exceeding ecological assessment criteria in fill at soil bore locations across the general site area.

COPCs were not detected at concentrations above the applicable human health or ecological site assessment criteria in natural soil samples collected at the site. Based on the findings of the DSI, soil impacts exceeding human health and ecological assessment criteria appear to be vertically delineated to fill material on the site.

Groundwater beneath the site is generally free of measurable COPC concentrations, with the exception of heavy metals reported in all groundwater monitoring wells at the site. As no other COPCs were reported at concentration exceeding applicable guideline criteria, and considering the site is located in an urban environment, the reported metals concentrations are likely representative of background conditions at the site. It is also noted that the site is located in close proximity to a domestic ban associated with the Botany Sands aquifer (with the ban area located across O'Riordan Street to the north and west as noted in the Lotsearch report in **Appendix B**), and as such it is considered likely that any groundwater impacts associated with the domestic ban area could also potentially impact the site.

8.3 Data Gaps and Uncertainties

Due to access restrictions in buildings in the north-east, central and east portions of the site and in the driveway in the west of the site (i.e. planned soil bores SB-2, SB-3, SB-5, SB-12, SB-15 and SB-16), assessment of soil conditions in these areas could not be completed during the DSI. In addition, vertical delineation of identified impacts in fill material in soil bore locations SB-1, SB-7 and SB-25 due to hand auger refusal in fill material. Soil bore SB-21 was also abandoned due to mechanical drilling refusal on concrete, and soil bore and SB-18 was abandoned due to the likely presence of underground utility services in close proximity to this location. It also is noted that soil bore SB-1 encountered an apparent concrete slab at the respective depth of refusal.

As a result of the above site restraints, the sampling density completed as part of this DSI does not conform to the minimum number of sampling points required to assess the site (as defined in NSW EPA (1995) *Sampling Design Guidelines*) and it is recommended that further assessment beneath the current building footprints in the north-east, central and east of the site, and the driveway in the west of the site, be undertaken prior to site development. In addition, vertical delineation of identified impacts at soil bore locations SB-1, SB-7, SB-18, SB-21 and SB-25 should be undertaken prior to site development.

In addition, inspection of the shallow fill materials across the site during removal of the concrete hardstand is recommended to assess for potential residual impacts relating to previous site infrastructure/operations. The shallow fill materials should be carefully inspected for the presence of ACM, stained soils and/or below-ground residual former site infrastructure that could not be observed during the DSI field activities.

It is recommended that the above additional areas requiring investigation and/or remediation/validation be summarised in a Remedial Action Plan (RAP), which should also include an unexpected finds protocol to address unexpected finds that may be encountered during hardstand removal and/or during site redevelopment works. Refer to **Section 9.2** below for further details.

9 Conclusions and Recommendations

9.1 Summary and Conclusions

Based on the findings of this investigation, TRACE Environmental provides the following summary and conclusions:

- The site has been used for a variety of light industrial and commercial purposes since the mid-1970s, prior to which, the site appears to have consisted of a mix of structures, vegetated land and farmland circa 1940s. The site has historically been used for a variety of purposes, including several types of manufacturing (e.g. fork lift trucks, electronic equipment, motor garage equipment, lubricating equipment and spraying equipment. The site is currently used for commercial/light industrial purposes, including electronics repair, fashion distribution, broadcasting, air freight transport, food production/distribution and rail maintenance organisation workshop. It is understood the site we be redeveloped for medium to high density residential purposes;
- A potential underground stormwater detention basin is located in the south-western corner of the site, indicated by the land topography, underground utility service cover and mechanical drilling refusal on likely concrete. Historical site uses, including a variety of manufacturing operations, are potential sources of sub-surface impact. Additionally, the likely historical importation of fill material from unknown sources has the potential to impact the sub-surface;
- Based on the age of the on-site structures, in particular the building at the northern portion of the site, lead based paint and/or other hazardous building materials (such as ACM) may be present;
- Fill material was encountered across the site to depths up to 3.0mbgs and was observed to contain anthropogenic waste materials at most soil bore locations;
- A total of 119 primary fill and natural soil samples were collected from 21 soil bores advanced across
 the site. Of these, a total of 87 selected soil samples were analysed for a variety of COPCs to
 determine if historical site uses had impacted the sub-surface at the site. 22 of the natural soil samples
 were submitted for ASS analysis;
- Four of the soil bores were completed as permanent groundwater monitoring wells (MW-1 to MW-4) and were developed, gauged, purged and sampled. Groundwater was encountered at depths between approximately 3.7 and 4.6 mBTOC. Groundwater was calculated to flow south-westerly, towards Alexandra Canal;
- The results of the soil assessment showed COPCs at levels exceeding human health assessment criteria for the proposed medium to high density residential land use in fill material in the north-west (SB-4 and SB-6), centre (SB-7), South (SB-18 and SB-26) and north-east (SB-14) areas of the site;
- PAH, arsenic, copper, lead, nickel and/or zinc were reported above the ecological assessment criteria for urban residential and public open space from fill materials across the site;
- ACM and/or FA+AF was identified in shallow fill material (V0.5mbgs) in the northern (SB-1), western (SB-6) and central (SB-7) areas of the site, above the human health assessment criteria for the proposed land use;

- Due to the presence of anthropogenic waste materials, the aesthetic characteristics of fill material should be considered during future site development;
- The results of the groundwater assessment showed heavy metal COPCs (arsenic and lead) at levels exceeding Drinking Water assessment in the south-east (MW-1) and north-west (MW-2) of the site;
- Copper, lead and/or zinc were reported above the Freshwater criteria across the site, in monitoring wells MW-1, MW-2, MW-3 and/or MW-4. Due to the urban setting of the site, these impacts are likely representative of background conditions at the site and surrounding site area; and
- Based on the laboratory analytical results for soil samples analysed for ASS parameters, it is considered likely that PASS or AASS are present in natural materials sampled at the site. As such, an ASSMP will be required prior to future development works or disturbance of the natural material.

Based on the findings of the DSI, it is considered that the site can be made suitable for the proposed medium to high density residential land use following implementation of a RAP for the site, incorporating a Data Gap Investigation (DGI), and the delineation, remediation and validation of identified soil impacts on the site. It is expected that implementation of the RAP would occur following demolition of site structures at the commencement of site redevelopment activities.

9.2 Recommendations

Based on the findings of the DSI, TRACE Environmental provides the following recommendations:

- A RAP should be prepared which outlines the remediation and/or management strategy for the identified impacts in fill material at the site for the proposed medium to high density residential land use. The remediation and/or management requirements outlined in the RAP should consider the findings of the current DSI in the context of the final redevelopment design (e.g. the RAP should assess the applicability of ecological criteria exceedances identified during the current DSI based on the presence/absence and/or locations of gardens/landscaped areas in the final redevelopment design), including aesthetic observations made during the DSI fieldworks. The RAP should also include an unexpected finds protocol for the discovery of previously unidentified soil and/or groundwater impacts (including ACM and ASS) during hardstand removal and site redevelopment works;
- Given the data gaps identified during the DSI (refer to **Section 8.3**), the RAP should incorporate a DGI, which needs to be completed at the site to assess the soil conditions in areas of the site that were inaccessible during this DSI. This includes beneath the current building footprints in the north-eastern, central and eastern areas of the site and the driveway in the western portion of the site, in addition to vertical delineation of identified impacts in fill material at soil bore locations SB-1, SB-7, SB-18, SB-21 and SB-25 following demolition of existing site infrastructure and prior to site development. Shallow fill materials across the site should also be inspected following removal of concrete hardstand to assess for potential residual impacts relating to previous site infrastructure/operations;
- Due to the age and construction of the on-site structures, a hazardous materials survey should be conducted, and a hazardous materials register be prepared for the site prior to commencement of any demolition activities;
- Prior to any disturbance of the sub-surface being undertaken at the site as part of the proposed site redevelopment, an Asbestos Management Plan (AMP) should be prepared in accordance with SafeWork NSW Codes of Practice, which identified the locations of the ACM, FA and AF detected

during this DSI and outlines how the asbestos risks will be controlled during work (including any air monitoring procedures that may be required);

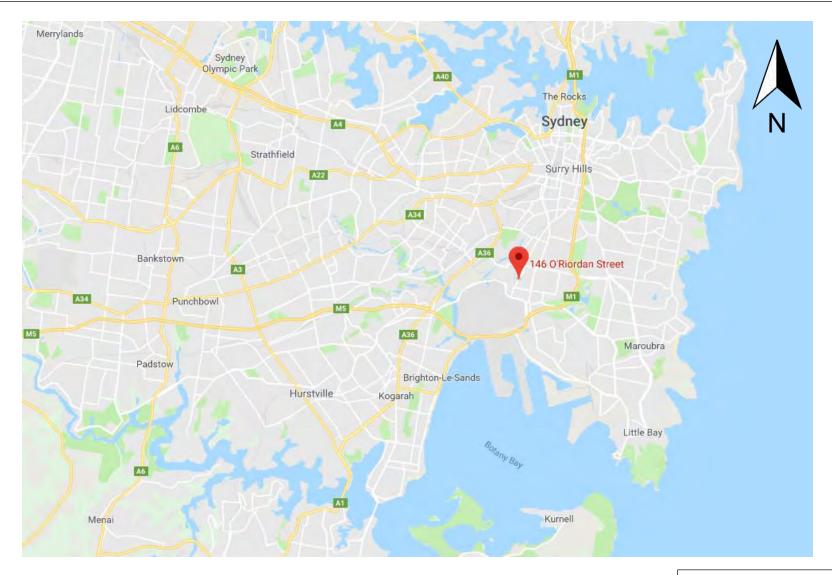
- Prior to any disturbance of the sub-surface being undertaken at the site as part of the proposed site development, an ASS Management Plan (ASSMP) should be prepared prior to future development works or disturbance of the natural material, which identifies the locations of PASS/AASS detected during this DSI and outlines how the ASS risks will be controlled during work;
- Any material to be removed must be classified in accordance with the NSW EPA (2014) Waste Classification Guidelines, and the soil be disposed appropriately to a facility licensed to accept the material; and
- Any imported material brought onto the site for any purpose must first be validated as being suitable for the intended land use, prior to being imported onto the site.

10 References

- ANZECC (1992) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment and Conservation Council, Canberra.
- ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment and Conservation Council, Canberra.
- Contaminated Land Management Act 1997.
- CRC CARE (2011) Technical Report No. 10, Health Screening Levels for petroleum hydrocarbons in soil and groundwater. Part 2: Application Document, Dated September 2011.
- NEPC (1999), National Environment Protection (Assessment of Site Contamination) Measure (NEPM).
 National Environment Protection Council (NEPC) 1999.
- NEPC (2013), National Environment Protection (Assessment of Site Contamination) Measure (NEPM).
 National Environment Protection Council (NEPC) 1999, Amendment 2013.
- National Health and Medical Research Council (2016) Australian Drinking Water Guidelines (ADWG), Updated February 2016.
- NSW ASSMAC (1998) Acid Sulfate Soils Manual, New South Wales Acid Sulfate Soils Management Advisory Committee (ASSMAC), August 1998.
- NSW ASSMAC (1998) Acid Sulfate Soils Assessment Guidelines, ASSMAC, August 1998.
- NSW DEC (2006), Contaminated Sites Guidelines for the NSW Site Auditor Scheme (2nd Edition). NSW DEC, April 2006.
- NSW Department of Urban Affairs and Planning (1998), Managing Land Contamination: Planning Guidelines: SEPP 55 Remediation of Land, 1998.
- NSW EPA (1995), Contaminated Sites Sampling Design Guidelines. NSW EPA, September 1995.
- NSW EPA (2014), Waste Classification Guidelines. Part 1: Classifying Waste. NSW EPA, November 2014.
- NSW EPA (2015), Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act. NSW EPA, September 2015.
- NSW OEH (2011), Guidelines for Consultants Reporting on Contaminated Sites. NSW Office of Environment & Heritage (OEH), November 1997, Reprinted September 2000 and August 2011.
- NSW WorkCover 2011a, How to Manage and Control Asbestos in the Workplace Code of Practice, WorkCover NSW, December 2011.
- NSW WorkCover 2011b, How to Safely Remove Asbestos Code of Practice, WorkCover NSW, December 2011.
- Standards Australia (2005), Australian Standard AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds. Standards Australia, Homebush, NSW;

• Standards Australia (1999), Australian Standard AS 4482.2-1999 - Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances. Standards Australia, Homebush, NSW.

11 Limitations


This report has been prepared for Toplace Pty. Ltd. and for the specific purpose to which it refers. No responsibility is accepted to any third party and neither the whole of the report or any part or reference thereto may be published in any document, statement or circular nor in any communication with third parties without our prior written approval of the form and context in which it will appear.

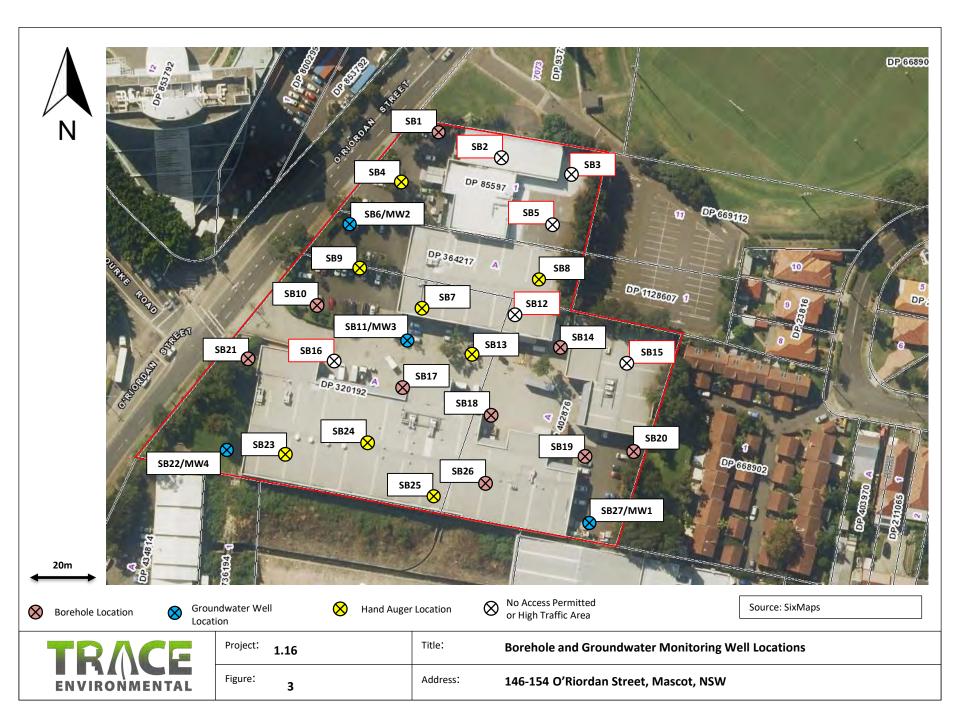
TRACE Environmental has used a degree of skill and care ordinarily exercised by reputable members of our profession practicing in the same or similar locality. The conclusions presented in this report are relevant to the conditions of the site and the state of legislation currently enacted as at the date of this report. We do not make any representation or warranty that the conclusions in this report were applicable in the future as there may be changes in the condition of the site, applicable legislation or other factors that would affect the conclusions contained in this report.

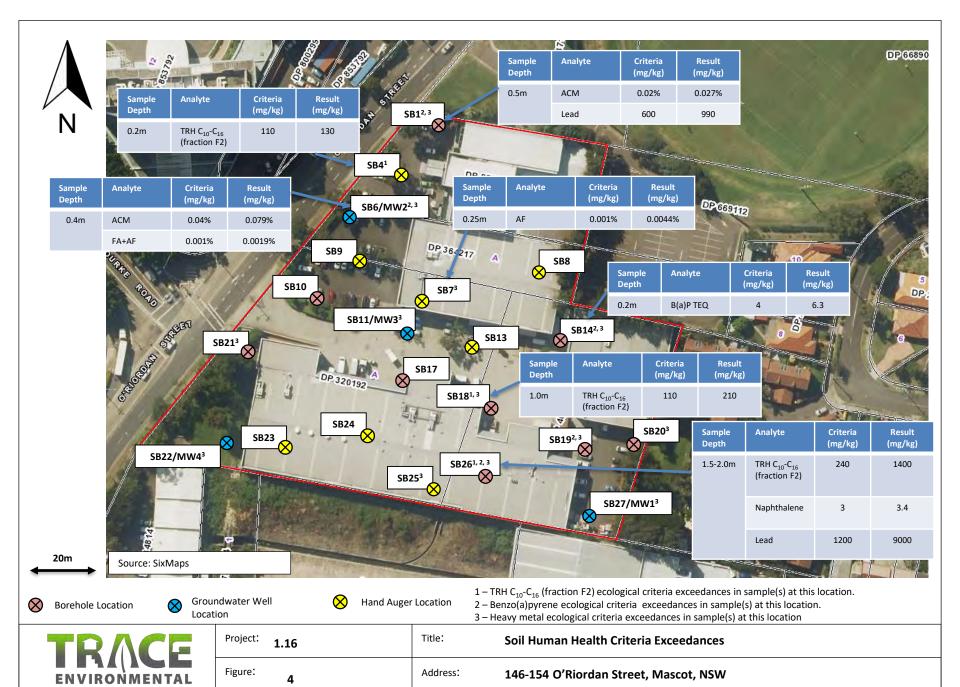
This report and the information contained in it is the intellectual property of Toplace Pty. Ltd. and is granted an exclusive licence for the use of the report for the purpose described in the report.

Figures

Source: Google

Project: 1.16	Title:	Site Locality Plan
Figure: 1	Address:	146 O'Riordan Street, Mascot, NSW


20m


Source: SixMaps

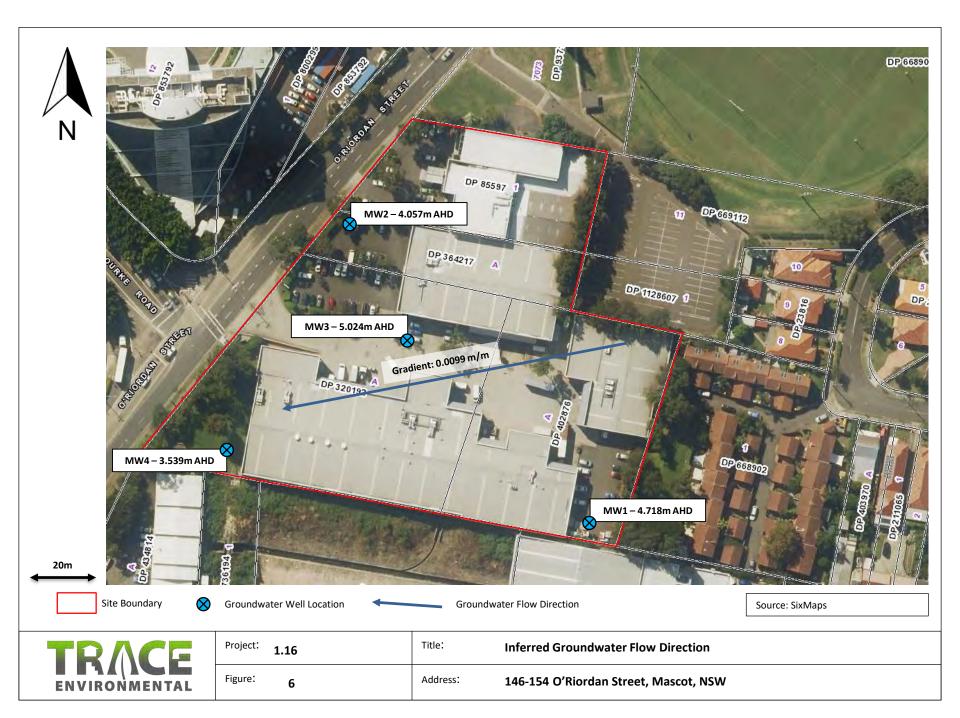
Project: 1.16 Title: Site Map

Figure: 146-154 O'Riordan Street, Mascot, NSW

20m

Groundwater Well Location

 ${\bf 1}-{\sf Heavy}\ {\sf metal}\ {\sf ecological}\ {\sf criteria}\ {\sf exceedances}\ {\sf in}\ {\sf sample(s)}\ {\sf at}\ {\sf this}\ {\sf location}$



Project: 1.16

Title: Groundwater Human Health Criteria Exceedances

Figure: 5

Address: 146-154 O'Riordan Street, Mascot, NSW

Tables

TABLE 1 SUMMARY OF SOIL SAMPLES COLLECTED 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample Identification	Date Collected	Depth (mbgl)	PID (ppm)	Requested Analysis
SB1/0.3	9/08/2018	0.30	0.0	VOCs, BTEXN, vTRH, PAHs, Metals
SB1/0.5	9/08/2018	0.5	0.0	Asbestos, PAHs, Metals, OCPs, PCBs, OPPs, NEPM Soil Screen, TCLP
SB4/0.2	14/08/2018	0.2	-	Asbestos, BTEXN, vTRH, PAHs, Metals, Phenols
SB6/0.4	9/08/2018	0.4	0.0	Asbestos, OCPs, PCBs, OPPs
SB6/1.0	9/08/2018	1.0	-	BTEXN, vTRH, PAHs, Metals, TCLP
SB6/1.25	9/08/2018	1.25	-	Not Analysed
SB6/2.0	9/08/2018	2.0	0.0	ASS
SB6/2.6	9/08/2018	2.6	-	NEPM Soil Screen, BTEXN, vTRH, PAHs, Metals
SB6/3.0	9/08/2018	3.0	0.0	Not Analysed
SB6/3.2	9/08/2018	3.2	-	OCPs, PCBs, OPPs
SB6/3.9	9/08/2018	3.9	-	Not Analysed
SB6/4.0	9/08/2018	4.0	0.0	ASS
SB6/4.8	9/08/2018	4.8	-	BTEXN, vTRH, PAHs, Metals, Phenols
SB6/5.0	9/08/2018	5.0	0.0	ASS
SB7/0.25	14/08/2018	0.25	-	Asbestos, BTEXN, vTRH, PAHs, Metals, Phenols, TCLP
SB8/0.15	14/08/2018	0.15	_	BTEXN, vTRH, PAHs, Metals, Phenols
SB8/0.3	14/08/2018	0.3	_	Asbestos
SB9/0.25	14/08/2018	0.25		Asbestos, BTEXN, vTRH, PAHs, Metals, Phenols
SB10/0.3	10/08/2018	0.23	0.0	Asbestos Asbestos
SB10/0.5	10/08/2018	0.5	0.0	pH, Metals, OCPs, PCBs, OPPs
SB11/0.2		0.3	0.0	
	9/08/2018			OCPs, PCBs, OPPs
SB11/0.5	9/08/2018	0.5	0.0	BTEXN, vTRH, PAHs, Metals, Phenois
SB11/1.2	9/08/2018	1.2	0.0	Asbestos, PAHs, Metals
SB11/1.6	9/08/2018	1.6	-	VOCs, BTEXN, vTRH, PAHs, Metals
SB11/2.0	9/08/2018	2.0	0.0	Not Analysed
SB11/2.6	9/08/2018	2.6	-	Not Analysed
SB11/3.6	9/08/2018	3.6	-	Not Analysed
SB11/4.4	9/08/2018	4.4	-	BTEXN, vTRH, PAHs, Metals, Phenols
SB11/4.8	9/08/2018	4.8	0.0	Not Analysed
SB11/5.0	9/08/2018	5.0	-	OCPs, PCBs, OPPs
SB13/0.3	10/08/2018	0.3	0.0	Asbestos, PAHs
SB14/0.2	10/08/2018	0.2	0.0	Asbestos, BTEXN, vTRH, PAHs, Metals
SB14/0.4	10/08/2018	0.4	0.4	Not Analysed
SB14/0.5	10/08/2018	0.5	0.0	OCPs, PCBs, OPPs
SB14/1.2	10/08/2018	1.2	0.0	PAHs, Metals, NEPM Soil Screen, TCLP
SB14/2.0	10/08/2018	2.0	0.3	Not Analysed
SB14/2.5	10/08/2018	2.5	0.0	Asbestos, VOCs
SB14/3.0	10/08/2018	3.0	0.0	Not Analysed
SB14/3.2	10/08/2018	3.2	-	Not Analysed
SB14/3.8	10/08/2018	3.8	-	OCPs, PCBs, OPPs
SB14/4.0	10/08/2018	4.0	0.0	Not Analysed
SB14/5.0	10/08/2018	5.0	0.0	Not Analysed
SB14/6.0	10/08/2018	6.0	0.0	ASS
SB14/7.0	10/08/2018	7.0	0.0	Not Analysed
SB14/8.0	10/08/2018	8.0	0.0	ASS
SB14/9.0	10/08/2018	9.0	0.0	Not Analysed
SB14/10.0	10/08/2018	10.0	0.0	ASS, OCPs, PCBs, OPPs, BTEXN, vTRH, PAHs, Metals
SB17/0.2	10/08/2018	0.2	0.0	Not Analysed
SB17/0.5	10/08/2018	0.5	0.0	BTEXN, vTRH, PAHs, Metals
SB17/1.0	10/08/2018	1.0	0.0	Asbestos, OCPs, PCBs, OPPs
SB17/1.2	10/08/2018	1.2	0.0	Not Analysed
SB17/1.3	10/08/2018	1.3	-	Not Analysed

TABLE 1 SUMMARY OF SOIL SAMPLES COLLECTED 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample Identification	Date Collected	Depth (mbgl)	PID (ppm)	Requested Analysis
SB17/1.6	10/08/2018	1.6	-	Not Analysed
SB17/1.9	10/08/2018	1.9	-	Not Analysed
SB17/3.8	10/08/2018	3.8	0.0	ASS
SB17/5.0	10/08/2018	5.0	0.0	Not Analysed
SB17/6.0	10/08/2018	6.0	0.0	ASS, pH
SB17/7.0	10/08/2018	7.0	0.0	Not Analysed
SB17/7.5	10/08/2018	7.5	0.0	BTEXN, vTRH, PAHs, Metals, Phenols
SB17/8.0	10/08/2018	8.0	0.0	ASS
SB17/9.0	10/08/2018	9.0	0.0	OCPs, PCBs, OPPs
SB17/10.0	10/08/2018	10.0	0.0	ASS
SB18/0.2	10/08/2018	0.2	-	Asbestos, pH, PAHs, Metals, OCPs, PCBs, OPPs
SB18/0.6	10/08/2018	0.6	-	Asbestos, VOCs
SB18/1.0	10/08/2018	1.0	-	BTEXN, vTRH, PAHs, Metals, Phenols, TCLP
SB19/0.2	8/08/2018	0.2	0.0	Not Analysed
SB19/0.8	8/08/2018	0.8	0.8	Asbestos, PAHs, Metals, OCPs, PCBs, OPPs
SB19/1.5	8/08/2018	1.5	1.0	BTEXN, vTRH, PAHs, Metals, TCLP
SB19/2.5	8/08/2018	2.5	-	OCPs, PCBs, OPPs, VOCs
SB19/3.2	8/08/2018	3.2	-	Not Analysed
SB19/3.7	8/08/2018	3.7	-	BTEXN, vTRH, PAHs, Metals, Phenols
SB20/0.3	8/08/2018	0.3	0.0	PAHs, Metals, OCPs, PCBs, OPPs
SB20/1.0	8/08/2018	1.0	0.0	Asbestos, BTEXN, vTRH, PAHs, Metals, TCLP
SB20/1.5	8/08/2018	1.5	0.0	Metals
SB20/2.2	8/08/2018	2.2	0.0	Not Analysed
SB20/2.4	8/08/2018	2.4	0.0	Not Analysed
SB20/2.6	8/08/2018	2.6	0.0	Not Analysed
SB20/3.0	8/08/2018	3.0	0.0	OCPs, PCBs, OPPs
SB20/3.8	8/08/2018	3.8	0.0	BTEXN, vTRH, PAHs, Metals, Phenols
SB20/5.0	8/08/2018	5.0	0.0	ASS
SB20/6.0	8/08/2018	6.0	0.0	Not Analysed
SB20/7.0	8/08/2018	7.0	0.0	Not Analysed
SB20/8.0	8/08/2018	8.0	0.0	ASS
SB20/9.0	8/08/2018	9.0	0.0	PAHs, NEPM Soil Screen
SB20/10.0	8/08/2018	10.0	0.0	ASS
SB20/11.0	8/08/2018	11.0	0.0	Not Analysed
SB20/12.0	8/08/2018	12.0	0.0	ASS, BTEXN, vTRH, PAHs, Metals, Phenols
SB21/0.15	13/08/2018	0.15	0.0	BTEXN, vTRH, PAHs, Metals, Phenols, TCLP
SB21/0.4	13/08/2018	0.4	-	Asbestos
SB21/0.5	13/08/2018	0.5	-	Not Analysed
SB21/0.8	13/08/2018	0.8	-	Not Analysed
SB22/0.1	13/08/2018	0.1	0.0	OCPs, PCBs, OPPs
SB22/0.5	13/08/2018	0.5	-	Asbestos, PAHs, Metals
SB22/0.9	13/08/2018	0.9	-	Not Analysed
SB22/1.0	13/08/2018	1.0	0.0	Not Analysed
SB22/1.3	13/08/2018	1.3	-	NEPM Soil Screen, BTEXN, vTRH, PAHs, Metals, Phenols
SB22/2.0	13/08/2018	2.0	0.0	Not Analysed
SB22/2.6	13/08/2018	2.6	-	Not Analysed
SB22/3.0	13/08/2018	3.0	0.0	ASS
SB22/4.0	13/08/2018	4.0	0.0	Not Analysed
SB22/5.0	13/08/2018	5.0	0.0	ASS
SB22/6.0	13/08/2018	6.0	-	BTEXN, vTRH, PAHs, Metals
SB22/7.0	13/08/2018	7.0	-	ASS
SB23/0.2	14/08/2018	0.2	-	Not Analysed
SB23/0.4	14/08/2018	0.4	-	Asbestos, BTEXN, vTRH, PAHs, Metals, Phenols

TABLE 1 SUMMARY OF SOIL SAMPLES COLLECTED 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample Identification	Date Collected	Depth (mbgl)	PID (ppm)	Requested Analysis
SB24/0.3	14/08/2018	0.3	-	Asbestos, BTEXN, vTRH, PAHs, Metals, Phenols
SB25/0.25	14/08/2018	0.25	-	Asbestos, BTEXN, vTRH, PAHs, Metals, Phenols
SB26/0.2	10/08/2018	0.2	0.0	Asbestos, BTEXN, vTRH, PAHs, Metals
SB26/0.5	10/08/2018	0.5	-	OCPs, PCBs, OPPs
SB26/1.0	10/08/2018	1.0	3.9	Not Analysed
SB26/1.5-2.0	10/08/2018	1.5-2.0	8.3	VOCs, BTEXN, vTRH, PAHs, Metals, Phenols, TCLP
SB26/2.0	10/08/2018	2.0	7.3	ASS, pH
SB26/3.0	10/08/2018	3.0	6.4	OCPs, PCBs, OPPs
SB26/4.0	10/08/2018	4.0	8.5	ASS, BTEXN, vTRH, PAHs, Metals
SB26/5.0	10/08/2018	5.0	8.9	VOCs
SB26/6.0	10/08/2018	6.0	5.5	ASS, BTEXN, vTRH, PAHs, Metals
SB26/7.0	10/08/2018	7.0	2.7	Not Analysed
SB26/8.0	10/08/2018	8.0	2.0	ASS, OCPs, PCBs, OPPs
SB26/9.0	10/08/2018	9.0	-	Not Analysed
SB26/10.0	10/08/2018	10.0	0.0	ASS
SB27/0.2	8/08/2018	0.2	0.0	Asbestos, OCPs, PCBs, OPPs
SB27/0.5	8/08/2018	0.5	0.0	Metals
SB27/1.0	8/08/2018	1.0	0.0	PAHs
SB27/1.5	8/08/2018	1.5	0.0	Asbestos
SB27/3.1	8/08/2018	3.1	0.0	Not Analysed
SB27/3.8	8/08/2018	3.8	0.0	BTEXN, vTRH, PAHs, Metals
SB27/5.0	8/08/2018	5.0	0.0	рН
SB27/6.0	8/08/2018	6.0	0.0	BTEXN, vTRH, PAHs, Metals
QA1	13/08/2018	-	-	Asbestos
QA2	14/08/2018	-	-	Asbestos
QS1	10/08/2018	-	-	BTEXN, vTRH, PAHs, Metals
QS2	8/08/2018	-	-	BTEXN, vTRH, PAHs, Metals
QS3	13/08/2018	-	-	BTEXN, vTRH, PAHs, Metals
QA1A	13/08/2018	-	-	Asbestos
QA2A	14/08/2018	-	-	Asbestos
QS1A	8/08/2018	-	-	BTEXN, vTRH, PAHs, Metals
QS2A	10/08/2018	-	-	BTEXN, vTRH, PAHs, Metals
QS3A	13/08/2018	-	-	BTEXN, vTRH, PAHs, Metals
RB1	8/08/2018	-	-	BTEXN, vTRH, PAHs, Metals, Phenols
RB2	13/08/2018	-	-	OCPs, PCBs, OPPs
RB3	14/08/2018	-	-	OCPs, PCBs, OPPs
RB4	14/08/2018	-	-	BTEXN, vTRH, PAHs, Metals, Phenols
TRIP BLANK	9/08/2018	-	-	BTEXN, vTRH
TRIP SPIKE	9/08/2018	-	-	BTEXN, vTRH
TRIP BLANK	14/09/2019	-	-	BTEXN, vTRH
TRIP SPIKE	14/09/2018	-	-	BTEXN, vTRH

Notes:

mbgl - metres below ground surface

PID - Photoionisation Detector

ppm - parts per million

QS-1 - duplicate of primary sample SB11-0.75

QS-1A - triplicate of primary sample SB11-0.75

QS-2 - duplicate of primary sample SB19-2.5

QS-2A - triplicate of primary sample SB19-2.5

QS3 - duplicate of primary sample SB22/6.0

QS3A - triplicate of primary sample SB22/6.0

QA1 - duplicate of primary asbestos sample SB13-0.2

QA1A - triplicate of primary abestos sample SB13-0.2

QA2 - duplicate of primary asbestos sample SB6-0.2

 $\ensuremath{\mathsf{QA2A}}$ - triplicate of primary abestos sample SB6-0.2

TABLE 2A: SUMMARY OF SOIL ANALYTICAL RESULTS - TRH & BTEX 146-154 O'RIORDAN STREET, MASCOT, NSW

	Sample ID						SB4/0.2	SB6/1.0	SB6/2.6	SB6/4.8	SB7/0.25	SB8/0.15	SB9/0.25	SB11/0.5	SB11/1.6	SB11/4.4	SB14/0.2	QS2	QS2A
		Sample D	ate			9/08/2018	14/08/2018	9/08/2018	9/08/2018	9/08/2018	14/08/2018	14/08/2018	14/08/2018	9/08/2018	9/08/2018	9/08/2018		10/08/2018	
Compounds	LOR	Management Limits for TPH ¹	HSL Direct Contact Intrusive Maintenance Worker ²	HSL Direct Contact Low Density Residential land users ³	ESLs for Urban Residential and Public Open Space ⁴														
C6 - C9 Fraction	20	NE	NE	NE	NE	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10
C10 - C14 Fraction	20	NE	NE	NE	NE	<20	120	<20	<20	<20	22	<20	<20	<20	60	<20	<20	<20	<50
C15 - C28 Fraction	50	NE	NE	NE	NE	<50	400	74	<50	<50	120	<50	<50	70	350	<50	<50	<50	<100
C29 - C36 Fraction	50	NE	NE	NE	NE	<50	310	100	<50	<50	140	<50	57	71	93	<50	<50	<50	<100
C10 - C36 Fraction (sum)	50	NE	NE	NE	NE	<50	830	174	<50	<50	282	<50	57	141	503	<50	<50	<50	<50
C6 - C10 Fraction	20	NE	82000	4400	NE	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10
C6 - C10 Fraction F1	20	700, 800	NE	NE	180	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10
>C10 - C16 Fraction	50	1000, 1000	62000	3300	NE	<50	130	<50	<50	<50	<50	<50	<50	<50	92	<50	<50	<50	<50
>C16 - C34 Fraction	100	2500, 3500	85000	4500	NE	<100	680	160	<100	<100	240	<100	<100	140	480	<100	<100	<100	<100
>C34 - C40 Fraction	100	NE	120000	6300	NE	<100	150	<100	<100	<100	110	<100	<100	<100	<100	<100	<100	<100	<100
>C10 - C16 Fraction F2	50	1000, 1000	NE	NE	120	<50	130	<50	<50	<50	<50	<50	<50	<50	92	<50	<50	<50	<50
Benzene	0.1	NE	1,100	100	50, 65	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2
Toluene	0.1	NE	120000	1400	85, 105	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5
Ethylbenzene	0.1	NE	85000	4500	70, 125	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.5
meta- & para-Xylene	0.2	NE	NE	NE	NE	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2	<0.2	<0.2	< 0.5
ortho-Xylene	0.1	NE	NE	NE	NE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5
Total Xylenes	0.3	NE	130000	12000	105, 45	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	< 0.3	< 0.5
Naphthalene	0.5	NE	29000	1400	NE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

All units are in mg/kg unless otherwise noted.

1. NEPM 2013, Schedule B1 Management Limits for TPH - Residential, parkland and public open space Land use,

CRC CARE 2011 Health Screening Level for Direct Contact with Soil (Intrusive Maintenance Worker)
 CRC CARE 2011 Health Screening Level for Direct Contact with Soil (HSL-A Low Density Residential)

2. NEPM 2013 ESLs (urban residential/public open space)

LOR - Limits of Reporting

NL - Not limiting

NE - Not established

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

TABLE 2A: SUMMARY OF SOIL ANALYTICAL RESULTS - TRH & BTEX 146-154 O'RIORDAN STREET, MASCOT, NSW

	Sample ID							SB17/7.5	SB18/1.0	SB19/1.5	SB19/3.7	SB20/1.0	SB20/3.8	SB20/12.0	SB21/0.15	SB22/1.3	SB22/6.0	QS3	QS3A
		Sample D	ate			10/08/2018	10/08/2018	10/08/2018	10/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	13/08/2018	13/08/2018		13/08/2018	
Compounds	LOR	Management Limits for TPH ¹	HSL Direct Contact Intrusive Maintenance Worker ²	HSL Direct Contact Low Density Residential land users ³	ESLs for Urban Residential and Public Open Space ⁴														
C6 - C9 Fraction	20	NE	NE	NE	NE	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10
C10 - C14 Fraction	20	NE	NE	NE	NE	<20	<20	<20	150	<20	<20	<20	<20	<20	<20	<20	<20	<20	<50
C15 - C28 Fraction	50	NE	NE	NE	NE	<50	<50	<50	1100	91	<50	<50	<50	<50	<50	<50	<50	<50	<100
C29 - C36 Fraction	50	NE	NE	NE	NE	<50	<50	<50	1100	66	<50	<50	<50	<50	<50	<50	<50	<50	<100
C10 - C36 Fraction (sum)	50	NE	NE	NE	NE	<50	<50	<50	2350	157	<50	<50	<50	<50	<50	<50	<50	<50	<50
C6 - C10 Fraction	20	NE	82000	4400	NE	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10
C6 - C10 Fraction F1	20	700, 800	NE	NE	180	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10
>C10 - C16 Fraction	50	1000, 1000	62000	3300	NE	<50	<50	<50	210	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
>C16 - C34 Fraction	100	2500, 3500	85000	4500	NE	<100	<100	<100	2000	160	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C34 - C40 Fraction	100	NE	120000	6300	NE	<100	<100	<100	810	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C10 - C16 Fraction F2	50	1000, 1000	NE	NE	120	<50	<50	<50	210	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Benzene	0.1	NE	1,100	100	50, 65	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.2
Toluene	0.1	NE	120000	1400	85, 105	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.5
Ethylbenzene	0.1	NE	85000	4500	70, 125	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5
meta- & para-Xylene	0.2	NE	NE	NE	NE	< 0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	< 0.5
ortho-Xylene	0.1	NE	NE	NE	NE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.5
Total Xylenes	0.3	NE	130000	12000	105, 45	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.5
Naphthalene	0.5	NE	29000	1400	NE	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

All units are in mg/kg unless otherwise noted.

1. NEPM 2013, Schedule B1 Management Limits for TPH - Residential, parkland and public open space Land use,

CRC CARE 2011 Health Screening Level for Direct Contact with Soil (Intrusive Maintenance Worker)
 CRC CARE 2011 Health Screening Level for Direct Contact with Soil (HSL-A Low Density Residential)

2. NEPM 2013 ESLs (urban residential/public open space)

LOR - Limits of Reporting

NL - Not limiting

NE - Not established

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2 QS3 - duplicate of primary sample SB22/6.0

TABLE 2A: SUMMARY OF SOIL ANALYTICAL RESULTS - TRH & BTEX 146-154 O'RIORDAN STREET, MASCOT, NSW

		Sample I	D			SB23/0.4	SB24/0.3	SB25/0.25	SB26/0.2	SB26/1.5-2.0	SB26/4.0	SB26/6.0	SB27/3.8	QS1	QS1A	SB27/6.0
		Sample D	ate			14/08/2018	14/08/2018	14/08/2018	10/08/2018	10/8/18	10/08/2018	10/08/2018		8/08/2018		8/08/2018
Compounds	LOR	Management Limits for TPH ¹	HSL Direct Contact Intrusive Maintenance Worker ²	HSL Direct Contact Low Density Residential land users ³	ESLs for Urban Residential and Public Open Space ⁴											
C6 - C9 Fraction	20	NE	NE	NE	NE	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10	<20
C10 - C14 Fraction	20	NE	NE	NE	NE	<20	<20	<20	<20	1000	43	39	<20	<20	<50	<20
C15 - C28 Fraction	50	NE	NE	NE	NE	<50	<50	<50	<50	1500	50	81	<50	<50	<100	<50
C29 - C36 Fraction	50	NE	NE	NE	NE	<50	<50	<50	<50	500	<50	69	<50	<50	<100	<50
C10 - C36 Fraction (sum)	50	NE	NE	NE	NE	<50	<50	<50	<50	3000	93	189	<50	<50	<50	<50
C6 - C10 Fraction	20	NE	82000	4400	NE	<20	<20	<20	<20	41	<20	<20	<20	<20	<10	<20
C6 - C10 Fraction F1	20	700, 800	NE	NE	180	<20	<20	<20	<20	40	<20	<20	<20	<20	<10	<20
>C10 - C16 Fraction	50	1000, 1000	62000	3300	NE	<50	<50	<50	<50	1400	72	63	<50	<50	<50	<50
>C16 - C34 Fraction	100	2500, 3500	85000	4500	NE	<100	<100	<100	<100	1800	<100	130	<100	<100	<100	<100
>C34 - C40 Fraction	100	NE	120000	6300	NE	<100	<100	<100	<100	270	<100	<100	<100	<100	<100	<100
>C10 - C16 Fraction F2	50	1000, 1000	NE	NE	120	<50	<50	<50	<50	1400	72	63	<50	<50	<50	<50
Benzene	0.1	NE	1,100	100	50, 65	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1
Toluene	0.1	NE	120000	1400	85, 105	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.5	< 0.1
Ethylbenzene	0.1	NE	85000	4500	70, 125	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	<0.5	< 0.1
meta- & para-Xylene	0.2	NE	NE	NE	NE	<0.2	< 0.2	< 0.2	< 0.2	0.5	< 0.2	< 0.2	<0.2	< 0.2	< 0.5	< 0.2
ortho-Xylene	0.1	NE	NE	NE	NE	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	<0.1	< 0.1	< 0.5	< 0.1
Total Xylenes	0.3	NE	130000	12000	105, 45	< 0.3	< 0.3	< 0.3	< 0.3	0.8	< 0.3	< 0.3	< 0.3	< 0.3	< 0.5	< 0.3
Naphthalene	0.5	NE	29000	1400	NE	<0.5	< 0.5	< 0.5	< 0.5	3.4	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5

All units are in mg/kg unless otherwise noted.

1. NEPM 2013, Schedule B1 Management Limits for TPH - Residential, parkland and public open space Land use,

Coarse & Fine Soils

2. CRC CARE 2011 Health Screening Level for Direct Contact with Soil (Intrusive Maintenance Worker)

3. CRC CARE 2011 Health Screening Level for Direct Contact with Soil (HSL-A Low Density Residential)

2. NEPM 2013 ESLs (urban residential/public open space)

LOR - Limits of Reporting

NL - Not limiting

NE - Not established

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

TABLE 2B:

SUMMARY OF SOIL ANALYTICAL RESULTS - TRH & BTEX SOIL HSLS FOR VAPOUR INTRUSION 146-154 O'RIORDAN STREET, MASCOT, NSW

		Sample ID			SB1/0.3	SB4/0.2	SB6/1.0	SB6/2.6	SB6/4.8	SB7/0.25	SB8/0.15	SB9/0.25	SB11/0.5	SB11/1.6	SB11/4.4
		Sample Date	2	9/08/2018	14/08/2018	9/08/2018	9/08/2018	9/08/2018	14/08/2018	14/08/2018	14/08/2018	9/08/2018	9/08/2018	9/08/2018	
		Depth			0.3	0.2	1.0	2.6	4.8	0.25	0.2	0.25	0.5	1.6	4.4
		Predominant Soi	I Туре	Sand	Sand	0/01/1900	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	
Compounds	LOR	HSL A & HSL B Sand ¹	HSL C Sand ²	HSL Intrusive Maintenance Worker - Sand ³											
Benzene	0.1	0.5, 0.5, 0.5, 0.5	NL	77, 160, NL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.2	< 0.1	< 0.1
Toluene	0.1	160, 220, 310, 540	NL	NL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	<0.5	< 0.1	<0.1
Ethylbenzene	0.1	55, NL, NL, NL	NL	NL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.1	< 0.1
Total Xylenes	0.3	40, 60, 95, 170	NL	NL	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.5	< 0.3	<0.3
Naphthalene	0.5	3, NL, NL, NL	NL	NL	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1	< 0.5	<0.5
C6 - C10 Fraction F1	20	45, 70, 110, 200	NL	NE	<20	<20	<20	<20	<20	<20	<20	<20	<10	<20	<20
>C10 - C16 Fraction F2	50	110, 240, 440, NL	NL	NE	<50	130	<50	<50	<50	<50	<50	<50	<50	92	<50

Notes:

All concentrations in mg/kg

F1 Fraction denotes TRH C₆-C₁₀ fraction minus BTEX compounds

F2 Fraction denotes TRH >C₁₀-C₁₆ minus naphthalene

1. NEPM 2013 Soil HSL for vapour intrusion - Low-high density residential land use - 0 to <1m, 1 to <2m,

2. NEPM 2013 Soil HSL for vapour intrusion - recreational/open space land use - 0 to <1m, 1 to <2m, 2 to

<4m, 4m+ (Sand)

3. CRC CARE 2011 Health Screening Level for Vapour Intrusion - Intrusive Maintenance Worker in a

Shallow Trench - 0m to <2m, 2m to <4m, >4m

NL - Not limiting

NE - Not established

LOR - Limit of reporting

Shading indicates concentration in excess of a relevant HSL (by predominant overlying soil type and depth).

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

TABLE 2B:

SUMMARY OF SOIL ANALYTICAL RESULTS - TRH & BTEX SOIL HSLS FOR VAPOUR INTRUSION 146-154 O'RIORDAN STREET, MASCOT, NSW

								1	1	1					1		1	
		Sample ID			SB14/0.2	QS2	QS2A	SB14/10.0	SB17/0.5	SB17/7.5	SB18/1.0	SB19/1.5	SB19/3.7	SB20/1.0	SB20/3.8	SB20/12.0	SB21/0.15	SB22/1.3
		Sample Date	1			10/08/2018		10/08/2018	10/08/2018	10/08/2018	10/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	13/08/2018	13/08/2018
Depth						0.2		10.0	0.5	7.5	1.0	1.5	3.7	1.0	3.8	12.0	0.2	1.3
		Predominant Soil	Туре		Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Compounds	LOR	HSL A & HSL B Sand ¹	HSL C Sand ²	HSL Intrusive Maintenance Worker - Sand ³														
Benzene	0.1	0.5, 0.5, 0.5, 0.5	NL	77, 160, NL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1
Toluene	0.1	160, 220, 310, 540	NL	NL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.1
Ethylbenzene	0.1	55, NL, NL, NL	NL	NL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.1
Total Xylenes	0.3	40, 60, 95, 170	NL	NL	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.5	<0.3
Naphthalene	0.5	3, NL, NL, NL	NL	NL	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	< 0.5
C6 - C10 Fraction F1	20	45, 70, 110, 200	NL	NE	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10	<20
>C10 - C16 Fraction F2	50	110, 240, 440, NL	NL	NE	<50	<50	<50	<50	<50	<50	210	<50	<50	<50	<50	<50	<50	<50

Notes:

All concentrations in mg/kg F1 Fraction denotes TRH G_6 - C_{10} fraction minus BTEX compounds F2 Fraction denotes TRH > C_{10} - C_{16} minus naphthalene

1. NEPM 2013 Soil HSL for vapour intrusion - Low-high density residential land use - 0 to <1m, 1 to <2m,

2 to <4m, 4m+ (Sand)
2. NEPM 2013 Soil HSL for vapour intrusion - recreational/open space land use - 0 to <1m, 1 to <2m, 2 to <4m, 4m+ (Sand)

3. CRC CARE 2011 Health Screening Level for Vapour Intrusion - Intrusive Maintenance Worker in a

Shallow Trench - 0m to <2m, 2m to <4m, >4m

NL - Not limiting

NE - Not established

LOR - Limit of reporting

Shading indicates concentration in excess of a relevant HSL (by predominant overlying soil type and depth

QS-1 - duplicate of primary sample SB27/3.8 QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2 QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

TABLE 2B:

SUMMARY OF SOIL ANALYTICAL RESULTS - TRH & BTEX SOIL HSLS FOR VAPOUR INTRUSION 146-154 O'RIORDAN STREET, MASCOT, NSW

		Sample ID			SB22/6.0	QS3	QS3A	SB23/0.4	SB24/0.3	SB25/0.25	SB26/0.2	SB26/1.5-2.0	SB26/4.0	SB26/6.0	SB27/3.8	QS1	QS1A	SB27/6.0
		· · · · · · · · · · · · · · · · · · ·							-		-	-	•		-			<u> </u>
		Sample Date	!			13/08/2018		14/08/2018	14/08/2018	14/08/2018	10/08/2018	10/8/18	10/08/2018	10/08/2018		8/08/2018	08/2018	
		Depth				6.0		0.4	0.3	0.25	0.25 0.2 1.5-2.0 4.0 6.0 3.8		3.8		6.0			
		Predominant Soil	Туре	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	
Compounds	LOR	HSL A & HSL B Sand ¹	HSL C Sand ²	HSL Intrusive Maintenance Worker - Sand ³														
Benzene	0.1	0.5, 0.5, 0.5, 0.5	NL	77, 160, NL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	160, 220, 310, 540	NL	NL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	55, NL, NL, NL	NL	NL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Xylenes	0.3	40, 60, 95, 170	NL	NL	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.8	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	0.5	3, NL, NL, NL	NL	NL	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	3.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
C6 - C10 Fraction F1	20	45, 70, 110, 200	NL	NE	<20	<20	<20	<20	<20	<20	<20	40	<20	<20	<20	<20	<20	<20
>C10 - C16 Fraction F2	50	110, 240, 440, NL	NL	NE	<50	<50	<50	<50	<50	<50	<50	1400	72	63	<50	<50	<50	<50

Notes:

All concentrations in mg/kg F1 Fraction denotes TRH G_6 - C_{10} fraction minus BTEX compounds F2 Fraction denotes TRH > C_{10} - C_{16} minus naphthalene

1. NEPM 2013 Soil HSL for vapour intrusion - Low-high density residential land use - 0 to <1m, 1 to <2m, 2 to <4m, 4m+ (Sand)
2. NEPM 2013 Soil HSL for vapour intrusion - recreational/open space land use - 0 to <1m, 1 to <2m, 2 to

<4m, 4m+ (Sand)

3. CRC CARE 2011 Health Screening Level for Vapour Intrusion - Intrusive Maintenance Worker in a

Shallow Trench - 0m to <2m, 2m to <4m, >4m

NL - Not limiting

NE - Not established

LOR - Limit of reporting

Shading indicates concentration in excess of a relevant HSL (by predominant overlying soil type and depth

QS-1 - duplicate of primary sample SB27/3.8 QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2 QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

TABLE 3: SUMMARY OF SOIL ANALYTICAL RESULTS - PAHS 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample ID					SB1/0.3	SB1/0.5	SB4/0.2	SB6/1.0	SB6/2.6	SB6/4.8	SB7/0.25	SB8/0.15	SB9/0.25	SB11/0.5
Sample Date					9/08/2018	9/08/2018	14/08/2018	9/08/2018	9/08/2018	9/08/2018	14/08/2018	14/08/2018	14/08/2018	9/08/2018
Compounds	LOR	HIL B ¹	HIL C ²	EILs/ESLs for Urban Residential and Public Open Space ³										
Naphthalene	0.5	NE	NE	170	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Acenaphthylene	0.5	NE	NE	NE	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5	NE	NE	NE	<0.5	3.1	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Anthracene	0.5	NE	NE	NE	<0.5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.5	NE	NE	NE	<0.5	3.0	< 0.5	0.9	<0.5	<0.5	1	<0.5	<0.5	<0.5
Pyrene	0.5	NE	NE	NE	<0.5	3.1	< 0.5	1.0	<0.5	<0.5	1.1	<0.5	<0.5	<0.5
Benz(a)anthracene	0.5	NE	NE	NE	<0.5	1.7	< 0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5
Chrysene	0.5	NE	NE	NE	<0.5	1.5	<0.5	0.7	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	0.5	NE	NE	NE	<0.5	1.3	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	0.5	NE	NE	NE	<0.5	1.0	< 0.5	0.6	<0.5	<0.5	0.6	< 0.5	< 0.5	<0.5
Benzo(a)pyrene	0.5	NE	NE	0.7, 0.7	<0.5	1.7	<0.5	0.8	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	0.5	NE	NE	NE	<0.5	0.8	<0.5	0.6	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	0.5	NE	NE	NE	<0.5	1.0	< 0.5	<0.5	< 0.5	<0.5	0.8	<0.5	<0.5	<0.5
Total PAH	0.5	400	300	NE	<0.5	18.9	<0.5	5.2	<0.5	<0.5	5.8	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)	0.5	4	3	NE	<0.5	2.2	<0.5	1.0	<0.5	<0.5	0.8	<0.5	<0.5	< 0.5

Notes:

All units in milligrams/kilogram (mg/kg)

1. NEPM 2013 Health investigation levels for soil contaminants - Residential B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants - Recreational C - Public open spaces

3. NEPM 2013 EILs/ESLs (urban residential/public open space)

LOR - Limits of Reporting

NE - Not Established

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

TABLE 3: SUMMARY OF SOIL ANALYTICAL RESULTS - PAHS 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample ID					SB11/1.2	SB11/1.6	SB11/4.4	SB13/0.3	SB14/0.2	QS2	QS2A	SB14/1.2	SB14/10.0	SB17/0.5
Sample Date					9/08/2018	9/08/2018	9/08/2018	13/08/2018		10/08/2018		10/08/2018	10/08/2018	10/08/2018
Compounds	LOR	HIL B ¹	HIL C ²	EILs/ESLs for Urban Residential and Public Open Space ³										
Naphthalene	0.5	NE	NE	170	<0.5	3.0	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5
Acenaphthylene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	0.7	< 0.5	< 0.5
Acenaphthene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5
Phenanthrene	0.5	NE	NE	NE	<0.5	1.9	<0.5	<0.5	<0.5	<0.5	<0.5	4.3	<0.5	<0.5
Anthracene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.5	<0.5	<0.5
Fluoranthene	0.5	NE	NE	NE	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.1	<0.5	<0.5
Pyrene	0.5	NE	NE	NE	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.2	<0.5	<0.5
Benz(a)anthracene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.9	<0.5	<0.5
Chrysene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.6	<0.5	<0.5
Benzo(b+j)fluoranthene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	<0.5
Benzo(k)fluoranthene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	3.1	< 0.5	<0.5
Benzo(a)pyrene	0.5	NE	NE	0.7, 0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.8	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.4	<0.5	<0.5
Dibenz(a.h)anthracene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<0.5
Benzo(g.h.i)perylene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.2	<0.5	<0.5
Total PAH	0.5	400	300	NE	0.7	5.4	<0.5	<0.5	<0.5	<0.5	<0.5	44.1	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)	0.5	4	3	NE	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	6.3	< 0.5	< 0.5

Notes:

All units in milligrams/kilogram (mg/kg)

1. NEPM 2013 Health investigation levels for soil contaminants - Residential B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants - Recreational C - Public open spaces

3. NEPM 2013 EILs/ESLs (urban residential/public open space)

LOR - Limits of Reporting

NE - Not Established

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

Sample ID					SB17/7.5	SB18/0.2	SB18/1.0	SB19/0.8	SB19/1.5	SB19/3.7	SB20/0.3	SB20/1.0	SB20/3.8	SB20/9.0
Sample Date					10/08/2018	10/08/2018	10/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018
Compounds	LOR	HIL B ¹	HIL C ²	EILs/ESLs for Urban Residential and Public Open Space ³										
Naphthalene	0.5	NE	NE	170	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Acenaphthylene	0.5	NE	NE	NE	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.5	NE	NE	NE	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5	NE	NE	NE	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5	NE	NE	NE	<0.5	<0.5	<2	0.7	0.7	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	0.5	NE	NE	NE	<0.5	< 0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.5	NE	NE	NE	<0.5	< 0.5	<2	0.9	1.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	NE	NE	NE	<0.5	<0.5	<2	0.9	1.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	0.5	NE	NE	NE	<0.5	< 0.5	<2	0.6	0.8	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	0.5	NE	NE	NE	<0.5	< 0.5	<2	<0.5	0.9	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	0.5	NE	NE	NE	<0.5	<0.5	<2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	0.5	NE	NE	NE	<0.5	< 0.5	<2	<0.5	0.9	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	0.5	NE	NE	0.7, 0.7	< 0.5	<0.5	<2	0.7	0.9	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	0.5	NE	NE	NE	< 0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	0.5	NE	NE	NE	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	0.5	NE	NE	NE	< 0.5	<0.5	<2	0.6	0.6	<0.5	<0.5	<0.5	<0.5	<0.5
Total PAH	0.5	400	300	NE	<0.5	<0.5	<2	4.4	8.4	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)	0.5	4	3	NE	< 0.5	<0.5	<0.5	0.8	1.1	<0.5	<0.5	<0.5	<0.5	< 0.5

Notes:

All units in milligrams/kilogram (mg/kg)

1. NEPM 2013 Health investigation levels for soil contaminants - Residential B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants - Recreational C - Public open spaces

3. NEPM 2013 EILs/ESLs (urban residential/public open space)

LOR - Limits of Reporting

NE - Not Established

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

Sample ID					SB20/12.0	SB21/0.15	SB22/0.5	SB22/1.3	SB22/6.0	QS3	QS3A	SB23/0.4	SB24/0.3	SB25/0.25
Sample Date					8/08/2018	13/08/2018	13/08/2018	13/08/2018		13/08/2018		14/08/2018	14/08/2018	14/08/2018
Compounds	LOR	HIL B ¹	HIL C ²	EILs/ESLs for Urban Residential and Public Open Space ³										
Naphthalene	0.5	NE	NE	170	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5	NE	NE	NE	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5	NE	NE	NE	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5
Anthracene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.5	NE	NE	NE	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	0.5	NE	NE	NE	<0.5	<0.5	0.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	0.5	NE	NE	0.7, 0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
Indeno(1.2.3.cd)pyrene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total PAH	0.5	400	300	NE	<0.5	<0.5	0.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)	0.5	4	3	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Notes:

All units in milligrams/kilogram (mg/kg)

1. NEPM 2013 Health investigation levels for soil contaminants - Residential B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants - Recreational C - Public open spaces

3. NEPM 2013 EILs/ESLs (urban residential/public open space)

LOR - Limits of Reporting

NE - Not Established

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

 $\ensuremath{\mathsf{QS3}}$ - duplicate of primary sample SB22/6.0

Sample ID					SB26/0.2	SB26/1.5-2.0	SB26/4.0	SB26/6.0	SB27/1.0	SB27/3.8	QS1	QS1A	SB27/6.0
Sample Date					10/08/2018	10/08/2018	10/08/2018	10/08/2018	8/08/2018		8/08/2018		8/08/2018
Compounds	LOR	HIL B ¹	HIL C ²	EILs/ESLs for Urban Residential and Public Open Space ³									
Naphthalene	0.5	NE	NE	170	<0.5	4.7	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
Acenaphthylene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
Acenaphthene	0.5	NE	NE	NE	<0.5	2.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5	NE	NE	NE	<0.5	2.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5	NE	NE	NE	<0.5	7.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Anthracene	0.5	NE	NE	NE	<0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.5	NE	NE	NE	<0.5	4.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	0.5	NE	NE	NE	<0.5	5.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Benz(a)anthracene	0.5	NE	NE	NE	<0.5	1.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	0.5	NE	NE	NE	<0.5	1.9	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
Benzo(b+j)fluoranthene	0.5	NE	NE	NE	<0.5	1.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Benzo(k)fluoranthene	0.5	NE	NE	NE	<0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	0.5	NE	NE	0.7, 0.7	<0.5	1.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	0.5	NE	NE	NE	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	0.5	NE	NE	NE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	0.5	NE	NE	NE	<0.5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total PAH	0.5	400	300	NE	<0.5	37.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)	0.5	4	3	NE	<0.5	1.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Notes:

All units in milligrams/kilogram (mg/kg)

 $1.\ NEPM\ 2013\ Health\ investigation\ levels\ for\ soil\ contaminants\ -\ Residential\ B\ with\ minimal\ opportunities\ for\ soil\ access$

2. NEPM 2013 Health investigation levels for soil contaminants - Recreational C - Public open spaces

3. NEPM 2013 EILs/ESLs (urban residential/public open space)

LOR - Limits of Reporting

NE - Not Established

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

Sam	ple ID				SB1/0.3	SB1/0.5	SB4/0.2	SB6/1.0	SB6/2.6	SB6/4.8	SB7/0.25	SB8/0.15	SB9/0.25	SB10/0.5
Samp	le Date				9/08/2018	9/08/2018	14/08/2018	9/08/2018	9/08/2018	9/08/2018	14/08/2018	14/08/2018	14/08/2018	9/08/2018
Metal	LOR	HIL B ¹	HIL C ²	EIL ³										
Arsenic	2	500	300	40	2.1	41	15	45	<2	<2	24.0	6.2	4.0	<2
Cadmium	0.4	150	90	NE	< 0.4	< 0.4	< 0.4	0.7	< 0.4	< 0.4	0.7	< 0.4	< 0.4	< 0.4
Chromium (Total)*	5	500	300	200	8.9	14	19	39	<5	6.4	120	7.5	12	<5
Copper	5	30000	17000	110	37	390	64	170	<5	<5	65	16	18	7.4
Lead	5	1200	600	1100	22	990	84	460	<5	<5	270	77	26	12
Mercury **	0.1	120	80	NE	< 0.1	0.1	< 0.1	0.3	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
Nickel	5	1200	1200	30	<5	9.9	8.5	120	<5	<5	140	13	11	7.3
Zinc	5	60000	30000	330	42	190	220	1100	17	21	1400	230	61	110

Notes:

All units in mg/kg unless otherwise noted

- 1. NEPM 2013 Health investigation levels for soil contaminants Residential B with minimal opportunities for soil access
- 2. NEPM 2013 Health investigation levels for soil contaminants Recreational C Public open spaces
- 3. NEPM 2013 EILs (urban residential/public open space)

- * criteria for Chromium (VI) shown
- ** criteria for mercury (inorganic) shown
- QS-1 duplicate of primary sample SB27/3.8
- QS-1A triplicate of primary sample SB27/3.8
- QS2 duplicate of primary sample SB14/0.2
- QS2A triplicate of primary sample SB14/0.2
- QS3 duplicate of primary sample SB22/6.0
- QS3A triplicate of primary sample SB22/6.0

Sam	ple ID				SB11/0.5	SB11/1.2	SB11/1.6	SB11/4.4	SB14/0.2	QS2	QS2A	SB14/1.2	SB14/10.0	SB17/0.5
Samp	le Date				9/08/2018	9/08/2018	9/08/2018	9/08/2018		10/08/2018		10/08/2018	10/08/2018	10/08/2018
Metal	LOR	HIL B ¹	HIL C ²	EIL ³										
Arsenic	2	500	300	40	3.7	4.8	42	<2	<2	<2	<5	7.7	<2	3.3
Cadmium	0.4	150	90	NE	< 0.4	0.4	3.3	< 0.4	< 0.4	< 0.4	<1	1.0	< 0.4	< 0.4
Chromium (Total)*	5	500	300	200	12	13	22	<5	<5	<5	2	63	<5	8
Copper	5	30000	17000	110	30	45	150	<5	<5	<5	<5	110	<5	9.5
Lead	5	1200	600	1100	160	280	100	<5	<5	<5	<5	710	<5	31
Mercury **	0.1	120	80	NE	0.1	0.1	0.2	< 0.1	< 0.1	< 0.1	-	0.5	< 0.1	< 0.1
Nickel	5	1200	1200	30	11	18	53	<5	<5	<5	<2	12	<5	7.5
Zinc	5	60000	30000	330	990	1900	2400	<5	16	19	17	850	<5	250

Notes:

All units in mg/kg unless otherwise noted

- 1. NEPM 2013 Health investigation levels for soil contaminants Residential B with minimal opportunities for soil access
- 2. NEPM 2013 Health investigation levels for soil contaminants Recreational C Public open spaces
- 3. NEPM 2013 EILs (urban residential/public open space)

- * criteria for Chromium (VI) shown
- ** criteria for mercury (inorganic) shown
- QS-1 duplicate of primary sample SB27/3.8
- QS-1A triplicate of primary sample SB27/3.8
- QS2 duplicate of primary sample SB14/0.2
- QS2A triplicate of primary sample SB14/0.2
- QS3 duplicate of primary sample SB22/6.0
- QS3A triplicate of primary sample SB22/6.0

Sam	ole ID				SB17/7.5	SB18/0.2	SB18/1.0	SB19/0.8	SB19/1.5	SB19/3.7	SB20/0.3	SB20/1.0	SB20/1.5	SB20/3.8
Sampl	e Date				10/08/2018	10/08/2018	10/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018
Metal	LOR	HIL B ¹	HIL C ²	EIL ³										
Arsenic	2	500	300	40	<2	<2	4.9	4	3.6	<2	6.9	3.2	5.8	<2
Cadmium	0.4	150	90	NE	< 0.4	< 0.4	< 0.4	< 0.4	1.5	< 0.4	0.5	< 0.4	< 0.4	< 0.4
Chromium (Total)*	5	500	300	200	<5	<5	21	24	24	<5	28	39	38	<5
Copper	5	30000	17000	110	<5	<5	37	30	26	<5	47	89	35	<5
Lead	5	1200	600	1100	11	8.4	620	89	34	<5	200	90	460	<5
Mercury **	0.1	120	80	NE	< 0.1	< 0.1	0.1	0.1	< 0.1	< 0.1	0.2	0.5	0.2	<0.1
Nickel	5	1200	1200	30	<5	<5	21	58	120	<5	66	200	71	<5
Zinc	5	60000	30000	330	61	9.3	1000	860	320	<5	810	92	170	<5

Notes:

All units in mg/kg unless otherwise noted

- 1. NEPM 2013 Health investigation levels for soil contaminants Residential B with minimal opportunities for soil access
- 2. NEPM 2013 Health investigation levels for soil contaminants Recreational C Public open spaces
- 3. NEPM 2013 EILs (urban residential/public open space)

- * criteria for Chromium (VI) shown
- ** criteria for mercury (inorganic) shown
- QS-1 duplicate of primary sample SB27/3.8
- QS-1A triplicate of primary sample SB27/3.8
- QS2 duplicate of primary sample SB14/0.2
- QS2A triplicate of primary sample SB14/0.2
- QS3 duplicate of primary sample SB22/6.0
- QS3A triplicate of primary sample SB22/6.0

Sam	ole ID				SB20/12.0	SB21/0.15	SB22/0.5	SB22/1.3	SB22/6.0	QS3	QS3A	SB23/0.4	SB24/0.3	SB25/0.25
Sampl	e Date				8/08/2018	13/08/2018	13/08/2018	13/08/2018		13/08/2018		14/08/2018	14/08/2018	14/08/2018
Metal	LOR	HIL B ¹	HIL C ²	EIL ³										
Arsenic	2	500	300	40	3.9	4.8	3.7	<2	<2	<2	<5	2.0	2.7	3.9
Cadmium	0.4	150	90	NE	< 0.4	< 0.4	0.7	< 0.4	< 0.4	< 0.4	<1	< 0.4	< 0.4	< 0.4
Chromium (Total)*	5	500	300	200	<5	13	13	<5	<5	<5	<2	<5	12	17
Copper	5	30000	17000	110	<5	220	32	9.9	<5	<5	<5	13	10	12
Lead	5	1200	600	1100	<5	310	150	25	<5	<5	<5	33	50	43
Mercury **	0.1	120	80	NE	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	-	<0.1	< 0.1	< 0.1
Nickel	5	1200	1200	30	<5	26	12	<5	<5	<5	<2	7.1	14	12
Zinc	5	60000	30000	330	12	570	910	240	9.1	11	9	200	190	520

Notes:

All units in mg/kg unless otherwise noted

1. NEPM 2013 Health investigation levels for soil contaminants - Residential B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants - Recreational C - Public open spaces

3. NEPM 2013 EILs (urban residential/public open space)

LOR - Limits of Reporting

* criteria for Chromium (VI) shown

** criteria for mercury (inorganic) shown

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

Sam	ple ID				SB26/0.2	SB26/1.5-2.0	SB26/4.0	SB26/6.0	SB27/0.5	SB27/3.8	QS1	QS1A	SB27/6.0
Samp	le Date				10/08/2018	10/08/2018	10/08/2018	10/08/2018	8/08/2018		8/08/2018		8/08/2018
Metal	LOR	HIL B1	HIL C ²	EIL ³									
Arsenic	2	500	300	40	3.5	46	<2	<2	4.8	<2	<2	2	<2
Cadmium	0.4	150	90	NE	< 0.4	1.1	< 0.4	< 0.4	7.8	< 0.4	< 0.4	<1	< 0.4
Chromium (Total)*	5	500	300	200	17	77	<5	<5	38	<5	<5	<2	<5
Copper	5	30000	17000	110	25	290	<5	<5	66	<5	<5	<5	<5
Lead	5	1200	600	1100	120	9000	39	11	440	<5	<5	<5	<5
Mercury **	0.1	120	80	NE	0.2	0.2	< 0.1	<0.1	0.1	< 0.1	<0.1	-	< 0.1
Nickel	5	1200	1200	30	19	76	<5	<5	84	<5	<5	4	<5
Zinc	5	60000	30000	330	430	2700	12	<5	1500	5.4	<5	10	<5

Notes:

All units in mg/kg unless otherwise noted

1. NEPM 2013 Health investigation levels for soil contaminants - Residential B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants - Recreational C - Public open spaces

3. NEPM 2013 EILs (urban residential/public open space)

LOR - Limits of Reporting

* criteria for Chromium (VI) shown

** criteria for mercury (inorganic) shown

QS-1 - duplicate of primary sample SB27/3.8

QS-1A - triplicate of primary sample SB27/3.8

QS2 - duplicate of primary sample SB14/0.2

QS2A - triplicate of primary sample SB14/0.2

QS3 - duplicate of primary sample SB22/6.0

	Sam	ple ID			SB1/0.5	SB6/0.4	SB6/3.2	SB10/0.5	SB11/0.2	SB11/5.0	SB14/0.5	SB14/3.8	SB14/10.0	SB17/1.0
	Sampl	le Date			9/08/2018	9/08/2018	9/08/2018	10/08/2018	9/08/2018	9/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018
ОСР	LOR	HIL B ¹	HIL C ²	EILs for Urban Residential and Public Open Space ³										
4.4'-DDD	0.05	600	400	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	600	400	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	600	400	180	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	NE	NE	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	NE	NE	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin and Dieldrin (Total)*	0.05 0.05	10 NE	10 NE	NE NE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
b-BHC Chlordanes - Total	0.05	90	70	NE NE	0.1	< 0.1	< 0.03	< 0.03	< 0.1	< 0.1	< 0.03	< 0.1	< 0.05	< 0.03
d-BHC	0.05	NE	NE	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	600	400	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	NE	NE	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	400	340	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	400	340	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	400	340	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	20	20	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	20	20	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	20 NE	20	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	NE 10	NE 10	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor Heptachlor epoxide	0.05 0.05	10 10	10 10	NE NE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Hexachlorobenzene	0.05	15	10	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	500	400	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	30	30	NE NE	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
OPP	LOR	HIL B ¹	HIL C ²	EILs for Urban Residential and										
				Public Open Space ³										
Azinphos-methyl	0.2	NE	NE	NE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	NE	NE	NE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	NE	NE	NE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos														
	0.2	340	250	NE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	340 NE	NE	NE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos	0.2 2	340 NE NE	NE NE	NE NE	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 0.2 < 2	< 0.2 < 0.2 < 2
Chlorpyrifos-methyl Coumaphos Demeton-O	0.2 2 0.2	NE NE NE	NE NE NE	NE NE NE	< 0.2 < 2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 0.2 < 2 < 0.2	< 0.2 < 0.2 < 2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S	0.2 2	340 NE NE	NE NE	NE NE	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2	< 0.2 < 0.2 < 2
Chlorpyrifos-methyl Coumaphos Demeton-O	0.2 2 0.2 0.2	340 NE NE NE NE	NE NE NE NE	NE NE NE NE	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 0.2 < 2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon	0.2 2 0.2 0.2 0.2	340 NE NE NE NE NE	NE NE NE NE	NE NE NE NE	< 0.2 < 2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos	0.2 2 0.2 0.2 0.2 0.2	NE	NE NE NE NE NE NE NE	NE NE NE NE NE NE NE	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE N	NE N	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE NE NE NE NE NE NE NE NE N	NE N	NE N	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE NE NE NE NE NE NE NE NE N	NE N	NE N	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE NE NE NE NE NE NE NE NE N	NE N	NE N	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fenitrothion	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE NE NE NE NE NE NE NE NE N	NE N	NE N	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fensulfothion	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE NE NE NE NE NE NE NE NE N	NE N	NE N	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 <	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fenitrothion	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE NE NE NE NE NE NE NE NE N	NE N	NE N	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fensulfothion Fensulfothion Fenthion	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE NE NE NE NE NE NE NE NE N	NE N	NE N	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 <	< 0.2 < 0.2 < 2 < 0.2 < 0.
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE NE NE NE NE NE NE NE NE N	NE N	NE N	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fensulfothion Fensulfothion Fensulfothion Malathion Merphos	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE NE NE NE NE NE NE NE NE N	NE	NE	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 <	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 2 < 0.2 < 0</pre>	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethion Ethoprop Ethyl parathion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE N	NE N	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton Ethy Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE N	NE N	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE	NE	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fensulfothion Fensulfothion Fenthion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE	NE	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fensulfothion Fensulfothion Fenthion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE	NE	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre> < 0.2 < 2 < 0.2 <</pre>	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre> < 0.2 < 2 < 0.2 <</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethion Ethoprop Ethyl parathion Fensulfothion Fensulfothion Fenthion Methyl parathion Metryhos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl Pyrazophos	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE	NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre></pre>	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre></pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton Ethyl Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fensulfothion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE	NE	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton Ethy Ethion Ethoprop Ethyl parathion Fenitrothion Malathion Merphos Methyl parathion Merphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Terbufos	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE	NE	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton Ethoprop Ethyl parathion Fentirothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Pirimiphos-methyl Pyrazophos Ronnel Terbufos Tetrachlorvinphos Tetrachlorvinphos	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE	NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Chlorpyrifos-methyl Coumaphos Demeton-O Demeton-S Diazinon Dichlorvos Dimethoate Disulfoton Ethyl Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Merphos Methyl parathion Merphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Terbufos	0.2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	340 NE	NE	NE	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2

Notes:
All units in mg/kg unless otherwise noted

1. NEPM 2013 Health investigation levels for soil contaminants - Residential B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants - Recreational C - Public open

3. NEPM 2013 EILs (urban residential/public open space)

	Samp	ole ID			SB17/9.0	SB18/0.2	SB19/0.8	SB19/2.5	SB20/0.3	SB20/3.0	SB22/0.1	SB26/0.5	SB26/3.0	SB26/8.0	SB27/0.2
	Sampl	e Date			10/08/2018	10/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	13/08/2018	10/08/2018	10/08/2018	10/08/2018	8/08/2018
ОСР	LOR	HIL B ¹	HIL C ²	EILs for Urban Residential and Public Open Space ³											
4.4'-DDD	0.05	600	400	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	600	400	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	600	400	180	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	NE	NE	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	NE 40	NE 40	NE NE	< 0.05	< 0.05	< 0.05	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin and Dieldrin (Total)* b-BHC	0.05 0.05	10 NE	10 NE	NE NE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	0.31 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Chlordanes - Total	0.03	90	70	NE NE	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.1	< 0.1	< 0.03
d-BHC	0.05	NE	NE	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	600	400	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	NE	NE	NE	< 0.05	< 0.05	< 0.05	0.24	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	400	340	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	400	340	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	400	340	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	20	20	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	20	20	NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	20	20	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	NE 10	NE 10	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05 0.05	10	10	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide Hexachlorobenzene	0.05	10 15	10 10	NE NE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Methoxychlor	0.05	500	400	NE NE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	30	30	NE NE	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
голартине	-			EILs for Urban											
ОРР	LOR	HIL B ¹	HIL C ²	Residential and Public Open Space ³											
Azinphos-methyl	0.2	NE	NE	NE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	NE	NE	NE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	NE	NE	NE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	340	250	NE NE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	NE NE	NE NE	NE NE	< 0.2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2
Coumaphos Demeton-O	0.2	NE	NE NE	NE NE	< 0.2	< 0.2	< 0.2	< 0.2			< 0.2	< 0.2	< 0.2		< 2
Demeton-S	0.2	NE	NE	NE NE	< 0.2	< 0.2								< n 2	
Diazinon	0.2	NE					< 0.2		< 0.2	< 0.2				< 0.2	< 0.2
Dichlorvos	0.2						< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate		NE	NE	NE	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2 < 0.2								
Disulfoton	0.2	NE NE			< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2
	0.2		NE NE	NE NE	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2
EPN	0.2 0.2	NE NE NE	NE NE NE NE	NE NE NE NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
EPN Ethion	0.2 0.2 0.2	NE NE NE	NE NE NE NE NE	NE NE NE NE NE NE NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
EPN Ethion Ethoprop	0.2 0.2 0.2 0.2	NE NE NE NE	NE NE NE NE NE NE NE NE	NE NE NE NE NE NE NE NE NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
EPN Ethion Ethoprop Ethyl parathion	0.2 0.2 0.2 0.2 0.2	NE NE NE NE NE	NE	NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion	0.2 0.2 0.2 0.2 0.2 0.2	NE NE NE NE NE NE NE NE NE	NE N	NE N	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion	0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE	NE	NE N	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE N	NE N	NE N	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 <	< 0.2 <	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 <	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion	0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE	NE	NE N	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE N	NE N	NE N	< 0.2 <	< 0.2 <	< 0.2 < 0.2	< 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 <	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE N	NE N	NE N	< 0.2 <	< 0.2 <	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 <	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2	< 0.2 <	< 0.2 < 0.2	< 0.2 <	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE N	NE N	NE N	< 0.2 <	< 0.2 <	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 <	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 <	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE N	NE N	NE N	< 0.2 <	< 0.2 <	< 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2	< 0.2 <	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Methyl parathion Monocrotophos Naled Omethoate	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE N	NE N	NE	< 0.2 <	< 0.2 <	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 <	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 <	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE	NE N	NE	< 0.2 <	< 0.2 <	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE N	NE	NE N	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl Pyrazophos	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE N	NE	NE	< 0.2 <	< 0.2 <	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<pre> < 0.2 < 0.2</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE	NE	NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre> < 0.2 < 0.2</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<pre> < 0.2 < 0.2</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Terbufos	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE	NE	NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<pre> < 0.2 < 0.2</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	<pre>< 0.2 < 0.2 <</pre>	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Terbufos Tetrachlorvinphos	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE	NE	NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<pre> < 0.2 < 0.2</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Omethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Terbufos	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	NE	NE	NE	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<pre> < 0.2 < 0.2</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>< 0.2 < 0.2 <</pre>	<pre>< 0.2 < 0.2 <</pre>	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2

Notes:
All units in mg/kg unless otherwise noted
1. NEPM 2013 Health investigation levels for soil contaminants - Residential B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants - Recreational C - Public open

3. NEPM 2013 EILs (urban residential/public open space)

Sam	ıple ID			SB1/0.5	SB4/0.2	SB6/0.4	SB6/3.2	SB6/4.8	SB7/0.25	SB8/0.15	SB9/0.25	SB10/0.5	SB11/0.2
Samp	ole Date			9/08/2018	14/08/2018	9/08/2018	9/08/2018	9/08/2018	14/08/2018	14/08/2018	14/08/2018	10/08/2018	9/08/2018
РСВ	LOR	HIL B ¹	HIL C ²		•			•	•			•	
Total PCB	0.1	1	1	< 0.1	-	<1	< 0.1	-	-	-	-	< 0.1	< 0.1
Phenols	LOR	HIL B ¹	HIL C ²										
2.4.5-Trichlorophenol	1	NE	NE	-	<1	-	-	<1	<1	<1	<1	-	-
2.4.6-Trichlorophenol	1	NE	NE	-	<1	-	-	<1	<1	<1	<1	-	-
2.4-Dichlorophenol	0.5	NE	NE	-	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	-	-
2.6-Dichlorophenol	0.5	NE	NE	-	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	-	-
2-Chlorophenol	0.5	NE	NE	-	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	-	-
4-Chloro-3-methylphenol	1	NE	NE	-	<1	-	-	<1	<1	<1	<1	-	-
Pentachlorophenol	1	130	120	-	<1	-	-	<1	<1	<1	<1	-	-
Tetrachlorophenols - Total	1	NE	NE	-	<1	-	-	<1	<1	<1	<1	-	-
Total Halogenated Phenol	1	NE	NE	-	<1	-	-	<1	<1	<1	<1	-	-
2.4-Dimethylphenol	0.5	NE	NE	-	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	-	-
2.4-Dinitrophenol	5	NE	NE	-	<5	-	-	<5	<5	<5	<5	-	-
2-Cyclohexyl-4.6-dinitrophenol	20	NE	NE	-	<20	-	-	<20	<20	<20	<20	-	-
2-Methyl-4.6-dinitrophenol	5	NE	NE	-	<5	-	-	<5	<5	<5	<5	-	-
2-Methylphenol (o-Cresol)	0.2	4700	4000	-	<0.2	-	-	<0.2	<0.2	<0.2	<0.2	-	-
2-Nitrophenol	1	NE	NE	-	<1	ı	-	<1	<1	<1	<1	-	-
3&4-Methylphenol (m&p-Cresol)	0.4	4700	4000	-	<0.4	-	-	<0.4	<0.4	<0.4	<0.4	-	-
4-Nitrophenol	5	NE	NE	-	<5	-	-	<5	<5	<5	<5	-	-
Dinoseb	20	NE	NE	-	<20	-	-	<20	<20	<20	<20	-	-
Phenol	0.5	45000	40000	-	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	-	-
Total Non-Halogenated Phenol	20	NE	NE	-	<20	-	-	<20	<20	<20	<20	-	-

Notes:

All units in mg/kg unless otherwise noted

1. NEPM 2013 Health investigation levels for soil contaminants - Residential

B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants -

Recreational C - Public open spaces

LOR - Limits of Reporting

Sam	ıple ID			SB11/0.5	SB11/4.4	SB11/5.0	SB14/0.5	SB14/3.8	SB14/10.0	SB17/1.0	SB17/7.5	SB17/9.0	SB18/0.2
Samp	ole Date			9/08/2018	9/08/2018	9/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018
РСВ	LOR	HIL B ¹	HIL C ²					I.					
Total PCB	0.1	1	1	-	-	<0.1	<0.1	<0.1	< 0.1	< 0.1	-	<0.1	<0.1
Phenols	LOR	HIL B ¹	HIL C ²										
2.4.5-Trichlorophenol	1	NE	NE	<1	<1	-	-	-	-	-	<1	-	-
2.4.6-Trichlorophenol	1	NE	NE	<1	<1	-	-	-	-	-	<1	-	-
2.4-Dichlorophenol	0.5	NE	NE	<0.5	<0.5	-	-	-	-	-	<0.5	-	-
2.6-Dichlorophenol	0.5	NE	NE	<0.5	<0.5	-	-	-	-	-	<0.5	-	-
2-Chlorophenol	0.5	NE	NE	<0.5	<0.5	-	-	-	-	-	<0.5	-	-
4-Chloro-3-methylphenol	1	NE	NE	<1	<1	-	-	-	-	-	<1	-	-
Pentachlorophenol	1	130	120	<1	<1	-	-	-	-	-	<1	-	-
Tetrachlorophenols - Total	1	NE	NE	<1	<1	-	-	-	-	-	<1	-	-
Total Halogenated Phenol	1	NE	NE	<1	<1	-	-	-	-	-	<1	-	-
2.4-Dimethylphenol	0.5	NE	NE	<0.5	<0.5	-	-	-	-	-	<0.5	-	-
2.4-Dinitrophenol	5	NE	NE	<5	<5	-	-	-	-	-	<5	-	-
2-Cyclohexyl-4.6-dinitrophenol	20	NE	NE	<20	<20	-	-	-	-	-	<20	-	-
2-Methyl-4.6-dinitrophenol	5	NE	NE	<5	<5	-	-	-	-	-	<5	-	-
2-Methylphenol (o-Cresol)	0.2	4700	4000	<0.2	<0.2	-	-	-	-	-	<0.2	-	-
2-Nitrophenol	1	NE	NE	<1	<1	-	-	-	-	-	<1	-	-
3&4-Methylphenol (m&p-Cresol)	0.4	4700	4000	<0.4	<0.4	-	-	-	-	-	<0.4	-	-
4-Nitrophenol	5	NE	NE	<5	<5	-	-	-	-	-	<5	-	-
Dinoseb	20	NE	NE	<20	<20	-	-	-	-	-	<20	-	-
Phenol	0.5	45000	40000	<0.5	<0.5	-	-	-	-	-	<0.5	-	-
Total Non-Halogenated Phenol	20	NE	NE	<20	<20	-	-	-	-	-	<20	-	-

Notes:

All units in mg/kg unless otherwise noted

1. NEPM 2013 Health investigation levels for soil contaminants - Residential

B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants -

Recreational C - Public open spaces

LOR - Limits of Reporting

Sam	ple ID			SB18/1.0	SB19/0.8	SB19/2.5	SB19/3.7	SB20/0.3	SB20/3.0	SB20/3.8	SB20/12.0	SB21/0.15	SB22/0.1
Samp	le Date			10/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	8/08/2018	13/08/2018	13/08/2018
РСВ	LOR	HIL B ¹	HIL C ²			l	l	ı	l	l	l		I
Total PCB	0.1	1	1	-	<0.1	<0.1	-	< 0.1	<0.1	-	-	-	<0.1
Phenols	LOR	HIL B ¹	HIL C ²										
2.4.5-Trichlorophenol	1	NE	NE	<1	-	-	<1	-	-	<1	<1	<1	-
2.4.6-Trichlorophenol	1	NE	NE	<1	-	-	<1	-	-	<1	<1	<1	-
2.4-Dichlorophenol	0.5	NE	NE	<0.5	-	-	<0.5	-	-	<0.5	<0.5	<0.5	-
2.6-Dichlorophenol	0.5	NE	NE	<0.5	-	-	<0.5	-	-	<0.5	<0.5	<0.5	-
2-Chlorophenol	0.5	NE	NE	<0.5	-	-	<0.5	-	-	<0.5	<0.5	<0.5	-
4-Chloro-3-methylphenol	1	NE	NE	<1	-	-	<1	-	-	<1	<1	<1	-
Pentachlorophenol	1	130	120	<1	-	-	<1	-	-	<1	<1	<1	-
Tetrachlorophenols - Total	1	NE	NE	<1	-	-	<1	-	-	<1	<1	<1	-
Total Halogenated Phenol	1	NE	NE	<1	-	-	<1	-	-	<1	<1	<1	-
2.4-Dimethylphenol	0.5	NE	NE	<0.5	-	-	<0.5	-	-	<0.5	<0.5	<0.5	-
2.4-Dinitrophenol	5	NE	NE	<5	-	-	<5	-	-	<5	<5	<5	-
2-Cyclohexyl-4.6-dinitrophenol	20	NE	NE	<20	-	-	<20	-	-	<20	<20	<20	-
2-Methyl-4.6-dinitrophenol	5	NE	NE	<5	-	-	<5	-	-	<5	<5	<5	-
2-Methylphenol (o-Cresol)	0.2	4700	4000	<0.2	-	-	<0.2	-	-	<0.2	<0.2	<0.2	-
2-Nitrophenol	1	NE	NE	<1	-	-	<1	-	-	<1	<1	<1	-
3&4-Methylphenol (m&p-Cresol)	0.4	4700	4000	< 0.4	-	-	<0.4	-	-	< 0.4	<0.4	<0.4	-
4-Nitrophenol	5	NE	NE	<5	-	-	<5	-	-	<5	<5	<5	-
Dinoseb	20	NE	NE	<20	-	-	<20	-	-	<20	<20	<20	-
Phenol	0.5	45000	40000	<0.5	-	-	<0.5	-	-	<0.5	<0.5	<0.5	-
Total Non-Halogenated Phenol	20	NE	NE	<20	-	-	<20	-	-	<20	<20	<20	-

Notes:

All units in mg/kg unless otherwise noted

1. NEPM 2013 Health investigation levels for soil contaminants - Residential

B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants -

Recreational C - Public open spaces

LOR - Limits of Reporting

Sam	ple ID			SB22/1.3	SB23/0.4	SB24/0.3	SB25/0.25	SB26/0.5	SB26/1.5-2.0	SB26/3.0	SB26/8.0	SB27/0.2	SB27/6.0
Samp	le Date			13/08/2018	14/08/2018	14/08/2018	14/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018	8/08/2018	8/08/2018
РСВ	LOR	HIL B ¹	HIL C ²		l	l							
Total PCB	0.1	1	1	-	-	-	-	< 0.1	-	< 0.1	<0.1	< 0.1	-
Phenols	LOR	HIL B ¹	HIL C ²										
2.4.5-Trichlorophenol	1	NE	NE	<1	<1	<1	<1	-	<1	-	-	-	<1
2.4.6-Trichlorophenol	1	NE	NE	<1	<1	<1	<1	-	<1	-	-	-	<1
2.4-Dichlorophenol	0.5	NE	NE	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	-	<0.5
2.6-Dichlorophenol	0.5	NE	NE	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	-	<0.5
2-Chlorophenol	0.5	NE	NE	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	-	<0.5
4-Chloro-3-methylphenol	1	NE	NE	<1	<1	<1	<1	-	<1	-	-	-	<1
Pentachlorophenol	1	130	120	<1	<1	<1	<1	-	<1	-	-	-	<1
Tetrachlorophenols - Total	1	NE	NE	<1	<1	<1	<1	-	<1	-	-	-	<1
Total Halogenated Phenol	1	NE	NE	<1	<1	<1	<1	-	<1	-	-	-	<1
2.4-Dimethylphenol	0.5	NE	NE	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	-	<0.5
2.4-Dinitrophenol	5	NE	NE	<5	<5	<5	<5	-	<5	-	-	-	<5
2-Cyclohexyl-4.6-dinitrophenol	20	NE	NE	<20	<20	<20	<20	-	<20	-	-	-	<20
2-Methyl-4.6-dinitrophenol	5	NE	NE	<5	<5	<5	<5	-	<5	-	-	-	<5
2-Methylphenol (o-Cresol)	0.2	4700	4000	<0.2	<0.2	<0.2	<0.2	-	<0.2	-	-	-	<0.2
2-Nitrophenol	1	NE	NE	<1	<1	<1	<1	-	<1	-	-	-	<1
3&4-Methylphenol (m&p-Cresol)	0.4	4700	4000	<0.4	<0.4	<0.4	<0.4	-	<0.4	-	-	-	<0.4
4-Nitrophenol	5	NE	NE	<5	<5	<5	<5	-	<5	-	-	-	<5
Dinoseb	20	NE	NE	<20	<20	<20	<20	-	<20	-	-	-	<20
Phenol	0.5	45000	40000	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	-	<0.5
Total Non-Halogenated Phenol	20	NE	NE	<20	<20	<20	<20	-	<20	-	-	-	<20

Notes:

All units in mg/kg unless otherwise noted

1. NEPM 2013 Health investigation levels for soil contaminants - Residential

B with minimal opportunities for soil access

2. NEPM 2013 Health investigation levels for soil contaminants -

Recreational C - Public open spaces

LOR - Limits of Reporting

Sample ID		SB1/0.3	SB11/1.6	SB14/2.5	SB18/0.6	SB19/2.5	SB26/1.5-2.0	SB26/5.0
Sample Date		9/08/2018	9/08/2018	10/08/2018	10/08/2018	8/08/2018	10/08/2018	10/08/2018
VOCs	LOR	3/00/2018	3/00/2018	10/00/2010	10/00/2010	0,00,2010	10/00/2018	10/00/2010
1.1.1.2-Tetrachloroethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethane	0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	0.5		< 0.5	< 0.5	< 0.5	< 0.5		< 0.5
1.1-Dichloroethene	0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5
1.2.3-Trichloropropane	0.5							
1.2.4-Trimethylbenzene		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	4.9	< 0.5
1.2-Dibromoethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.9	< 0.5
1.3-Dichlorobenzene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-Butanone (MEK)	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bromobenzene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Carbon disulfide	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chloroethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
lodomethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methylene Chloride	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Styrene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.2-Dichloroethene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vinyl chloride	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

All units are in mg/kg unless otherwise noted

	Sample II)		SB1/0.5	SB4/0.2	SB6/0.4	SB7/0.25	SB8/0.3	SB9/0.25	SB10/0.3	SB11/1.2	SB13/0.3	SB14/0.2	SB14/2.5	SB17/1.0	SB18/0.2	SB18/0.6
	Sample Date Depth			9/08/2018	14/08/2018	9/08/2018	14/08/2018	14/08/2018	14/08/2018	10/08/2018	9/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018
	Depth			0.50	0.2	0.4	0.25	0.3	0.3	0.30	1.2	0.3	0.2	2.5	1.0	0.2	0.6
Asbestos																	
Asbestos	0.001% w/w	0.04% ³ ; 0.001% ⁴	0.02%³; 0.001%⁴	ACM: 0.027 NRFD	ND/NRFD	ACM: 0.079 FA + AF: 0.0019 NRFD	FA: 0.0044	AF: 0.00087 NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD

Notes:

LOR - Limits of Reporting

ND = No asbestos dected at the reporting limit of 0.001%

NRFD = No respirable fibres detected

- ${\bf 1.\ NEPM\ 2013\ Health\ investigation\ levels\ for\ soil\ contaminants\ -\ Residential\ B\ with\ minimal\ opportunities\ for\ soil\ access$
- 2. NEPM 2013 Health investigation levels for soil contaminants Recreational C Public open spaces
- 3. NEPM 2013 Health Screening Levels bonded/non-friable ACM
- 4. NEPM 2013 Health Screening Level for FA & AF asbestos
- 5. FA + AF detected at weight of 0.0021g
- QA1 duplicate of primary sample SB21-0.4
- QA1A triplicate of primary sample SB21-0.4
- QA2 duplicate of primary sample SB23-0.4
- QA2A triplicate of primary sample SB23-0.4

	Sample II)		SB19/0.8	SB20/1.0	SB21/0.4	QA1	QA1A	SB22/0.5	SB23/0.4	QA2	QA2A	SB24/0.3	SB25/0.25	SB26/0.2	SB27/0.2	SB27/1.5
	Sample Date Depth			8/08/2018	8/08/2018		13/08/2018		13/08/2018		14/08/2018		14/08/2018	14/08/2018	10/08/2018	8/08/2018	8/08/2018
	Depth			0.8	1.0	0.4	0.4	0.4	0.5	0.4	0.4	0.4	0.3	0.25	0.2	0.2	1.5
Asbestos	LOR	HSL B ¹	HSL C ²														
Asbestos	0.001% w/w	0.04% ³ ; 0.001% ⁴	0.02%3; 0.001%4	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	FA + AF: <0.001 ⁵ NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ND/NRFD	ACM: 0.013 NRFD	ND/NRFD

Notes:

LOR - Limits of Reporting

ND = No asbestos dected at the reporting limit of 0.001%

NRFD = No respirable fibres detected

- ${\bf 1.\ NEPM\ 2013\ Health\ investigation\ levels\ for\ soil\ contaminants\ -\ Residential\ B\ with\ minimal\ opportunities\ for\ soil\ access$
- 2. NEPM 2013 Health investigation levels for soil contaminants Recreational C Public open spaces
- 3. NEPM 2013 Health Screening Levels bonded/non-friable ACM
- 4. NEPM 2013 Health Screening Level for FA & AF asbestos
- 5. FA + AF detected at weight of 0.0021g

QA1 - duplicate of primary sample SB21-0.4

QA1A - triplicate of primary sample SB21-0.4

QA2 - duplicate of primary sample SB23-0.4

QA2A - triplicate of primary sample SB23-0.4

TABLE 9: SUMMARY OF SOIL ANALYTICAL RESULTS - ACID SULFATE SOILS 146-154 O'RIORDAN STREET, MASCOT, NSW

					SAND:	SAND:	SAND: black,	SAND: black,	SAND: black,		SAND: black	SAND: black	SAND: black	SAND: black	SAND: black	SAND: grey	SAND: grey	SAND: grey	SAND: brown	SAND:	SAND:	SAND:black	SAND: black	SAND: brown	SAND: brown	SAND: brown
Sample	e ID				white/grey SB6/2.0	brown/grey SB6/4.0	fine grained SB6/5.0	fine grained SB14/6.0	fine grained SB14/8.0	fine grained SB14/10.0	SB17/3.8	SB17/6.0	SB17/8.0	SB17/10.0	SB20/5.0	SB20/8.0	SB20/10.0	SB20/12.0	SB22/3.0	grey/brown SB22/5.0	grey/brown SB22/7.0	SB26/2.0	SB26/4.0	SB26/6.0	SB26/8.0	SB26/10.0
Sample					9/08/18	9/08/18	9/08/18	10/08/18	10/08/18	10/08/18	10/08/18	10/08/18	10/08/18	10/08/18	8/08/18	8/08/18	8/08/18	8/08/18	13/08/18	13/08/18		10/08/18	10/08/18	10/08/18	10/08/18	
Compounds	LOR	Units	Net Acidity Criteria (<1000 tonnes)	Net Acidity Criteria (>1000 tonnes)						,,,,,,,	3,13,1			,,,,,	,,,,,	.,,		3,23,2	.,				,			
Field Test	<u> </u>	L																								
pH-F	0.1	pH Units	<4.0	<4.0	7.8	6.3	6.4	6.9	6.4	6.6	8.2	7.5	6.6	6.7	7.2	6.1	6.2	6.1	7.1	7	6.9	9.1	7.7	5.6	6.8	6.3
pH-FOX	0.1	pH Units	<3.5	<3.5	5.7	4.4	3.3	4.4	2.9	3.2	6.7	6.8	2.4	3	4.1	2.2	3.2	2.8	5.1	3.9	4.5	6.9	5.1	2.3	2.8	2.7
Change ²	0.1	pH Units	≥1.0	≥1.0	2.1	1.9	3.1	2.5	3.5	3.4	1.5	0.7	4.2	3.7	3.1	3.9	3	3.3	2	3.1	2.4	2.2	2.6	3.3	4	3.6
Reaction Ratings*	-	-			3	1	1	1	3	3	3	2	2	2	2	1	1	3	3	1	1	1	1	2	3	3
Chromium Suite																										
Acid Neutralising Capacity - acidity (ANCbt)	2	mol H+/t			23	-	n/a	-	n/a	n/a	-	-	n/a	n/a	n/a	n/a	n/a	-	n/a	n/a	-	100	-	n/a	-	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt)	0.02	% S			0.04	-	n/a	-	n/a	n/a	-	-	n/a	n/a	n/a	n/a	n/a	-	n/a	n/a	-	0.16	-	n/a		n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3			0.12	-	n/a	-	n/a	n/a	-		n/a	n/a	n/a	n/a	n/a	-	n/a	n/a	-	0.51	-	n/a		n/a
Acid trail - Titratable Actual Acidity ANC Fineness Factor	2	mol H+/t factor			< 2 1.5	-	2.6 1.5	-	4.8 1.5	2.3 1.5	-	\vdash	< 2 1.5	< 2 1.5	3.5 1.5	7 1.5	8.2 1.5	-	< 2 1.5	6.6 1.5	-	< 2 1.5	-	6.6 1.5	 '	27 1.5
Chromium Reducible Sulfur	0.005	% S	0.03	0.03	< 0.005	-	< 0.005	-	0.051	0.016	-		0.007	0.022	< 0.005	< 0.005	0.051	-	< 0.005	< 0.005	<u> </u>	0.031	-	0.011		0.078
Chromium Reducible Sulfur -acidity units	3	mol H+/t			< 3	-	< 3	-	32	< 3	-	-	< 3	14	< 3	< 3	32	-	< 3	< 3	-	20	-	< 3	-	49
Liming Rate	1	kg CaCO3/t			< 1	-	< 1	-	2.7	< 1	-		< 1	1	< 1	< 1	3	_	< 1	< 1		< 1	-	1		5.7
Net Acidity (Acidity Units) ³	10	mol H+/t	18	18	< 10	-	< 10	-	36	12	-	-	< 10	14	< 10	< 10	40	-	< 10	< 10	-	< 10	-	14	-	75
Net Acidity (Sulfur Units) ³	0.02	% S	0.03	0.03	< 0.02	-	< 0.02	-	0.05	0.02	-		< 0.02	0.02	< 0.02	< 0.02	0.05	-	< 0.02	< 0.02	-	< 0.02	-	< 0.02		0.12
HCI Extractable Sulfur	0.02	% S			n/a	-	n/a	-	n/a	n/a	-		n/a	n/a	n/a	n/a	n/a	-	n/a	n/a	-	n/a	-	n/a	- -	n/a
Net Acid soluble sulfur	0.02	% S			n/a	-	n/a	-	n/a	n/a	-	-	n/a	n/a	n/a	n/a	n/a	-	n/a	n/a	-	n/a	-	n/a	<u> </u>	n/a
Net Acid soluble sulfur - acidity units Net Acid soluble sulfur - equivalent S% pyrite	10 0.02	mol H+/t % S			n/a n/a	-	n/a n/a	-	n/a n/a	n/a n/a	-	-	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	-	n/a n/a	n/a n/a	-	n/a n/a	-	n/a n/a	-	n/a n/a
pH-KCL ¹	0.02	76 3 pH Units	<4.0	<4.0	7.4	_	5.8	_	5.4	5.6	_	 	5.7	5.7	5.7	5.3	5.2	-	6.1	5.6	_	8.2	_	5.4		4.9
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	1410		< 0.02	_	< 0.02	_	< 0.02	< 0.02	_	_	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	_	< 0.02	< 0.02	_	< 0.02	_	< 0.02	-	0.04
Sulfur - KCl Extractable	0.02	% S			< 0.02	-	< 0.02	-	< 0.02	n/a	-	-	n/a	< 0.02	n/a	< 0.02	< 0.02	-	n/a	< 0.02	-	< 0.02	-	< 0.02	-	< 0.02
SPOCAS Suite																										
Acid Neutralising Capacity - Acidity units	10	mol H+/t			49	-	n/a	n/a	n/a	-	86	-	-	n/a	-	n/a	n/a	-	-	n/a	-	n/a	-	n/a	n/a	n/a
Acid Neutralising Capacity equivalent S% pyrite	0.02	% S			0.08	-	n/a	n/a	n/a	-	0.14		-	n/a	-	n/a	n/a	-	-	n/a	-	n/a	-	n/a	n/a	n/a
Acid Neutralising Capacity	0.28	%CaCO3			0.25	-	n/a	n/a	n/a	-	0.43		-	n/a	-	n/a	n/a	-	-	n/a	-	n/a	-	n/a	n/a	n/a
Acid Reacted Calcium	0.02	% Ca			0.08 < 0.02	-	< 0.02	< 0.02	< 0.02	-	0.12 < 0.02	-	-	0.02 < 0.02	-	< 0.02 < 0.02	< 0.02 < 0.02	-	-	< 0.02 < 0.02	-	< 0.02	-	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
Acid Reacted Magnesium Acid trail - Titratable Actual Acidity	2	% Mg mol H+/t			< 0.02	-	2.6	< 0.02	4.8	-	< 0.02	 	-	< 0.02	-	< 0.02	8.2	_	-	6.6	-	< 0.02	-	6.6	6	27
Acid trail - Titratable Actual Acidity Acid trail - Titratable Peroxide Acidity ³	2	mol H+/t	18	18	< 2	-	10	< 2	53	_	< 2		-	24		73	82	_	-	24	-	< 2	_	57	< 2	170
Acid trail - Titratable Sulfidic Acidity ³	2	mol H+/t	18	18	< 2	-	< 2	< 2	48	-	< 2	-	-	24	-	66	73	-	-	17	-	< 2	-	51	< 2	140
acidity - Acid Reacted Calcium	10	mol H+/t			40	-	< 10	< 10	< 10	-	61	-	-	11	-	< 10	< 10	-	-	< 10	-	< 10	-	< 10	< 10	< 10
acidity - Acid Reacted Magnesium	10	mol H+/t			< 10	-	< 10	< 10	< 10	-	< 10	-	-	< 10	-	< 10	< 10	-	-	< 10	-	< 10	-	< 10	< 10	< 10
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t			< 10	-	< 10	< 10	46	-	33	-	-	20	-	16	48	-	-	< 10	-	21	-	20	48	90
ANC Fineness Factor	-	factor			1.5	-	1.5	1.5	1.5	-	1.5	-	-	1.5	-	1.5	1.5	-	-	1.5	-	1.5	-	1.5	1.5	1.5
Calcium - KCI Extractable	0.02	% Ca			0.04 0.12	-	< 0.02	< 0.02	< 0.02	-	0.17 0.3		-	< 0.02 0.02	-	< 0.02	< 0.02	-	-	0.06	-	0.05	-	0.02 0.03	< 0.02 < 0.02	< 0.02
Calcium - Peroxide HCI Extractable Sulfur	0.02	% Ca % S			0.12 n/a	-	< 0.02 n/a	< 0.02 n/a	< 0.02 n/a	-	0.3 n/a	 	-	n/a		< 0.02 n/a	< 0.02 n/a	-		0.06 n/a	-	0.05 n/a	-	0.03 n/a	< 0.02 n/a	< 0.02 n/a
Magnesium - KCl Extractable	0.02	% Mg			< 0.02	_	< 0.02	< 0.02	< 0.02	_	< 0.02	 	_	< 0.02	_	< 0.02	< 0.02	_	_	< 0.02	_	< 0.02	_	< 0.02	< 0.02	< 0.02
Magnesium - Peroxide	0.02	% Mg			< 0.02	-	< 0.02	< 0.02	< 0.02	-	< 0.02		-	< 0.02	-	< 0.02	< 0.02	-	-	< 0.02	-	< 0.02	-	< 0.02	< 0.02	< 0.02
Net Acid soluble sulfur	0.02	% S			n/a	-	n/a	n/a	n/a	-	n/a		-	n/a	_	n/a	n/a	-	-	n/a		n/a	-	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t			n/a	-	n/a	n/a	n/a	-	n/a		-	n/a	-	n/a	n/a	-	-	n/a	-	n/a	-	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite	0.02	% S			n/a	-	n/a	n/a	n/a	-	n/a	-	-	n/a	-	n/a	n/a	-	-	n/a	-	n/a	-	n/a	n/a	n/a
pH-KCL ¹	0.1	pH Units	<4.0	<4.0	7.4	-	5.8	6.4	5.4	-	7.6		-	5.7	-	5.3	5.2	-	-	5.6	-	8.2	-	5.4	5.3	4.9
pH-OX ¹ Change ²	0.1	pH Units	<3.5	<3.5	6.8 0.6	-	4.4 1.4	5.4 1.0	2.4	-	7.4 0.2		-	3.2 2.5		2.8	3.2 2.0	-	-	4.2 1.4	-	6.2 2.0	-	2.9 2.5	2.3	2.5
change sulfidic - TAA equiv. S% pyrite	0.02	pH Units % pyrite S	≥1.0	≥1.0	< 0.02		< 0.02	< 0.02	< 0.02		< 0.2	-	-	< 0.02		< 0.02	< 0.02	-		< 0.02		< 0.02	-	< 0.02	< 0.02	0.04
sulfidic - TPA equiv. S% pyrite sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S			< 0.02	-	0.02	< 0.02	0.08		< 0.02		-	0.04	-	0.12	0.13	-	-	0.04		< 0.02	-	0.09	< 0.02	0.04
sulfidic - TSA equiv. 5% pyrite	0.02	% pyrite S			< 0.02	-	< 0.02	< 0.02	0.08	-	< 0.02	-	-	0.04	-	0.11	0.12	-	-	0.03	-	< 0.02	-	0.08	< 0.02	0.23
Sulfur - KCI Extractable	0.02	% S			< 0.02	-	< 0.02	< 0.02	< 0.02	-	< 0.02	-	-	< 0.02	-	< 0.02	< 0.02	-	-	< 0.02	-	< 0.02	-	< 0.02	< 0.02	< 0.02
Sulfur - Peroxide	0.02	% S			< 0.02	-	< 0.02	< 0.02	0.07	-	0.05	╙╌┈	-	0.03	-	0.03	0.08	-	-	< 0.02	-	0.03	-	0.03	0.08	0.14
Sulfur - Peroxide Oxidisable Sulfur ³	0.02	% S	0.03	0.03	< 0.02	-	< 0.02	< 0.02	0.07	-	0.05	-	-	0.03	-	0.03	0.08	-	-	< 0.02	-	0.03	-	0.03	0.08	0.14
Liming rate - SPOCAS	1	kg CaCO3/t	40		<1	-	< 1	< 1	4	-	< 1		-	2	-	2	4	-	-	< 1	-	1	-	2	4	9
Net Acidity (acidity units) - SPOCAS Net Acidity (sulfur units) - SPOCAS	10 0.02	mol H+/t % S	18 0.03	0.03	< 10 < 0.02	-	< 10 < 0.02	< 10 < 0.02	51 0.08	-	< 10 < 0.02		-	20 0.03		0.04	56 0.09	-	-	< 10 < 0.02	-	< 10 < 0.02	-	27 0.04	54 0.09	120 0.19
Net Acidity (sulfur units) - SPOCAS sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	0.03	0.03	< 0.02 0.06	-	< 0.02	< 0.02	< 0.02	-	< 0.02 0.1		-	0.03		< 0.02	< 0.02	-	-	< 0.02	-	< 0.02	-	< 0.02	< 0.02	< 0.02
sulfidic - Acid Reacted Ca equiv. 5% pyrite sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S			< 0.02	-	< 0.02	< 0.02	< 0.02	-	< 0.02		-	< 0.02	-	< 0.02	< 0.02	-	-	< 0.02	-	< 0.02	-	< 0.02	< 0.02	< 0.02
Extraneous Material																										
	0.005	g			130	-	93	97	93	110	110	-	120	110	110	99	120	-	100	130	-	120	-	98	120	110
<2mm Fraction	0.005																									
>2mm Fraction	0.005	g			< 0.005	-	< 0.005	< 0.005	< 0.005	< 0.005	1.5	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	< 0.005	< 0.005	< 0.005
					< 0.005 100 < 0.1	-	< 0.005 100 < 0.1	< 0.005 100 < 0.1	< 0.005 100 < 0.1	< 0.005 100 < 0.1			< 0.005 100 < 0.1	-	< 0.005 100 < 0.1	< 0.005 100 < 0.1	-	< 0.005 100 < 0.1	-		< 0.005 100 < 0.1	< 0.005 100 < 0.1				

- Notes:

 LOR Limits of Reporting

 1: indicative of Actual Acid Sulfate Soils

 2: indicative of Potential Acid Sulfate Soils

 3: action criteria for need to prepare an Acid Sulfate Soil Management Plan

 *: 1 No reaction to slight, 2 Moderate reaction, 3 Strong reaction with persistent froth, 4 Extreme reaction

Sample ID		SB1/0.5	SB6/1.0	SB7/0.25	SB14/1.2	SB18/1.0	SB19/1.5	SB20/1.0	SB21/0.15	SB26/1.5-2.0
Sample Date		10/08/2018	10/08/2018	13/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018	13/08/2018	10/08/2018
Heavy Metals	LOR									
Lead	0.01	0.24	0.04	0.36	1.1	1.4	-	-	0.10	3.4
Nickel	0.01	-	0.41	0.14	-	-	0.29	0.44	-	0.28
Chromium	0.01	-	-	< 0.01	-	-	-	-	-	-
USA Leaching Procedure										
Leachate Fluid	-	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
pH (initial)	0.1	7.0	7.5	7.9	6.1	8.3	8.0	7.7	7.6	7.7
pH (Leachate Fluid)	0.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
pH (off)	0.1	5.3	5.9	5.4	5.3	5.6	5.3	5.1	5.1	5.6
pH (USA HCl addition)	0.1	2.0	1.8	2.0	1.9	1.9	2.0	2.0	2.0	2.0

TABLE 11: SUMMARY OF SOIL QUALITY ASSURANCE / QUALITY CONTROL DATA 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample I	D	SB27/3.8	QS1	RPD	SB27/3.8	QS1A	RPD	SB14/0.2	QS2	RPD	SB14/0.2	QS2A	RPD
Sample Da	nte	8/08/2018	8/08/2018	NPD	8/08/2018	8/08/2018	NPD	10/08/2018	10/08/2018	KPD .	10/08/2018	10/08/2018	KFD
Metals	LOR		•	•			•			•		•	
Arsenic	2	<2	<2	0%	<2	2	67%	<2	<2	0%	<2	<5	0%
Cadmium	0.4	< 0.4	< 0.4	0%	< 0.4	<1	0%	< 0.4	< 0.4	0%	< 0.4	<1	0%
Chromium (Total)	5	<5	<5	0%	<5	<2	0%	<5	<5	0%	<5	2	22%
Copper	5	<5	<5	0%	<5	<5	0%	<5	<5	0%	<5	<5	0%
Lead	5	<5	<5	0%	<5	<5	0%	<5	<5	0%	<5	<5	0%
Mercury	0.1	<0.1	<0.1	0%	< 0.1	-	-	< 0.1	< 0.1	0%	< 0.1	-	-
Nickel	5	<5	<5	0%	<5	4	46%	<5	<5	0%	<5	<2	0%
Zinc	5	5.4	<5	73%	5.4	10	60%	16	19	17%	16	17	6%
Asbestos	0.001% w/w	-	-	-	-	-	-	-	-	-	-	-	-

Notes

All units in mg/kg High RPDs are shaded (where applicable). Acceptable RPDs for each LOR multiplier range are: No Limit (<10 x LOR); <30% RPD (Inorganic); and <50% RPD (Organic).

Primary samples SB27/3.8, SB14/0.2 and SB22/6.0 and duplicate/triplicate samples QS1/QS1A, QS2/QS2A and QS3A also all analysed for BTEXN, TPH/TRH and PAHs, with all results reported at concentrations <LOR.

TABLE 11: SUMMARY OF SOIL QUALITY ASSURANCE / QUALITY CONTROL DATA 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample II	D	SB22/6.0	QS3	RPD	SB22/6.0	QS3A	RPD	SB21/0.4	QA1	QA1A	SB23/0.4	QA2	QA2A
Sample Da	ate	13/08/2018	13/08/2018	KPD	13/08/2018	13/08/2018	KPD	13/08/2018	13/08/2018	13/08/2018	14/08/2018	14/08/2018	14/08/2018
Metals	LOR		•	•			•		•			•	
Arsenic	2	<2	<2	0%	<2	<5	0%	-	-	-	-	-	-
Cadmium	0.4	< 0.4	< 0.4	0%	< 0.4	<1	0%	-	-	-	-	-	-
Chromium (Total)	5	<5	<5	0%	<5	<2	22%	-	-	-	-	-	-
Copper	5	<5	<5	0%	<5	<5	0%	-	-	-	-	-	-
Lead	5	<5	<5	0%	<5	<5	0%	-	-	-	-	-	-
Mercury	0.1	<0.1	<0.1	0%	< 0.1	-	-	-	-	-	-	-	-
Nickel	5	<5	<5	0%	<5	<2	0%	-	-	-	-	-	-
Zinc	5	9.1	11	19%	9.1	9	1%	-	-	-	-	-	-
Asbestos	0.001% w/w	-	-	-	-	-	-	ND/NRFD	ND/NRFD	FA + AF: <0.001 ³ NRFD	ND/NRFD	ND/NRFD	ND/NRFD

Notes:

All units in mg/kg High RPDs are shaded (where applicable). Acceptable RPDs for each LOR multiplier range are: No Limit (<10 x LOR); <30% RPD (Inorganic); and <50% RPD (Organic).

Primary samples SB27/3.8, SB14/0.2 and SB22/6.0 and duplicate/triplicate samples QS1/QS1A, QS2/QS2A and QS3A also all analysed for BTEXN, TPH/TRH and PAHs, with all results reported at concentrations <LOR.

TABLE 12: SUMMARY OF TRIP BLANK AND TRIP SPIKE ANALYTICAL DATA (SOIL AND GROUNDWATER SAMPLING) 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample ID	TRIP BLANK - Soil (mg/kg)	TRIP SPIKE - Soil (%)	Rinsate - Water: RB1 (mg/L)	Rinsate - Water: RB2 (mg/L)	Rinsate - Water: RB3 (mg/L)	Rinsate - Water: RB4 (mg/L)	TRIP BLANK - Water (mg/L)	TRIP SPIKE - Water (mg/L)
Sample Date	9/08/2018	9/08/2018	8/08/2018	13/08/2018	14/08/2018	14/08/2018	15/08/2018	15/08/2018
трн/ткн								
C6-C9	<20	110	< 0.02	-	-	< 0.02	< 0.02	71
C10-C14	-	-	< 0.05	-	-	< 0.05	-	-
C15-C28	-	-	<0.1	-	-	<0.1	-	-
C29-C36	-	-	< 0.1	-	-	< 0.1	-	-
C6-C36 (total)	-	-	<0.1	-	=	<0.1	-	-
C6-C10	<20	110	< 0.02	-	ı	< 0.02	<0.02	75
C6-C10 - BTEX (fraction F1)	<20	-	<0.2	-	-	<0.2	<0.02	-
C10-C16	-	-	< 0.05	-	-	< 0.05	-	-
C10-C16 - Naphthalene (fraction F2)	-	-	< 0.05	-	ı	<0.05	-	-
C16-C34	-	-	<0.1	-	=	<0.1	-	-
C34-C40	-	-	<0.1	-	ı	<0.1	-	-
C10-C40 (total)	-	-	<0.1	-	ı	<0.1	-	-
Naphthalene	<0.5	99	< 0.01	-	-	< 0.01	<0.01	85
BTEX								
Benzene	<0.1	110	< 0.001	-	-	< 0.001	< 0.001	86
Toluene	<0.1	110	< 0.001	-	-	< 0.001	< 0.001	85
Ethylbenzene	< 0.1	110	< 0.002	-	-	< 0.002	< 0.001	80
meta- & para-Xylene	<0.2	110	< 0.001	-	-	< 0.001	<0.002	85
ortho-Xylene	<0.1	110	< 0.001	-	-	< 0.001	< 0.001	84
Total Xylenes	<0.5	110	< 0.003	-	-	< 0.003	< 0.003	84
Metal								
Arsenic	-	-	< 0.001	-	-	< 0.001	-	-
Cadmium	-	-	< 0.0002	-	-	< 0.0002	-	-
Chromium (Total)*	-	-	< 0.001	-	-	< 0.001	-	-
Copper	-	-	< 0.001	-	-	< 0.001	-	-
Lead	-	-	< 0.001	-	-	< 0.001	-	-
Mercury **	-	-	< 0.0001	-	-	< 0.0001	-	-
Nickel	-	-	< 0.001	-	-	< 0.001	-	-
Zinc	-	-	< 0.005	-	-	< 0.005	-	-
PAHs								
Naphthalene	-	-	< 0.001	-	-	< 0.001	-	-
Acenaphthylene	-	-	<0.001	-	-	< 0.001	-	-
Acenaphthene	-	-	<0.001	-	-	< 0.001	-	-
Fluorene	-	-	< 0.001	-	-	< 0.001	-	-
Phenanthrene	-	-	<0.001	-	-	< 0.001	-	-
Anthracene	-	-	<0.001	-	-	< 0.001	-	-
Fluoranthene	-	-	< 0.001	-	-	< 0.001	-	-
Pyrene	-	-	<0.001	-	-	< 0.001	-	-
Benz(a)anthracene	-	-	< 0.001	-	-	< 0.001	-	-
Chrysene	-	-	<0.001	-	-	< 0.001	-	-
Benzo(b+j)fluoranthene	-	-	<0.001	-	-	< 0.001	-	-
Benzo(k)fluoranthene	-	-	< 0.001	-	-	< 0.001	-	-

TABLE 12: SUMMARY OF TRIP BLANK AND TRIP SPIKE ANALYTICAL DATA (SOIL AND GROUNDWATER SAMPLING) 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample ID	TRIP BLANK - Soil (mg/kg)	TRIP SPIKE - Soil (%)	Rinsate - Water: RB1 (mg/L)	Rinsate - Water: RB2 (mg/L)	Rinsate - Water: RB3 (mg/L)	Rinsate - Water: RB4 (mg/L)	TRIP BLANK - Water (mg/L)	TRIP SPIKE - Water (mg/L)
Sample Date	9/08/2018	9/08/2018	8/08/2018	13/08/2018	14/08/2018	14/08/2018	15/08/2018	15/08/2018
Benzo(a)pyrene	-	-	< 0.001	-	-	< 0.001	-	-
Indeno(1.2.3.cd)pyrene	-	-	< 0.001	-	-	< 0.001	-	-
Dibenz(a.h)anthracene	-	-	< 0.001	-	-	< 0.001	-	-
Benzo(g.h.i)perylene	-	-	< 0.001	-	-	< 0.001	-	-
Total PAH	-	-	< 0.001	-	-	< 0.001	-	-
Benzo(a)pyrene TEQ (zero)	-	-	< 0.001	-	-	< 0.001	-	-
Phenols								
2.4.5-Trichlorophenol	-	-	< 0.01	-	-	< 0.01	-	-
2.4.6-Trichlorophenol	-	-	< 0.01	-	-	< 0.01	-	-
2.4-Dichlorophenol	-	-	< 0.003	-	-	< 0.003	-	-
2.6-Dichlorophenol	-	-	< 0.003	-	-	< 0.003	-	-
2-Chlorophenol	-	-	< 0.003	-	-	< 0.003	-	-
4-Chloro-3-methylphenol	-	-	< 0.01	-	-	< 0.01	-	-
Pentachlorophenol	-	-	< 0.01	-	-	< 0.01	-	-
Tetrachlorophenols - Total	-	-	< 0.03	-	-	< 0.03	-	-
Total Halogenated Phenol	-	-	< 0.01	-	-	< 0.01	-	-
2.4-Dimethylphenol	-	-	< 0.003	-	-	< 0.003	-	-
2.4-Dinitrophenol	-	-	< 0.03	-	-	< 0.03	-	-
2-Cyclohexyl-4.6-dinitrophenol	-	-	<0.1	_	_	<0.1	-	-
2-Methyl-4.6-dinitrophenol	-	-	< 0.03	_	_	< 0.03	-	-
2-Methylphenol (o-Cresol)	-	-	<0.003	_	_	< 0.003	-	-
2-Nitrophenol	-	-	<0.01	_	_	< 0.01	-	-
3&4-Methylphenol (m&p-Cresol)	-	-	<0.006	_	_	<0.006	-	-
4-Nitrophenol	-	-	< 0.03	_	_	< 0.03	-	-
Dinoseb	_	-	<0.1	_	_	<0.1	-	_
Phenol	-	-	<0.003	_	_	< 0.003	-	-
Total Non-Halogenated Phenol	-	-	<0.1	-	-	<0.1		-
ОСР			-012			1012		
4.4'-DDD	-	-	-	< 0.0001	< 0.0001	-	-	-
4.4'-DDE	-	_	_	<0.0001	<0.0001	-	_	_
4.4'-DDT	-	-	-	<0.0001	<0.0001	-	-	_
a-BHC	-	-	-	<0.0001	<0.0001	-	-	-
Aldrin	-	-	-	<0.0001	<0.0001	-	-	-
Aldrin and Dieldrin (Total)*	-	_	-	<0.0001	<0.0001	-	-	_
b-BHC	-	_	_	<0.0001	<0.0001	-	_	_
Chlordanes - Total	_	_	_	<0.001	<0.001	-	_	_
d-BHC	-	-	-	<0.001	<0.001	-	-	_
DDT + DDE + DDD (Total)*			-	<0.0001	<0.0001	-		_
Dieldrin			-	<0.0001	<0.0001	-		_
Endosulfan I		_		<0.0001	<0.0001	-	-	_
Endosulfan II			-	<0.0001	<0.0001	_		
Endosulfan sulphate	+ :-			<0.0001	<0.0001		-	
Endrin	+ :			<0.0001	<0.0001			
Endrin aldehyde	+ :			<0.0001	<0.0001			
Endrin ketone	+:			<0.0001	<0.0001			
Litariii ketone				<0.0001	<0.0001			

TABLE 12: SUMMARY OF TRIP BLANK AND TRIP SPIKE ANALYTICAL DATA (SOIL AND GROUNDWATER SAMPLING) 146-154 O'RIORDAN STREET, MASCOT, NSW

Sample ID	TRIP BLANK - Soil (mg/kg)	TRIP SPIKE - Soil (%)	Rinsate - Water: RB1 (mg/L)	Rinsate - Water: RB2 (mg/L)	Rinsate - Water: RB3 (mg/L)	Rinsate - Water: RB4 (mg/L)	TRIP BLANK - Water (mg/L)	TRIP SPIKE - Water (mg/L)
Sample Date	9/08/2018	9/08/2018	8/08/2018	13/08/2018	14/08/2018	14/08/2018	15/08/2018	15/08/2018
g-BHC (Lindane)	-	-	-	< 0.0001	< 0.0001	-	-	-
Heptachlor	-	-	-	< 0.0001	< 0.0001	-	-	-
Heptachlor epoxide	-	-	-	< 0.0001	< 0.0001	-	-	-
Hexachlorobenzene	-	-	-	< 0.0001	< 0.0001	-	-	-
Methoxychlor	-	-	-	<0.0001	<0.0001	-	-	-
Toxaphene	-	-	-	< 0.01	< 0.01	-	-	-
OPP								
Azinphos-methyl	-	-	-	< 0.002	< 0.002	-	-	-
Bolstar	-	-	-	<0.002	< 0.002	-	-	-
Chlorfenvinphos	-	-	-	<0.002	< 0.002	-	-	-
Chlorpyrifos	-	-	-	<0.02	< 0.02	-	-	-
Chlorpyrifos-methyl	-	-	-	< 0.002	< 0.002	-	-	-
Coumaphos	-	-	-	< 0.02	<0.02	-	-	-
Demeton-O	-	-	-	<0.002	< 0.002	-	-	-
Demeton-S	-	-	-	< 0.02	< 0.02	-	-	-
Diazinon	-	-	-	< 0.002	< 0.002	-	-	-
Dichlorvos	-	-	-	< 0.002	< 0.002	-	-	-
Dimethoate	-	-	-	< 0.002	< 0.002	-	-	-
Disulfoton	-	-	-	< 0.002	< 0.002	-	-	-
EPN	-	-	-	< 0.002	< 0.002	-	-	-
Ethion	-	-	-	< 0.002	< 0.002	-	-	-
Ethoprop	-	-	-	< 0.002	< 0.002	-	-	-
Ethyl parathion	-	-	-	< 0.002	< 0.002	-	-	-
Fenitrothion	-	-	-	< 0.002	< 0.002	-	-	-
Fensulfothion	-	-	-	< 0.002	< 0.002	-	-	-
Fenthion	-	-	-	< 0.002	< 0.002	-	-	-
Malathion	-	-	-	< 0.002	< 0.002	-	-	-
Merphos	-	-	-	< 0.002	< 0.002	-	-	-
Methyl parathion	-	-	-	< 0.002	< 0.002	-	-	-
Mevinphos	-	-	-	< 0.002	< 0.002	-	-	-
Monocrotophos	-	-	-	< 0.002	< 0.002	-	-	-
Naled	-	-	-	< 0.002	< 0.002	-	-	-
Omethoate	-	-	-	< 0.002	< 0.002	-	-	-
Phorate	-	-	-	< 0.002	< 0.002	-	-	-
Pirimiphos-methyl	-	-	-	< 0.02	< 0.02	-	-	-
Pyrazophos	-	-	-	<0.002	< 0.002	-	-	-
Ronnel	-	-	-	<0.002	<0.002	-	-	-
Terbufos	-	-	-	< 0.002	< 0.002	-	-	-
Tetrachlorvinphos	-	-	-	<0.002	<0.002	-	-	-
Tokuthion	-	-	-	<0.002	<0.002	-	-	-
Trichloronate	_	_	-	<0.002	<0.002	-	-	-

Notes:

LOR - Limits of Reporting

Recoveries (%) are shown for Trip Spike Sample

Rinsate samples RB1 and RB2 also all analysed for TPH/TRH, PAHs, Phenols, OCPs, OPPs, PCBs and VOCs

TABLE 13 SUMMARY OF GROUNDWATER ANALYTICAL DATA 146-154 O'RIORDAN STREET, MASCOT, NSW

Process	Sam				MW1	MW2	QW-1	RPD	QW-1A	RPD	MW3	MW4				
Companish Comp	Samp		15/08/18	15/08/18	15/08/18	-	15/08/18	-	15/08/18	15/08/18						
Second	Compounds	LOR	Drinking Water		SAND HSL 2 to <4m, 4 to <8	2018 Drinking	2018 Recreational	Freshwater + Marine Water								
State	BTEXN	0.004	0.004	050		NE		NE	.0.004	-0.004	-0.004	00/	-0.004	00/	10.004	-0.004
Tellegrowner Corp.										1						
mich App Jobbe 1900 1801 1900 1801																
Total Information	meta- & para-Xylene															
Note																
Tell Processor Tell																
Cale Cale Protection Obj. No. 18. No. 18. No. 19. Obj. Obj. Obj. Obj. Obj. Obj. Obj. Obj												, , , , , , , , , , , , , , , , , , ,		9,1		
California																
Care																
Call Call Peterson Call No.										1						
G. Californian					NE			NE		< 0.1			<0.05			
ACCOUNT OF STATES No.																
NEST SEAFORM 0.1 NE																
Methods										1						
Montanger	>C34 - C40 Fraction	0.1	NE	NE	NE	NE	NE	NE	< 0.1	< 0.1	<0.1	0%	< 0.1	0%	<0.1	<0.1
Arcent		0.05	NE	NE	1, 1	NE	NE	NE	<0.05	<0.05	<0.05	0%	<0.1	0%	<0.05	<0.05
Cambroom 0,0002 0,0002 0,0003 N° N° N° N° N° N° 0,0003 0,000		0.001	0.01	0.024	NE	NF	NF	NF	<0.001	0,013	0,013	0%	0,012	8%	0.007	<0,001
Copper C																
Line																
Memory 0.0031 0.0031 0.0036 0.0006 NI NE																
Note: 0.001 0.002 0.011 N. N. N. N. N. N. N.																
New York																
Nophthalme		0.005	NE	0.008	NE	NE	NE	NE	0.18	0.21	0.17	21%	0.114	59%	0.16	0.053
Accespithtering 0.001 NE NE NE NE NE NE NE N		0.001	NE	16	NE	NE	NE	NE	<0.001	<0.001	<0.001	0%	<0.001	0%	<0.001	<0.001
Accapathrine 0.001	·															
PREMARTHERNE 0.001 NE NE NE NE NE NE NE N																
Anthracene																
Fluoranthene																
Pyene										1						
Chrysne																
Benzole-phuroanthene																
Benzo(s) Denzo(s)																
Indepon(1,2,3,cd)pyrene 0.001										1						
Dibenzia, hinthracene 0.001 NE																
Benzig (a, h)erylene																
Sum of PAHs																
4.4*DDD																
4.4*DDE	Organochlorine Pesticides	0.0004	N.F	L	l NE				. 0. 0004	. 0.0004		1	1	1	. 0.0004	. 0.0004
4.4*DDT											-		-			
a-BHC 0.0001 NE 0.0001 < 0.0001									10.0001		-		-		10.0001	
Aldrin and Dieldrin (Total) D-BHC 0.0001 NE	a-BHC								< 0.0001	< 0.0001	-	-	-	-	< 0.0001	< 0.0001
D-BHC D-BHC																
Chlordanes - Total Chlordanes - Chlorda											-					
DDT + DDE + DDD (Total) DDT + DDE + DDD (Total) D.0001 NE								NE			-	-	-	-		
Dieldrin											-					
Endosulfan I 0.0001 0.00003 0.02 NE NE NE NE											-					
Endosulfan II 0.0001 0.00003 0.02 NE NE NE NE											<u> </u>		<u> </u>			
Endrin 0.0001 0.00001 NE NE NE NE NE 0.0001 0.0001 0.00001 0.	Endosulfan II	0.0001	0.00003	0.02	NE	NE	NE	NE		< 0.0001						< 0.0001
Endrin aldehyde 0.0001 NE NE NE NE NE 0.0001 NE NE NE NE 0.0001 0.0001 0.0001 0.0001 0.0001 NE NE NE NE NE 0.0001	·															
Endrin ketone 0.0001 NE NE NE NE NE NE 0.0001 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 <td></td>																
g-BHC (Lindane)	·															
Heptachlor epoxide 0.0001 NE 0.0003 NE NE NE NE 0.0001 - - - - - - 0.0001 0.0001 0.0001 NE	g-BHC (Lindane)	0.0001	0.0002	0.01	NE	NE	NE	NE		< 0.0001					< 0.0001	< 0.0001
Hexachlorobenzene 0.0001 NE NE NE NE NE NE 0.0001 - - - - - - 0.0001 0.0001 0.0001 NE NE NE NE NE 0.0001 0.0001 -													-			
Methoxychlor 0.0001 NE NE NE NE NE NE < 0.0001 < 0.0001 < 0.0001										1	-					
Toxaphene 0.01 0.0001 NE NE NE NE NE < 0.01 < 0.01 < 0.01 < 0.01	Methoxychlor	0.0001	NE	NE	NE						-		-		< 0.0001	< 0.0001
	Toxaphene	0.01	0.0001	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01

- Notes:

 NE Not Established

 NL Not Limiting

 All units in mg/L unless otherwise noted

 1. NEPM 2013 Groundwater Investigation Level for Drinking Water

 2. NEPM 2013 Groundwater Investigation Level for protection of freshwater at 95% confidence for typical slightly to moderately disturbed systems.

 3. NEPM 2018 health-based guidance values

 4. NEMP 2018 guideline values for 95% species protection slightly to moderately disturbed systems

 QW1/QW1A are duplicate/triplicates of primary groundwater sample MW2

 Shading indicates concentration exceeds criteria.

TABLE 13 SUMMARY OF GROUNDWATER ANALYTICAL DATA 146-154 O'RIORDAN STREET, MASCOT, NSW

Sam				MW1	MW2	QW-1	RPD	QW-1A	RPD	MW3	MW4				
Samp				15/08/18	15/08/18	15/08/18	-	15/08/18	-	15/08/18	15/08/18				
Organophosphorous Pesticides															
Azinphos-methyl	0.002	0.03	NE	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Bolstar	0.002	NE	NE	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Chlorfenvinphos	0.002	0.002	NE	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Chlorpyrifos	0.02	0.01	NE	NE	NE	NE	NE	< 0.02	< 0.02	-	-	-	-	< 0.02	< 0.02
Chlorpyrifos-methyl	0.002	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.002 < 0.02	< 0.002 < 0.02	-	-	-	-	< 0.002 < 0.02	< 0.002 < 0.02
Coumaphos Demeton-O	0.002	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.002	< 0.02	<u> </u>	-	-	-	< 0.02	< 0.02
Demeton-S	0.002	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.002	< 0.002		-	-	-	< 0.002	< 0.002
Diazinon	0.002	0.00001	0.004	NE NE	NE NE	NE NE	NE NE	< 0.002	< 0.002				-	< 0.02	< 0.002
Dichlorvos	0.002	NE	0.005	NE	NE	NE NE	NE NE	< 0.002	< 0.002	-	_	_	-	< 0.002	< 0.002
Dimethoate	0.002	0.00015	0.007	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Disulfoton	0.002	NE	0.004	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
EPN	0.002	NE	NE	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Ethion	0.002	NE	0.004	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Ethoprop	0.002	NE	0.001	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Ethyl parathion	0.002	NE	NE	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Fenitrothion	0.002	0.0002	0.007	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Fensulfothion	0.002	NE	NE	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Fenthion	0.002	NE	0.007	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Malathion	0.002	0.00005	0.07	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Merphos	0.002	NE	NE	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Methyl parathion	0.002	NE	NE	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Mevinphos	0.002	NE	0.006	NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Monocrotophos	0.002	NE NE	NE	NE NE	NE	NE	NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Naled	0.002	NE NE	NE 0.001	NE NE	NE	NE	NE	< 0.002 < 0.002	< 0.002 < 0.002	-	-	-	-	< 0.002 < 0.002	< 0.002 < 0.002
Omethoate Phorate	0.002	NE NE	0.001 NE	NE NE	NE NE	NE NE	NE NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Phorate	0.002	NE NE	0.09	NE NE	NE NE	NE NE	NE NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Pirimiphos-methyl Pyrazophos	0.002	NE NE	0.09	NE NE	NE NE	NE NE	NE NE	< 0.02	< 0.02	-	-	-	-	< 0.02	< 0.02
Ronnel	0.002	NE NE	NE	NE NE	NE NE	NE NE	NE NE	< 0.002	< 0.002	-		-	-	< 0.002	< 0.002
Terbufos	0.002	NE NE	0.0009	NE NE	NE NE	NE NE	NE NE	< 0.002	< 0.002	-		-		< 0.002	< 0.002
Tetrachlorvinphos	0.002	NE NE	NE	NE NE	NE NE	NE NE	NE NE	< 0.002	< 0.002	-		-	_	< 0.002	< 0.002
Tokuthion	0.002	NE NE	NE NE	NE NE	NE NE	NE	NE NE	< 0.002	< 0.002	_	-		-	< 0.002	< 0.002
Trichloronate	0.002	NE	NE	NE NE	NE	NE	NE NE	< 0.002	< 0.002	-	-	-	-	< 0.002	< 0.002
Phenols (halogenated)					112					<u> </u>		<u> </u>			
2.4.5-Trichlorophenol	0.001	NE	NE	NE	NE	NE	NE	<0.001	< 0.001	< 0.001	0%	< 0.001	0%	< 0.001	< 0.001
2.4.6-Trichlorophenol	0.01	0.02	0.003	NE	NE	NE	NE	< 0.01	< 0.01	< 0.01	0%	< 0.001	0%	< 0.01	< 0.01
2.4-Dichlorophenol	0.001	0.2	0.12	NE	NE	NE	NE	< 0.001	< 0.001	< 0.001	0%	< 0.001	0%	< 0.001	< 0.001
2.6-Dichlorophenol	0.003	NE	NE	NE	NE	NE	NE	< 0.003	< 0.003	< 0.003	0%	< 0.001	0%	< 0.003	< 0.003
2-Chlorophenol	0.003	0.3	0.34	NE	NE	NE	NE	< 0.003	< 0.003	< 0.003	0%	< 0.001	0%	< 0.003	< 0.003
4-Chloro-3-methylphenol	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	< 0.01	0%	< 0.001	0%	< 0.01	< 0.01
Pentachlorophenol	0.01	0.01	0.0036	NE	NE	NE	NE	< 0.01	< 0.01	< 0.01	0%	< 0.002	0%	< 0.01	< 0.01
Tetrachlorophenols - Total	0.03	NE	NE	NE	NE	NE	NE	< 0.03	< 0.03	< 0.03	0%	-	-	< 0.03	< 0.03
Total Halogenated Phenol	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	< 0.01	0%	-	-	< 0.01	< 0.01
Phenols (non-halogenated)														,	
2.4-Dimethylphenol	0.001	NE	NE	NE	NE	NE	NE	<0.001	< 0.001	<0.001	0%	< 0.001	0%	<0.001	< 0.001
2.4-Dinitrophenol	0.03	NE	0.045	NE	NE	NE	NE	<0.001	< 0.001	<0.001	0%	-	-	<0.001	<0.001
2-Cyclohexyl-4.6-dinitrophenol	0.1	NE	NE	NE	NE	NE	NE	<0.1	< 0.1	<0.1	0%	-	-	<0.1	< 0.1
2-Methyl-4.6-dinitrophenol	0.03	NE NE	NE	NE NE	NE	NE NE	NE	<0.005	< 0.005	<0.005	0%		- 0-1	<0.005	<0.005
2-Methylphenol (o-Cresol)	0.003	NE NE	NE NE	NE NE	NE	NE NE	NE NE	<0.003	<0.003	<0.003	0%	< 0.001	0%	<0.003	<0.003
2-Nitrophenol	0.01	NE NE	NE	NE NE	NE	NE	NE	<0.005	<0.005	<0.005	0%	<0.001	0%	<0.005	<0.005
3&4-Methylphenol (m&p-Cresol)	0.006	NE NE	NE NE	NE NE	NE	NE NE	NE NE	<0.006	<0.006	<0.006	0%	<0.002	0%	<0.006	<0.006
4-Nitrophenol	0.03	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	<0.001	<0.001	<0.001	0% 0%	-	-	<0.001	<0.001
Dinoseb Phenol	0.1	NE NE	NE 0.32	NE NE	NE NE	NE NE	NE NE	<0.1	<0.10	<0.1	0%	<0.001	0%	<0.1	<0.10
Total Non-Halogenated Phenol	0.003	NE NE	0.32 NE	NE NE	NE NE	NE NE	NE NE	<0.003	<0.003	<0.003	0%	<0.001	U% -	<0.003	
Polychlorinated Biphenyls	J.1	146	141	145	INE	INE	NE	<u.1< td=""><td>\U.1</td><td>\U.1</td><td>U%</td><td>_</td><td></td><td>\U.1</td><td><0.1</td></u.1<>	\U.1	\U.1	U%	_		\U.1	<0.1
Aroclor-1016	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005		-			< 0.005	< 0.005
Aroclor-1016 Aroclor-1221	0.005	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Aroclor-1221 Aroclor-1232	0.001	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.001		-	-	-	-	< 0.001	
Aroclor-1232 Aroclor-1242	0.005	0.0003	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.005	< 0.005 < 0.005	-	-		-	< 0.005	< 0.005 < 0.005
Aroclor-1242 Aroclor-1248	0.005	NE	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.005	< 0.005	-	-	1	_	< 0.005	< 0.005
Aroclor-1254	0.005	0.00001	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.005	< 0.005	-	-	 		< 0.005	< 0.005
Aroclor-1260	0.005	NE	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.005	< 0.005	-	-	_	-	< 0.005	< 0.005
Total PCB	0.003	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	< 0.003	< 0.003	-	-	-	-	< 0.003	< 0.003
<u> </u>	2.001					.46	, AL	- 0.001	. 0.001					. 0.001	- 0.001

- Notes:

 NE Not Established
 NL Not Limiting
 All units in mg/L unless otherwise noted
 1. NEPM 2013 Groundwater Investigation Level for Drinking Water
 2. NEPM 2013 Groundwater Investigation Level for protection of freshwater at 95% confidence for typical slightly to moderately disturbed systems.
 3. NEMP 2018 health-based guidance values
 4. NEMP 2018 guideline values for 95% species protection slightly to moderately disturbed systems
 QW1/QW1A are duplicate/triplicates of primary groundwater sample MW2
 Shading indicates concentration exceeds criteria.

TABLE 13 SUMMARY OF GROUNDWATER ANALYTICAL DATA 146-154 O'RIORDAN STREET, MASCOT, NSW

9				MW1	MW2	QW-1	RPD	QW-1A	RPD	MW3	MW4				
Sa				15/08/18	15/08/18	15/08/18	-	15/08/18	-	15/08/18	15/08/18				
Volatile Organic Compounds															
1.1.1.2-Tetrachloroethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.1.1-Trichloroethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.1.2.2-Tetrachloroethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.1.2-Trichloroethane	0.005	NE	6.5	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.1-Dichloroethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.1-Dichloroethene	0.005	0.03	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.2.3-Trichloropropane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.2.4-Trimethylbenzene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.2-Dibromoethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.2-Dichlorobenzene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-		-	-	< 0.005	< 0.005
1.2-Dichloroethane	0.005	0.003	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.2-Dichloropropane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-		-	-	< 0.005	< 0.005
1.3.5-Trimethylbenzene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.3-Dichlorobenzene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
1.3-Dichloropropane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-		-	-	< 0.005	< 0.005
1.4-Dichlorobenzene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-		-	-	< 0.005	< 0.005
2-Butanone (MEK)	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
2-Propanone (Acetone)	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
4-Chlorotoluene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
4-Methyl-2-pentanone (MIBK)	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-		-	-	< 0.005	< 0.005
Allyl chloride	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Bromobenzene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Bromochloromethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Bromodichloromethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Bromoform	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Bromomethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Carbon disulfide	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Carbon Tetrachloride	0.005	0.003	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Chlorobenzene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Chloroethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Chloroform	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Chloromethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
cis-1.2-Dichloroethene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
cis-1.3-Dichloropropene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Dibromochloromethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Dibromomethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Dichlorodifluoromethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Iodomethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Isopropyl benzene (Cumene)	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Methylene Chloride	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Styrene	0.005	0.03	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Tetrachloroethene	0.005	0.05	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
trans-1.2-Dichloroethene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
trans-1.3-Dichloropropene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Trichloroethene	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Trichlorofluoromethane	0.005	NE	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005
Vinyl chloride	0.005	0.0003	NE	NE	NE	NE	NE	< 0.005	< 0.005	-	-	-	-	< 0.005	< 0.005

Notes:

NE - Not Established

NL - Not Limiting

All units in mg/L unless otherwise noted

1. NEPM 2013 Groundwater Investigation Level for Drinking Water

2. NEPM 2013 Groundwater Investigation Level for protection of freshwater at 95% confidence for typical slightly to moderately disturbed systems.

3. NEMP 2018 health-based guidance values

4. NEMP 2018 guideline values for 95% species protection - slightly to moderately disturbed systems

QW1/QW1A are duplicate/triplicates of primary groundwater sample MW2

Shading indicates concentration exceeds criteria.

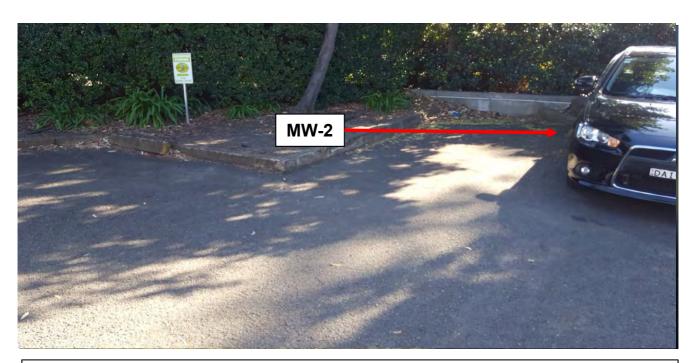
TABLE 13 SUMMARY OF GROUNDWATER ANALYTICAL DATA 146-154 O'RIORDAN STREET, MASCOT, NSW

Sam				MW1	MW2	QW-1	RPD	QW-1A	RPD	MW3	MW4				
Sampl				15/08/18	15/08/18	15/08/18	-	15/08/18	-	15/08/18	15/08/18				
Perfluoroalkyl Carboxylic Acids (PFCAs)															
Perfluorobutanoic acid (PFBA)	0.05	NE	NE	NE	NE	NE	NE	< 0.05	< 0.05	-	-	-	-	< 0.05	< 0.05
Perfluorodecanoic acid (PFDA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	0.01	-	-	-	-	0.02	< 0.01
Perfluorononanoic acid (PFNA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA)	0.01	NE	NE	NE	0.56	5.6	220	< 0.01	0.01	-	-	-	-	0.01	< 0.01
Perfluoropentanoic acid (PFPeA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	0.01	-	-	-	-	0.02	< 0.01
Perfluorotetradecanoic acid (PFTeDA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
Perfluoroalkyl Sulfonamido Substances										•					
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	0.05	NE	NE	NE	NE	NE	NE	< 0.05	< 0.05	-	-	-	-	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE	0.05	NE	NE	NE	NE	NE	NE	< 0.05	< 0.05	-	-	-	-	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	0.05	NE	NE	NE	NE	NE	NE	< 0.05	< 0.05	-	-	-	-	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	0.05	NE	NE	NE	NE	NE	NE	< 0.05	< 0.05	-	-	-	-	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	0.05	NE	NE	NE	NE	NE	NE	< 0.05	< 0.05	-	-	-	-	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	0.05	NE	NE	NE	NE	NE	NE	< 0.05	< 0.05	-	-	-	-	< 0.05	< 0.05
Perfluorooctane sulfonamide (FOSA)	0.05	NE	NE	NE	NE	NE	NE	< 0.05	< 0.05	-	-	-	-	< 0.05	< 0.05
Perfluoroalkyl Sulfonic Acids (PFSAs)										•					
Perfluorobutanesulfonic acid (PFBS)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS)	0.01	NE	NE	NE	NE	NE	NE	0.01	0.02	-	-	-	-	0.03	0.01
Perfluorooctanesulfonic acid (PFOS)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	0.03	-	-	-	-	< 0.01	0.02
Perfluoropentanesulfonic acid (PFPeS)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
n:2 Fluorotelomer Sulfonic Acids (n:2 FTSAs)										•					
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	0.01	NE	NE	NE	NE	NE	NE	< 0.01	< 0.01	-	-	-	-	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	0.05	NE	NE	NE	NE	NE	NE	< 0.05	< 0.05	-	-	-	-	< 0.05	< 0.05
PFASs Summations															
Sum (PFHxS + PFOS)*	0.01	NE	NE	NE	0.07	0.7	NE	0.01	0.05	-	-	-	-	0.03	0.03
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	NE	NE	NE	NE	NE	NE	0.01	0.06	-	-	-	-	0.04	0.03
Sum of PFASs (n=28)*	0.01	NE	NE	NE	NE	NE	NE	< 0.1	< 0.1	-	-	-	-	< 0.1	< 0.1
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	NE	NE	NE	NE NE	NE	NE NE	< 0.01	0.04	-	-	-	-	0.01	0.02
Sum of WA DWER PFAS (n=10)*	0.05	NE	NE	NE	NE	NE	NE	< 0.05	0.08	-	-	-	-	0.09	< 0.05
Notes:															

Sum of WA DWER PFAS (n=10)*

Notes:

NE - Not Established
NL - Not Limiting
All units in mg/L unless otherwise noted
1. NEPM 2013 Groundwater Investigation Level for Drinking Water
2. NEPM 2013 Groundwater Investigation Level for protection of freshwater at 95% confidence for typical slightly to moderately disturbed systems.
3. NEMP 2018 health-based guidance values
4. NEMP 2018 guideline values for 95% species protection - slightly to moderately disturbed systems
QW1/QW1A are duplicate/triplicates of primary groundwater sample MW2
Shading indicates concentration exceeds criteria.


Appendix A

Site Photographs

Photograph 1: View of south-east portion of site and location of monitoring well MW-1. Photograph taken during initial site inspection on 3 August 2018.

Photograph 2: View of north-west portion of site and location of monitoring well MW-2. Photograph taken during initial site inspection on 3 August 2018.

Photograph 3: View of central portion of site (looking east) and location of monitoring well MW-3 (between blue and silver cars). Photograph taken during initial site inspection on 3 August 2018.

Photograph 4: View of south-west portion of site, location of monitoring well MW-4 and location of suspected stormwater detention basin. Photograph taken during initial site inspection on 3 August 2018.

Photograph 5: View of north-east portion of the site and location of soil bore SB-14. Photograph taken during initial site inspection on 3 August 2018.

Photograph 6: View of north-west portion of 154 O'Riordan Street. Photograph taken during initial site inspection on 3 August 2018.

Photograph 7: View of rail maintenance organisation workshop (south-east portion of the site) and location of soil bores SB-18 and SB-26 (inside workshop). Photograph taken during initial site inspection on 3 August 2018.

Photograph 8: View of central-east portion of the site and location of soil bore SB-13. Photograph taken during initial site inspection on 3 August 2018.

Appendix B

Lotsearch
Environmental
Risk & Planning
Report

Date: 06 Aug 2018 18:01:18

Reference: LS003932

Address: 146-154 O'Riordan Street, Mascot, NSW 2020

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Table of Contents

Location Confidences	2
Dataset Listings	3
Site Location Aerial	6
Contaminated Land & Waste Management Facilities	7
EPA PFAS Investigation Program	11
EPA Other Sites with Contamination Issues	13
EPA Current Licensed Activities	14
EPA Delicensed & Former Licensed Activities	
UPSS Sensitive Zones	19
Historical Business Activities	20
Historical Aerial Imagery & Maps	57
Topographic Features	73
Elevation Contours	77
Hydrogeology & Groundwater	78
Geology	108
Naturally Occurring Asbestos Potential	110
Soils	111
Acid Sulfate Soils	115
Dryland Salinity	119
Mining Subsidence Districts	120
State Environmental Planning	121
Local Environmental Planning	122
Heritage	127
Natural Hazards	132
Ecological Constraints	133
Terms & Conditions	142

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a confidence is given under the field heading "LocConf" or "Location Confidence".

Location Confidence	Description
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced with the confidence of the general/approximate area
Road Match	Georeferenced to the road or rail
Road Intersection	Georeferenced to the road intersection
Buffered Point	Feature is a buffered point
Network of Features	Georeferenced to a network of features

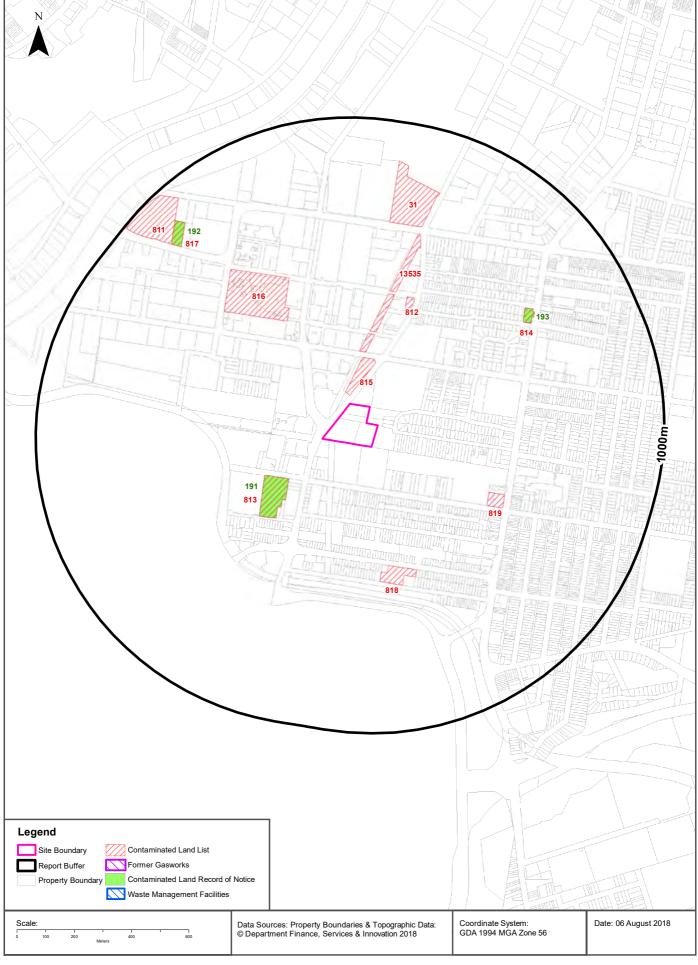
Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	Dept. Finance, Services & Innovation	06/08/2018	06/08/2018	Daily	-	-	-	-
Topographic Data	Dept. Finance, Services & Innovation	17/07/2018	17/07/2018	As required	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	01/08/2018	02/07/2018	Monthly	1000	0	1	11
Contaminated Land Records of Notice	Environment Protection Authority	01/08/2018	01/08/2018	Monthly	1000	0	0	3
Former Gasworks	Environment Protection Authority	01/08/2018	11/10/2017	Monthly	1000	0	0	0
National Waste Management Site Database	Geoscience Australia	04/07/2018	07/03/2017	Quarterly	1000	0	0	0
EPA PFAS Investigation Program	Environment Protection Authority	04/07/2018	04/07/2018	Monthly	2000	0	0	1
EPA Other Sites with Contamination Issues	Environment Protection Authority	11/01/2018	11/01/2018	As required	1000	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	02/08/2018	02/08/2018	Monthly	1000	0	1	6
Delicensed POEO Activities still Regulated by the EPA	Environment Protection Authority	02/08/2018	02/08/2018	Monthly	1000	0	0	7
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	02/08/2018	02/08/2018	Monthly	1000	0	0	10
UPSS Environmentally Sensitive Zones	Environment Protection Authority	14/04/2015	12/01/2010	As required	1000	1	1	1
UBD Business to Business Directory 1991 (Premise & Intersection Matches)	Hardie Grant			Not required	150	7	26	35
UBD Business to Business Directory 1991 (Road & Area Matches)	Hardie Grant			Not required	150	-	1	2
UBD Business to Business Directory 1986 (Premise & Intersection Matches)	Hardie Grant			Not required	150	15	33	50
UBD Business to Business Directory 1986 (Road & Area Matches)	Hardie Grant			Not required	150	-	7	37
UBD Business Directory 1982 (Premise & Intersection Matches)	Hardie Grant			Not required	150	1	28	43
UBD Business Directory 1982 (Road & Area Matches)	Hardie Grant			Not required	150	-	2	10
UBD Business Directory 1978 (Premise & Intersection Matches)	Hardie Grant			Not required	150	0	31	58
UBD Business Directory 1978 (Road & Area Matches)	Hardie Grant			Not required	150	-	3	12
UBD Business Directory 1975 (Premise & Intersection Matches)	Hardie Grant			Not required	150	0	40	66
UBD Business Directory 1975 (Road & Area Matches)	Hardie Grant			Not required	150	-	0	3
UBD Business Directory 1970 (Premise & Intersection Matches)	Hardie Grant			Not required	150	0	26	44
UBD Business Directory 1970 (Road & Area Matches)	Hardie Grant			Not required	150	-	1	3
UBD Business Directory 1965 (Premise & Intersection Matches)	Hardie Grant			Not required	150	12	53	73
UBD Business Directory 1965 (Road & Area Matches)	Hardie Grant			Not required	150	-	7	9
UBD Business Directory 1961 (Premise & Intersection Matches)	Hardie Grant			Not required	150	3	41	47
UBD Business Directory 1961 (Road & Area Matches)	Hardie Grant			Not required	150	-	15	19
UBD Business Directory 1950 (Premise & Intersection Matches)	Hardie Grant			Not required	150	0	5	5
UBD Business Directory 1950 (Road & Area Matches)	Hardie Grant			Not required	150	-	40	48

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
UBD Business Directory Drycleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500	0	3	46
UBD Business Directory Drycleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500	-	3	22
Points of Interest	Dept. Finance, Services & Innovation	17/07/2018	17/07/2018	Quarterly	1000	0	1	38
Tanks (Areas)	Dept. Finance, Services & Innovation	17/07/2018	17/07/2018	Quarterly	1000	0	0	0
Tanks (Points)	Dept. Finance, Services & Innovation	17/07/2018	17/07/2018	Quarterly	1000	0	0	0
Major Easements	Dept. Finance, Services & Innovation	17/07/2018	17/07/2018	As required	1000	0	1	5
State Forest	Dept. Finance, Services & Innovation	18/01/2018	18/01/2018	As required	1000	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	18/01/2018	30/09/2017	Annually	1000	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000	1	1	1
Botany Groundwater Management Zones	NSW Department of Primary Industries	15/03/2018	01/10/2005		1000	0	1	1
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018	Annually	2000	0	1	323
Geological Units 1:100,000	NSW Dept. of Industry, Resources & Energy	20/08/2014		None planned	1000	1	-	4
Geological Structures 1:100,000	NSW Dept. of Industry, Resources & Energy	20/08/2014		None planned	1000	0	-	0
Naturally Occurring Asbestos Potential		04/12/2015	24/09/2015		1000	0	0	0
Soil Landscapes	NSW Office of Environment & Heritage	12/08/2014		None planned	1000	1	-	2
Atlas of Australian Soils	CSIRO	19/05/2017	17/02/2011	As required	1000	1	1	1
Standard Local Environmental Plan Acid Sulfate Soils	NSW Planning and Environment	07/10/2016	07/10/2016		500	1	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000	1	1	3
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000	0	0	0
Dryland Salinity Potential of Western Sydney	NSW Office of Environment & Heritage	12/05/2017	01/01/2002	None planned	1000	-	-	-
Mining Subsidence Districts	Dept. Finance, Services & Innovation	13/07/2017	01/07/2017	As required	1000	0	0	0
SEPP 14 - Coastal Wetlands	NSW Planning and Environment	17/12/2015	24/10/2008	•	1000	0	0	0
SEPP 26 - Littoral Rainforest	NSW Planning and Environment	17/12/2015	05/02/1988	Annually	1000	0	0	0
SEPP 71 - Coastal Protection	NSW Planning and Environment	17/12/2015	01/08/2003	Annually	1000	0	0	0
SEPP Major Developments 2005	NSW Planning and Environment	09/03/2013	25/05/2005	Under Review	1000	0	0	0
SEPP Strategic Land Use Areas	NSW Planning and Environment	01/08/2017	28/01/2014		1000	0	0	0
LEP - Land Zoning	NSW Planning and Environment	11/04/2018	16/03/2018	Quarterly	1000	1	11	72
LEP - Minimum Subdivision Lot Size	NSW Planning and Environment	04/04/2018	23/03/2018	Quarterly	0	0	-	-
LEP - Height of Building	NSW Planning and Environment	04/04/2018	23/03/2018	Quarterly	0	1	-	-
LEP - Floor Space Ratio	NSW Planning and Environment	04/04/2018	23/03/2018	Quarterly	0	1	-	-
LEP - Land Application	NSW Planning and Environment	04/04/2018	23/03/2018	Quarterly	0	1	-	-
LEP - Land Reservation Acquisition	NSW Planning and Environment	04/04/2018	09/03/2018	Quarterly	0	0	-	-
State Heritage Items	NSW Office of Environment & Heritage	04/04/2018	30/09/2016	Quarterly	1000	0	0	0

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Local Heritage Items	NSW Planning and Environment	04/04/2018	23/03/2018	Quarterly	1000	0	2	77
Bush Fire Prone Land	NSW Rural Fire Service	10/05/2018	23/01/2018	Quarterly	1000	0	0	0
Native Vegetation of the Sydney Metropolitan Area	NSW Office of Environment & Heritage	01/03/2017	16/12/2016	As required	1000	1	1	2
RAMSAR Wetlands	Commonwealth of Australia Department of the Environment	08/10/2014	24/06/2011	As required	1000	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	0	0	0
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	0	0	0
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	02/08/2018	02/08/2018	Daily	10000	-	-	-


Aerial Imagery 2016

Contaminated Land & Waste Management Facilities

Contaminated Land & Waste Management Facilities

146-154 O'Riordan Street, Mascot, NSW 2020

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist (m)	Direction
815	Former Zinc Smelter and Paint Manufacturin g Facility	163 O'Riordan Street	Mascot	Metal Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	30m	North
813	Former Mascot Galvanising	336-348 King Street	Mascot	Metal Industry	Contamination currently regulated under CLM Act	Current EPA List	Premise Match	183m	South West
13535	Linear Park	Lot 2, 3, 4 & 5 in DP 85917	MASCOT	Landfill	Regulation under CLM Act not required	Current EPA List	Premise Match	186m	North
812	Caltex Service Station	125 O'Riordan Street	Mascot	Service Station	Regulation under CLM Act not required	Current EPA List	Premise Match	357m	North East
816	Ing Industrial Fund (unoccupied Land and General Parking)	19-33 Kent Road	Mascot	Landfill	Regulation under CLM Act not required	Current EPA List	Premise Match	361m	North West
818	Sokol Corporation	50-56 Robey Street	Mascot	Other Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	419m	South
819	Telstra Exchange	904-922 Botany Road	Mascot	Other Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	439m	South East
814	Former Shell Service Station Mascot	746 Botany Road	Mascot	Service Station	Contamination currently regulated under CLM Act	Current EPA List	Premise Match	612m	North East
31	Mascot Development s	494-504 Gardeners Road	Alexandria	Other Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	647m	North
817	Mascot Pioneer Plating	25-29 Ricketty Street	Mascot	Metal Industry	Contamination currently regulated under CLM Act	Current EPA List	Premise Match	804m	North West
811	Heritage Business Centre	5-9 Ricketty Street	Mascot	Unclassified	Regulation under CLM Act not required	Current EPA List	Premise Match	836m	North West

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.

EPA site management class	Explanation
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land & Waste Management Facilities

146-154 O'Riordan Street, Mascot, NSW 2020

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
191	Former Mascot Galvanising	336-348 King Street	Mascot	5 current and 2 former		Premise Match	183m	South West
193	Former Shell Service Station Mascot	746 Botany Road	Mascot	6 current and 1 former		Premise Match	612m	North East
192	Mascot Pioneer Plating	25-29 Ricketty Street	Mascot	1 current		Premise Match	804m	North West

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist (m)	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

EPA PFAS Investigation Program

EPA PFAS Investigation Program

146-154 O'Riordan Street, Mascot, NSW 2020

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

ld	Site	Address	Location Confidence	Distance	Direction
16	Botany Bay area & Georges River	Botany Bay area & Georges River	General Area/ Suburb Match	361m	South

EPA PFAS Investigation Program: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

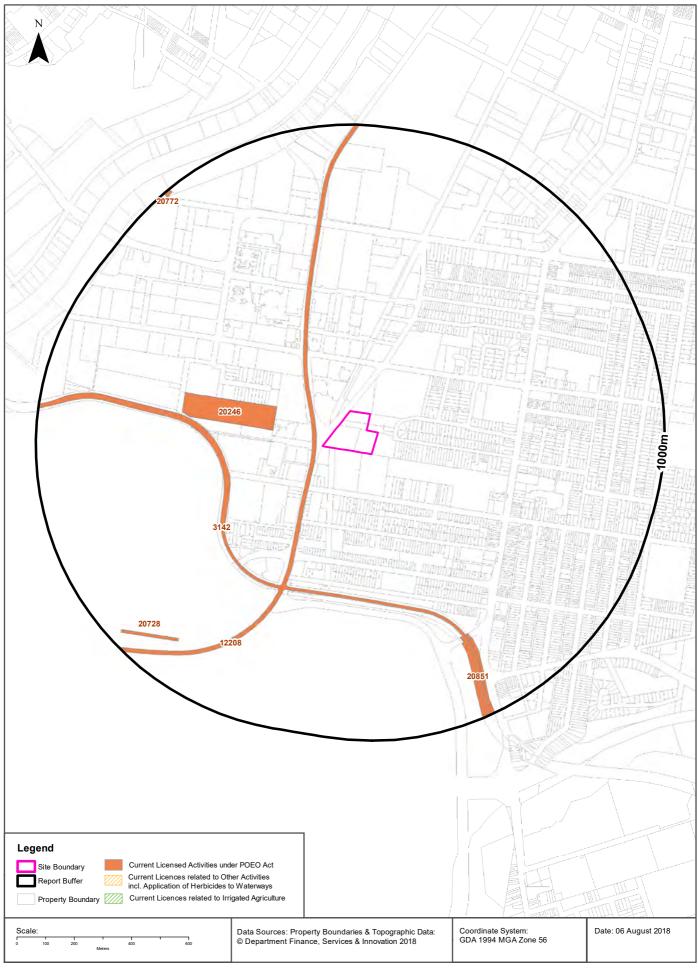
EPA Other Sites with Contamination Issues

146-154 O'Riordan Street, Mascot, NSW 2020

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill


Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Current EPA Licensed Activities

EPA Activities

146-154 O'Riordan Street, Mascot, NSW 2020

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
12208	SYDNEY TRAINS		PO BOX K349, HAYMARKET, NSW 1238		Railway systems activities	Road Match	22m	West
20246	ENWAVE MASCOT PTY LTD	GridX Power Pty Ltd	10 Bourke Road	MASCOT	Generation of electrical power from gas	Premise Match	181m	West
3142	AUSTRALIAN RAIL TRACK CORPORATION LIMITED		GPO BOX 14, SYDNEY, NSW 2001		Railway systems activities	Network of Features	280m	South West
20851	JOHN HOLLAND PTY LTD		Port Botany Freight Rail Corridor at General Holmes Dr, MASCOT, NSW 2020		Railway systems activities	Road Match	710m	South East
20728	ENWAVE MASCOT PTY LTD		Shiers Avenue, MASCOT, NSW 2020	MASCOT, NSW 2020	Generation of Electrical Power from Gas	Road Match	839m	South West
20772	CPB CONTRACTORS PTY LIMITED	WESTCONNEX NEW M5	Between Beverly Hills and St Peters, BEVERLY HILLS, NSW 2209		Road construction	Road Match	981m	North West

POEO Licence Data Source: Environment Protection Authority
© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

146-154 O'Riordan Street, Mascot, NSW 2020

Delicensed Activities still regulated by the EPA

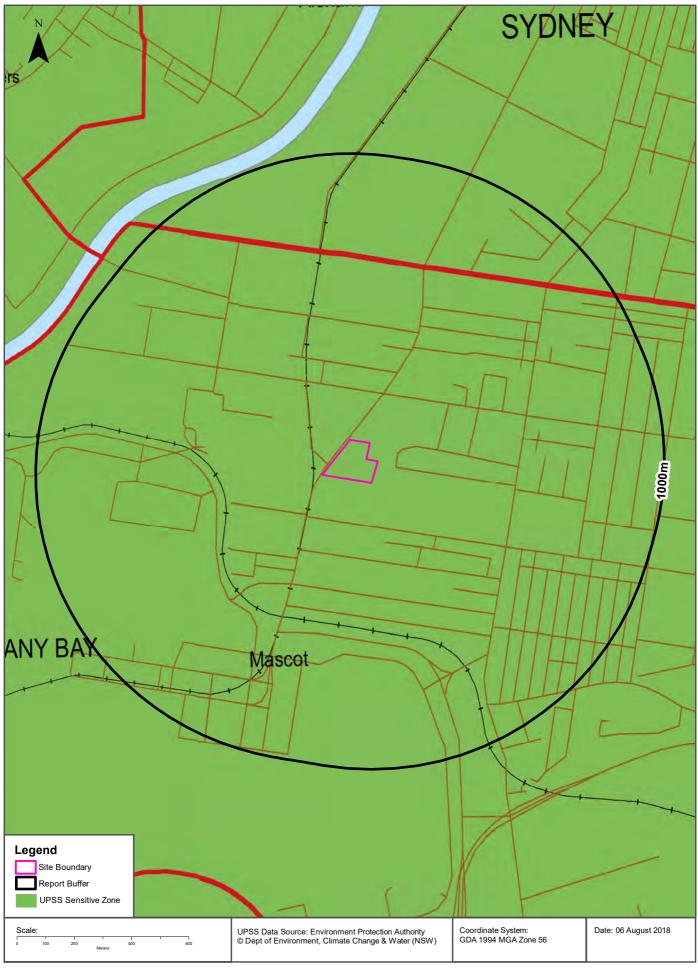
Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
12590	QANTAS FLIGHT CATERING LIMITED	Qantas Flight Catering Centre	Qantas Jet Base (Kingsford Smith)	MASCOT	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	181m	West
12152	QANTAS AIRWAYS LIMITED	Qantas Jet Base	Sydney Airport	MASCOT	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	361m	South West
7288	SYDNEY AIRPORT CORPORATION LIMITED	SYDNEY AIRPORT	241 O'RIODAN STREET	MASCOT	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	361m	South West
487	GOODMAN FIELDER CONSUMER FOODS PTY LIMITED	GOODMAN FIELDER COMMERCIAL	198 Bourke Road	MASCOT	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	647m	North
7473	EATON ELECTRIC SYSTEMS PTY LTD	EATON ELECTRIC SYSTEMS PTY LTD	10 KENT ROAD	MASCOT	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	687m	North West
11844	HY-TEC INDUSTRIES PTY LTD	HY-TEC INDUSTRIES PTY LTD	296 COWARD STREET	MASCOT	Concrete works	Premise Match	901m	North West
5665	HANNANPRINT NSW PTY LIMITED	HANNANPRINT NSW	55 DOODY STREET	ALEXANDRIA	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	956m	North

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

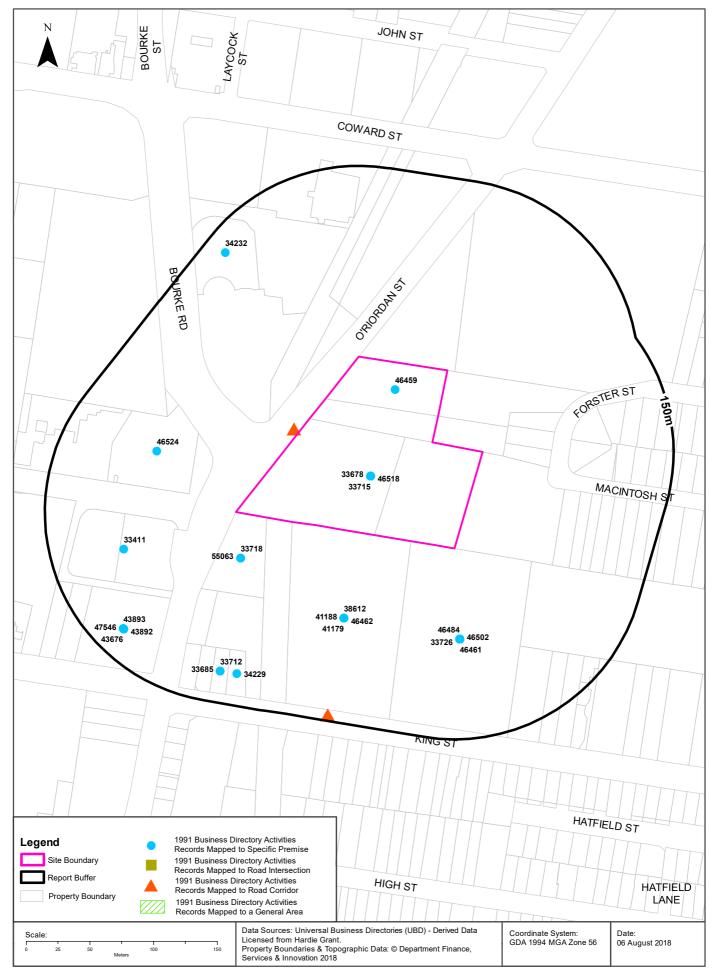
Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:


Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
6728	INDUSTRIAL GALVANIZERS CORPORATION PTY LTD	342 KING STREET, MASCOT, NSW 2020	Surrendered	30/08/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	183m	South West
11206	EMILY SULLIVAN	7 CHURCH AVENUE, MASCOT, NSW 2020	Surrendered	23/08/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	294m	North
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered		Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	520m	-
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered		Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	520m	-

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered		Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	520m	-
6941	FUJI XEROX AUSTRALIA PTY. LIMITED	546 GARDENERS ROAD, ALEXANDRIA, NSW 2015	Surrendered	26/06/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	722m	North
7245	PLATING 'R US PTY LTD	25-29 RICKETTY STREET, MASCOT, NSW 2020	Surrendered	26/06/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	804m	North West
4868	CON DIONYS	1 BRADFORD STREET, BEACONSFIELD, NSW 2015	Revoked	30/04/2012	Waste Storage, Transfer, Separating or Processing	Premise Match	867m	North East
10332	GATE GOURMET AUSTRALIA PTY LTD	KEITH SMITH AVE & SIXTH ST, MASCOT, NSW 2020	Revoked	11/01/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Road Intersectio n	896m	South West
4729	Q CATERING RIVERSIDE PTY LIMITED	300 COWARD STREET, MASCOT, NSW 2020	Surrendered	22/12/2000	Non-thermal treatment of hazardous and other waste; Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbestos waste	Premise Match	979m	North West

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority


UPSS Sensitive Zones

1991 Historical Business Directory Records

Historical Business Directories

146-154 O'Riordan Street, Mascot, NSW 2020

1991 Business to Business Directory Records Premise or Road Intersection Matches

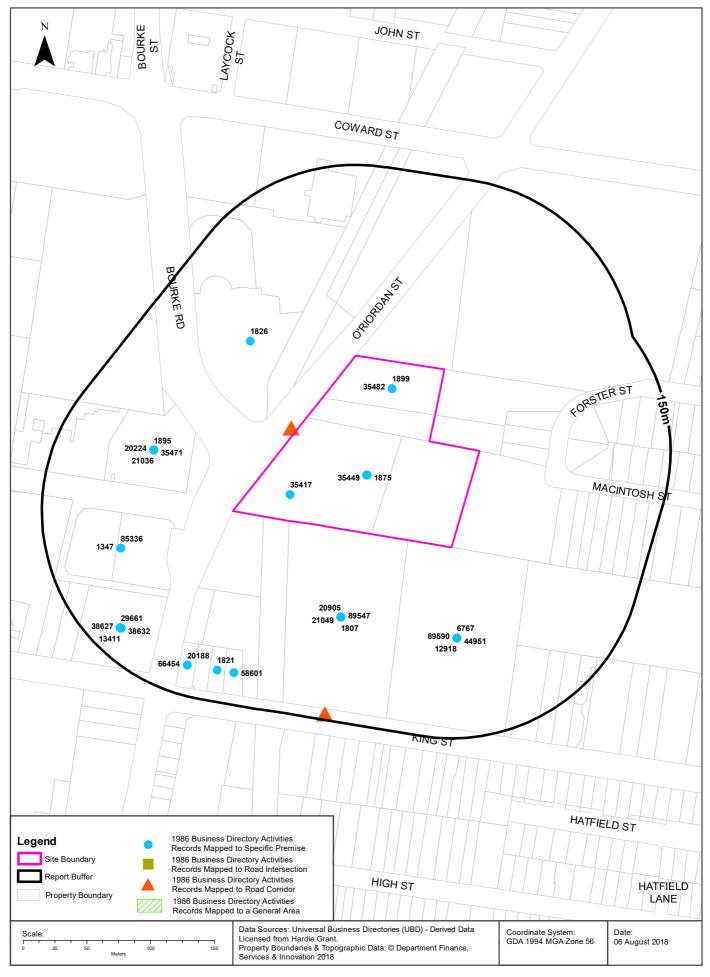
Records from the 1991 UBD Business to Business Directory, mapped to a premise or road intersection, within the dataset buffer:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
Freight Forwarders	C.T. Freight Pty Ltd, 146 O'Riordan St Mascot 2020	46459	Premise Match	0m	Onsite
Freight Forwarders	Nippon Express Pty Ltd, 1/154 O'Riordan St Mascot 2020	46509	Premise Match	0m	Onsite
Freight Forwarders	Rainers Customs & Transport Services Pty Ltd, 4/154 O'Riordan St Mascot 2020	46518	Premise Match	Om	Onsite
Freight Forwarders	Tradeair International Freight Forwarding Services Pty Ltd, 2/154 O'Riordan St Mascot 2020	46526	Premise Match	0m	Onsite
Air Cargo Agents	Air Express International Pandair, 6/154 O'Riordan St., Mascot 2020	33678	Premise Match	0m	Onsite
Air Cargo Agents	Ansett International Air Freight, 7/154 O'Riordan St., Mascot 2020	33682	Premise Match	0m	Onsite
Air Cargo Agents	International Cargo World Australia Pty. Ltd., 7/154 O'Riordan St., Mascot 2020	33715	Premise Match	0m	Onsite
Motor Spare Parts Mfrs &/or Imps &/or W/salers	Dana Ausfield Automotive Parts Distribution, 166 O'Riordan St., Mascot 2020	55063	Premise Match	35m	South West
Air Cargo Agents	John Fletcher International, 166 O' Riordan St., Mascot 2020	33718	Premise Match	35m	South West
Freight Forwarders	Cargo Plan International, 263 King St Mascot 2020	46462	Premise Match	69m	South
Customs Agents	Powerhouse Clearances Pty. Ltd.,. 263 King St., Mascot. 2020	41179	Premise Match	69m	South
Customs Agents	Snodgrass. W. K. & Associates Pty. Ltd, 263 King St, Mascot. 2020.	41188	Premise Match	69m	South
Caterers	Steels Aviation Services Pty. Ltd.,. 263 King St, Mascot 2020	38612	Premise Match	69m	South
Clothing Mfrs &/or W/salers Industrial	Andrews. A. Pty. Ltd.,. 247 King St, Mascot. 2020	39307	Premise Match	71m	South East
Freight Forwarders	Asia Pacific Transportation, 247 King St Mascot 2020	46448	Premise Match	71m	South East
Freight Forwarders	Associated Transportation, 247 King St Mascot 2020	46449	Premise Match	71m	South East
Freight Forwarders	Brambles International Freight Pty Ltd, 247 King St Mascot 2020	46456	Premise Match	71m	South East
Freight Forwarders	Cargo Handling, 247 King St Mascot 2020	46461	Premise Match	71m	South East
Freight Forwarders	Hawk Air/Sea Cargo, 247 King St Mascot 2020	46484	Premise Match	71m	South East
Freight Forwarders	Michell Cotts Pty Ltd, 247 King St Mascot 2020	46502	Premise Match	71m	South East
Freight Forwarders	Qatco Pty Ltd, 247 King St Mascot 2020	46517	Premise Match	71m	South East
Air Cargo Agents	CH International Airfreight Pty. Ltd., 247 King St., Mascot 2020	33693	Premise Match	71m	South East
Air Cargo Agents	Hawk Air/Sea Cargo, 247 King St., Mascot 2020	33711	Premise Match	71m	South East
Air Cargo Agents	Michell Cotts Freight (Aust) Pty. Ltd., 247 Kings St., Mascot 2020	33726	Premise Match	71m	South East
Freight Forwarders	Strang International Pty Ltd, 185 O'Riordan St Mascot 2020	46524	Premise Match	78m	West
Adhesive Mfrs &/or Imps &/or Dists	Emhart Australia Pty. Ltd., 191 O' Riordan St., Mascot 2020	33411	Premise Match	93m	West
Aircraft Mfrs &/or Imps &/or Dists	Aeromil, 277 King St, Mascot 2020	34229	Premise Match	125m	South West
Air Cargo Agents	Australian Air Freight Forwarders Pty. Ltd., 279 Kings St., Mascot 2020	33685	Premise Match	125m	South West

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
Air Cargo Agents	Hency (Australia) Pty. Ltd., 279 King St., Mascot 2020	33712	Premise Match	125m	South West
Gear Cutters &/or Mfrs	Austral Engineering Products Pty Ltd, 205-213 O'Riordan St Mascot 2020	47545	Premise Match	127m	South West
Gear Cutters &/or Mfrs	Austral Engineering Products Pty Ltd, 209 O'Riordan St Mascot 2020	47546	Premise Match	127m	South West
Engineers Fabricating	A.E.P. Sheet Metal Pty Ltd, 205 O'Riordan St Mascot 2020	43676	Premise Match	127m	South West
Engineers General	Austral Engineering Products Pty Ltd, 205-213 O'Riordan St Mascot 2020	43892	Premise Match	127m	South West
Engineers General	Austral Engineering Products Pty Ltd, 209 O'Riordan St Mascot 2020	43893	Premise Match	127m	South West
Aircraft Mfrs &/or Imps &/or Dists	British Aerospace (Commercial Aircraft), Level 1 Sydney Airport Centre, 15 Bourke Rd, Mascot 2020	34232	Premise Match	133m	North West

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1991 Business to Business Directory Records Road or Area Matches


Records from the 1991 UBD Business to Business Directory, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
Golf Equipment & Supplies	Zimmerer A J Pty. Ltd., 128 O'Riordan St Mascot 2020	47918	Road Match	0m
Galvanising &/or Tinning	Mascot Galvanising Works Pty Ltd, 342 King St Mascot 2020	47416	Road Match	140m

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1986 Historical Business Directory Records

Historical Business Directories

146-154 O'Riordan Street, Mascot, NSW 2020

1986 Business to Business Directory Records Premise or Road Intersection Matches

Records from the 1986 UBD Business to Business Directory, mapped to a premise or road intersection, within the dataset buffer:

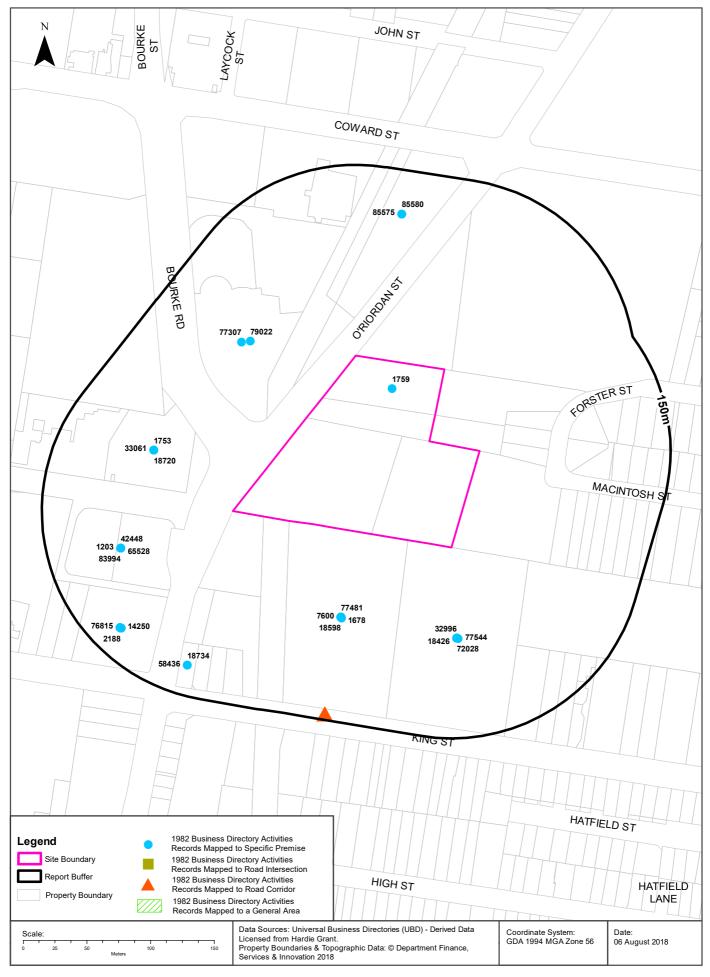
Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
CONTAINER TRANSPORT SERVICES.	Pacific Austral Container Services, 154 O'Riordan St., Mascot.	20213	Premise Match	0m	Onsite
SHIPPING COMPANIES &/OR OWNERS.	Peace Line, 154 O'Riordan St., Mascot.	86376	Premise Match	0m	Onsite
FREIGHT FORWARDERS.	Hawkair Cargo Pty. Ltd., 164 O'Riordan St, Mascot	35417	Premise Match	0m	Onsite
FREIGHT FORWARDERS.	Helm Freight Company, 154 O'Riordan St., Mascot.	35418	Premise Match	0m	Onsite
FREIGHT FORWARDERS.	Nippon Express, 154 O'Riordan St., Mascot.	35445	Premise Match	0m	Onsite
FREIGHT FORWARDERS.	Pacific-Austral Pty. Ltd., 154 O'Riordan St., Mascot.	35449	Premise Match	0m	Onsite
FREIGHT FORWARDERS.	Wards Express, 146 O'Riordan St., Mascot.	35482	Premise Match	0m	Onsite
AIR CARGO AGENTS.	Co-Load Incorporated Pty. Ltd., 154 O'Riordan St., Mascot.	1833	Premise Match	0m	Onsite
AIR CARGO AGENTS.	Hawke Cargo Pty. Ltd., 154 O'Riorden St, Mascot	1855	Premise Match	0m	Onsite
AIR CARGO AGENTS.	Helm Freight Company, 154 O'Riordan St., Mascot.	1856	Premise Match	0m	Onsite
AIR CARGO AGENTS.	Nippon Express, 154 O'Riordan St., Mascot.	1873	Premise Match	0m	Onsite
BOND &/OR FREE STORES,	Nippon Express, 154 O'Riordan St., Mascot.	6772	Premise Match	0m	Onsite
AIR CARGO AGENTS.	Pacific-Austral Pty. Ltd., 154 O'Riordan St., Mascot.	1875	Premise Match	0m	Onsite
AIR CARGO AGENTS.	Pandair International Airfreight, 154 O'Riordan St., Mascot.	1877	Premise Match	0m	Onsite
AIR CARGO AGENTS.	Wards Express, 146 O'Riordan St., Mascot.	1899	Premise Match	0m	Onsite
FREIGHT FORWARDERS.	A,F.A. Meadows, 263 King St, Mascot.	35356	Premise Match	69m	South
STORAGE & DISTRIBUTION CENTRES.	A.F.A. Meadows, 263 King St., Mascot.	89547	Premise Match	69m	South
BOND &/OR FREE STORES,	A.F.A. Meadows, 263 King St, Mascot	6749	Premise Match	69m	South
AIR CARGO AGENTS.	A.F.A. Meadows, 263 King St, Mascot	1807	Premise Match	69m	South
CUSTOMS AGENTS.	A.F.A. Meadows, 263 King St., Mascot.	20905	Premise Match	69m	South
CUSTOMS-TARIFF CONCESSION CONSULTANTS.	A.F.A. Meadows, 263 King St., Mascot.	21049	Premise Match	69m	South
CARRIERS &/OR CARTAGE CONTRACTORS.	McRae, H. & D. Carriers Pty. Ltd., 247 King St., Mascot.	12918	Premise Match	71m	South East
HAULAGE CONTRACTORS.	McRae, H. & D. Carriers Pty. Ltd., 247 King St., Mascot.	44951	Premise Match	71m	South East
STORAGE & DISTRIBUTION CENTRES.	McRae, H. & D. Carriers Pty. Ltd., 247 King St., Mascot.	89590	Premise Match	71m	South East
BOND &/OR FREE STORES,	McRae, H. & D. Carriers Pty. Ltd., 247 King St., Mascot.	6767	Premise Match	71m	South East

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
AIR CARGO AGENTS.	C.F. Air Freight Pty. Ltd., 177 O'Riordan St., Mascot.	1826	Premise Match	72m	North West
CONTAINER TRANSPORT SERVICES.	Tradex Transport Pty. Ltd., 185 O'Riordan St., Mascot.	20224	Premise Match	78m	West
CONTAINER-CARGO- REPAIR & STORAGE.	Tradex Transport Pty. Ltd., 185 O'Riordan St., Mascot.	20186	Premise Match	78m	West
FREIGHT FORWARDERS.	Tradex Transport Pty. Ltd, 185 O'Riordan St., Mascot.	35471	Premise Match	78m	West
CUSTOMS AGENTS.	Tradex Transport Pty. Ltd., 185 O'Riordan St., Mascot.	21036	Premise Match	78m	West
AIR CARGO AGENTS.	Tradex Transport Pty. Ltd., 185 O'Riordan St., Mascot.	1895	Premise Match	78m	West
ADHESIVES MFRS. &/OR DISTS.	Emhart Australia Pty. Ltd. Bostik Division, 191 O'Riordan St., Mascot.	1347	Premise Match	93m	West
SEALING COMPOUNDS.	Emhart Australia Pty. Ltd. Bostik Division, 191 O'Riordan St., Mascot.	85336	Premise Match	93m	West
MERCHANTS-GENERAL.	Makucha, 277 King St., Mascot.	58601	Premise Match	125m	South West
AIR CARGO AGENTS.	Australian Air Freight Forwarders Pty. Ltd., 279 King St., Mascot.	1821	Premise Match	125m	South West
CHAIN-HEAVY-MFRS. &/OR IMPS. &/OR DISTS.	A.E.P. Engineering Sales Pty. Ltd., 209 O'Riordan St., Mascot	13426	Premise Match	127m	South West
STEEL FABRICATORS.	A.E.P. Sheet Metal Pty. Ltd., 205 011iordan St., Mascot.	88846	Premise Match	127m	South West
GEAR CUTTERS &/OR MFRS.	Austral Engineering Products Pty. Ltd. 205-213 O'Riordan Street, Mascot.	38627	Premise Match	127m	South West
CHAIN SPROCKETS MFRS. &/OR DISTS.	Austral Engineering Products Pty. Ltd., 209 °Riordan St., Mascot	13486	Premise Match	127m	South West
GEAR CUTTERS &/OR MFRS.	Austral Engineering Products Pty. Ltd., 209 O'Riordan St., Mascot	38632	Premise Match	127m	South West
MOTOR PANEL BEATERS &/OR SPRAY PAINTERS.	Kewin, G. K , 283 King St., Mascot.	66454	Premise Match	127m	South West
PNEUMATIC TOOLS MFRS. &/OR DISTS.	A.E.P. Engineering Sakes Pty. Ltd., 209 O'Riordan St., Mascot.	75330	Premise Match	127m	South West
PNEUMATIC TOOLS MFRS. &/OR DISTS.	A.E.P. Engineering Sales Pty. Ltd. 205-213 O'Riordan St., Mascot.	75328	Premise Match	127m	South West
AIR EQUIPMENT MFRS. &/OR DISTS.	A.E.P. Engineering Sales Pty. Ltd., 209 O'Riordan St., Mascot	2507	Premise Match	127m	South West
CHAIN DRIVE SPECIALISTS.	A.E.P. Engineering Sales Pty. Ltd., 209 O'Riordan St., Mascot.	13411	Premise Match	127m	South West
SHEET METAL WORKERS.	A.E.P. Sheet Metal Pty. Ltd., 205 O'Riordan St, Mascot.	85949	Premise Match	127m	South West
ENGINEERS – FABRICATING.	A.E.P. Sheet Metal Pty. Ltd., 205 O'Riordan St., Mascot.	29327	Premise Match	127m	South West
CONTAINER TRANSPORT SERVICES.	A.F.A. Meadows, 283 King St., Mascot.	20188	Premise Match	127m	South West
ENGINEERS – GENERAL &/ OR MANUFACTURING &/ OR MECHANICAL.	Austral Engineering Products Pty. Ltd. 205-213 O'Riordan St., Mascot.	29661	Premise Match	127m	South West
ENGINEERS – GENERAL &/ OR MANUFACTURING &/ OR MECHANICAL.	Austral Engineering Products Pty. Ltd., 209 O'Riordan St., Mascot.	29746	Premise Match	127m	South West

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1986 Business to Business Directory Records Road or Area Matches

Records from the 1986 UBD Business to Business Directory, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:


Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
LEASING COMPANIES.	Hertz Rent A Car, 188 O'Riordan St., Mascot.	51473	Road Match	0m
IMPORTERS.	Kangaroo Golf Ltd., 128 O'Riordan St., Mascot.	47728	Road Match	0m
MOTOR PANEL BEATERS &/OR SPRAY PAINTERS.	Kewin, G. H Smash Repairs, 184 O'Riordan St , Mascot.	66453	Road Match	0m
BUILDERS SUPPLIERS.	Winnapine Products Pty. Ltd., 181 O'Riordan St., Mascot.	8826	Road Match	0m
TIMBER MERCHANTS.	Winnapine Products Pty. Ltd., 181 O'Riordan St., Mascot.	93648	Road Match	0m
FLOOR MATERIAL SPECIALISTS.	Winnapine Products Pty. Ltd., 181 O'Rlordan St., Mascot.	33528	Road Match	0m
PACKERS &/OR PACKING SERVICES.	World Wide Packers Pty. Ltd., 181 O'Riordan St., Mascot	71333	Road Match	0m
ARTISTS-COMMERCIAL & INDUSTRIAL.	A.S. Promotion, King St., Mascot.	3829	Road Match	140m
FREIGHT FORWARDERS.	Australian Air Freight Forwarders Pty. Ltd., King St., Mascot,	35374	Road Match	140m
AIR CARGO AGENTS.	Australian Air Freight Forwarders Pty. Ltd., King St., Mascot.	1820	Road Match	140m
BOILER REPAIRERS &/OR SERVICEMEN.	Burner Combustion & Engineering Pty. Limited, 342 King St., Mascot.	6572	Road Match	140m
FURNACE & COMBUSTION EQUIPMENT MFRS. &/OR IMPS. &/OR DISTS.	Burner Combustion & Engineering Pty. Ltd., 342 King St, Mascot	36569	Road Match	140m
GAS BURNERS- INDUSTRIAL-MFRS. &/OR DISTS.	Burner Combustion & Engineering Pty. Ltd., 342 King St, Mascot.	38441	Road Match	140m
ENGINEERS – FURNACES &/ OR COMBUSTION.	Burner Combustion & Engineering Pty. Ltd., 342 King St., Mascot.	29642	Road Match	140m
ENGINEERS- COMBUSTION.	Burner Combustion & Engineering Pty. Ltd., 342 King St., Mascot.	28700	Road Match	140m
OIL BURNER MFRS. &/OR IMPS. &/OR DISTS.	Burner Combustion & Engineering Pty. Ltd., 342 King St., Mascot.	70504	Road Match	140m
HEAT EXCHANGER MFRS. &/OR DISTS.	Burner Combustion & Engineering Pty. Ltd., 342 King St., Mascot.	45443	Road Match	140m
OIL BURNER MFRS. &/OR IMPS. &/OR DISTS.	Carmichael Steam Boilers Pty. Ltd., 342 King St, Mascot.	70505	Road Match	140m
DRYING ROOM SYSTEMS MFRS. &/OR INSTALLERS.	Carmichael Steam Boilers Pty. Ltd , 342 King St, Mascot.	25586	Road Match	140m
BOILER REPAIRERS &/OR SERVICEMEN.	Carmichael Steam Boilers Pty. Ltd., 342 King St, Mascot.	6573	Road Match	140m
STEAM GENERATOR MFRS. &/OR DISTS.	Carmichael Steam Boilers Pty. Ltd., 342 King St, Mascot.	88772	Road Match	140m
STEAM PLANT &/OR EQUIPMENT MFRS. &/OR DISTS.	Carmichael Steam Boilers Pty. Ltd., 342 King St, Mascot.	88779	Road Match	140m
BOILER PLANT MFRS. &/OR IMPS. &/OR DISTS.	Carmichael Steam Boilers Pty. Ltd., 342 King St., Mascot	6548	Road Match	140m
CONCRETE HANDLING EQUIPMENT & MACHINERY MFRS. &/OR IMPS. &/OR DISTS.	Carmichael Steam Boilers Pty. Ltd., 342 King St., Mascot	19808	Road Match	140m
BOILERMAKERS.	Carmichael Steam Boilers Pty. Ltd., 342 King St., Mascot.	6596	Road Match	140m
ENGINEERS- COMBUSTION.	Carmichael Steam Boilers Pty. Ltd., 342 King St., Mascot.	28701	Road Match	140m
GAS BURNERS- INDUSTRIAL-MFRS. &/OR DISTS.	Carmichael Steam Boilers Pty. Ltd., 342 King St., Mascot.	38445	Road Match	140m
PRESSURE VESSEL MFRS.	Carmichael Steam Boilers Pty. Ltd., 342 King St., Mascot.	75826	Road Match	140m
STEAM PLANT INSTALLATION SPECIALISTS.	Carmichael Steam Boilers Pty. Ltd., 342 King St., Mascot.	88791	Road Match	140m
TIMBER TREATMENT SPECIALISTS.	Carmichael Steam Boilers Pty. Ltd., 342 King St., Mascot.	93652	Road Match	140m
MOTOR GARAGES & SERVICE STATIONS.	Kings Street Auto Port, King St., Mascot.	64949	Road Match	140m

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
GALVANISING &/OR TINNING.	Mascot Galvanising Works Pty. Ltd., 342 King St., Mascot.	38180	Road Match	140m
MOTOR BODY BUILDERS.	Sweetings Service Station, King St., Mascot,.	61439	Road Match	140m
ENGINEERS – GENERAL &/ OR MANUFACTURING &/ OR MECHANICAL.	Sweetings Service Station, King St., Mascot.	30359	Road Match	140m
MOTOR ACCESSORIES – RETAIL .	Sweetings Service Station, King St., Mascot.	61205	Road Match	140m
MOTOR GARAGES & SERVICE STATIONS.	Sweetings Service Station, King St., Mascot.	65543	Road Match	140m
MOTOR PANEL BEATERS &/OR SPRAY PAINTERS.	Sweetings Service Station, King St., Mascot.	66808	Road Match	140m

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1982 Historical Business Directory Records

Historical Business Directories

146-154 O'Riordan Street, Mascot, NSW 2020

1982 Business Directory Records Premise or Road Intersection Matches

Records from the 1982 UBD Business Directory, mapped to a premise or road intersection, within the dataset buffer:

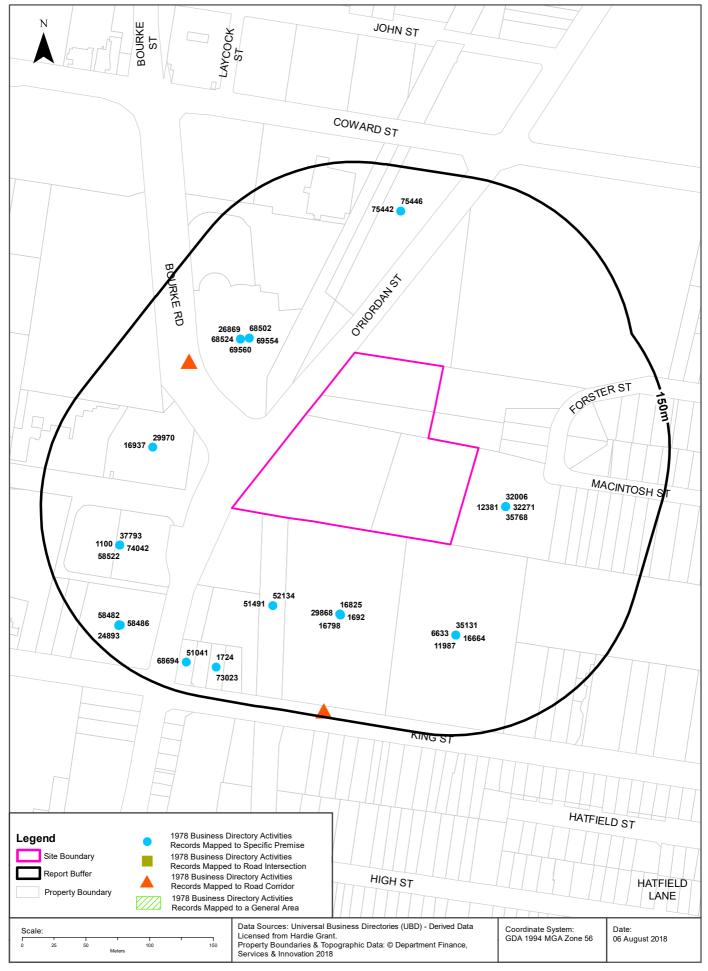
Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
AIR CARGO AGENTS. (A3240)	Ward's Air Cargo, 146 O'Riordan St., Mascot. 2020.	1759	Premise Match	0m	Onsite
CRANES -MOBILE- MFRS. &/OR IMPS. &/OR DISTS. (C8775)	Transmodac Liftstack Equipment Pty. Ltd., 263 King St., Mascot.2020.	18411	Premise Match	69m	South
CONTAINER TRANSPORT SERVICES. (C7485)	A.M.A. Meadows, 263 King St., Mascot. 2020.	17876	Premise Match	69m	South
ICING SUGAR MFRS. (10550)	Industrial Sugar Mills Pty. Ltd., 269 King St., Mascot. 2020.	41375	Premise Match	69m	South
STORAGE & DISTRIBUTIONCENTRES . (\$7310)	A. M.A. Meadows, 263 King St., Mascot. 2020.	77481	Premise Match	69m	South
FREIGHT FORWARDERS. (F6185)	A.M.A. Meadows, 263 King St, Mascot 2020.	32965	Premise Match	69m	South
CUSTOMS AGENTS. (C9165)	A.M.A. Meadows, 263 King St, Mascot 2020.	18598	Premise Match	69m	South
AIR CARGO AGENTS. (A3240)	A.M.A. Meadows, 263 King St., Mascot. 2020.	1678	Premise Match	69m	South
BOND &/OR FREE STORES. (B4280)	A.M.A. Meadows, 263 King St., Mascot. 2020.	7600	Premise Match	69m	South
ROAD TRANSPORT SERVICES - INTERSTATE, (R5845)	Cook, A. & Sons Pty. Ltd., 247 King St, Mascot 2020.	72135	Premise Match	71m	South East
HAULAGE CONTRACTORS. (H2750)	Cook, A. & Sons Pty. Ltd., 247 King St, Mascot. 2020.	39412	Premise Match	71m	South East
CARRIERS &/OR CARTAGE CONTRACTORS. (C2115)	Cook, A. & Sons Pty. Ltd., 247 King St., Mascot. 2020.	13634	Premise Match	71m	South East
ROAD TRANSPORT SERVICES - INTERSTATE, (R5810)	Cook, A. & Sons Pty. Ltd., 247 King St., Mascot. 2020.	72028	Premise Match	71m	South East
CRANES - MOBILE & TRAVEL TOWER - PROPRIETORS &/OR HIRERS. (C8790)	Cook, A. & Sons Pty. Ltd., 247 King St, Mascot 2020.	18426	Premise Match	71m	South East
FREIGHT FORWARDERS. (F6185)	Cook, A. & Sons Pty. Ltd., 247 King St, Mascot 2020.	32996	Premise Match	71m	South East
STORAGE & DISTRIBUTIONCENTRES . (\$7310)	Cook, A. & Sons Pty. Ltd., 247 King St, Mascot. 2020.	77495	Premise Match	71m	South East
BOND &/OR FREE STORES. (B4280)	Cook, A. & Son Pty. Ltd., 247 King St, Mascot. 2020.	7607	Premise Match	71m	South East
RAIL FORWARDING AGENTS. (R1750)	Cook, A. & Sons Pty. Ltd, 247 King St, Mascot 2020.	68450	Premise Match	71m	South East
TALLOW MERCHANTS &/OR REFINERS. (T0275)	Gearin O'Riordan Pty. Ltd., 177 O'Riordan St., Mascot 2020.	79022	Premise Match	72m	North West
SUGAR REFINERS. (S7740)	Industrial Sugar Mills Pty. Ltd., 259 King St Mascot. 2020.	77544	Premise Match	72m	South East
STOCK FOODS MFRS. &/OR DISTS. (\$7065)	Gearin O'Riordan Pty. Ltd., 177 O'Riordan St., Mascot. 2020.	77307	Premise Match	77m	North West
FREIGHT FORWARDERS. (F6185)	Tradex Transport Pty. Ltd., 185 O'Riordan St., Mascot. 2020.	33061	Premise Match	78m	West
AIR CARGO AGENTS. (A3240)	Tradex Transport Pty. Ltd., 185 O'Riordan St., Mascot. 2020.	1753	Premise Match	78m	West

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
CUSTOMS AGENTS. (C9165)	Tradex Transport Pty. Ltd., 185 O'Riordan St., Mascot. 2020.	18720	Premise Match	78m	West
WAX MFRS. &/OR IMPORTERS.(W2360)	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot. 2020.	83994	Premise Match	93m	West
ADHESIVES MFRS. &/OR DISTS.(A1110)	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot. 2020.	1203	Premise Match	93m	West
POLISH MFRS. &/OR DISTS. (P6980)	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot. 2020.	65528	Premise Match	93m	West
INSULATING MATERIALS MFRS.&/OR DISTS. &/OR SUPPLIERS.(13660)	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot. 2020.	42448	Premise Match	93m	West
ZINC MFRS. &/OR MERCHANTS.(Z0050)	Lysaght Durham Chemical Co. Pty. Ltd., 163 O'Riordan St., Mascot.2020.	85575	Premise Match	115m	North
ZINC OXIDE MFRS. &/OR DISTS.(Z0100)	Lysaght Durham Chemical Co. Pty. Ltd., 163 O'Riordan St., Mascot.2020.	85580	Premise Match	115m	North
CHAIN - HEAVY - MFRS. &/OR IMPS. &/OR DISTS. (C3435)	A.E.P. Engineering Sales Pty. Ltd., 209 O'Riordan St., Mascot.2020.	14206	Premise Match	127m	South West
STEEL FABRICATORS, (S6105)	A.E.P. Sheet Metal Pty. Ltd., 205 O'Riordan St., Mascot 2020.Ph :667-11?5	76815	Premise Match	127m	South West
CHAIN SPROCKETS MFRS. &/OR DISTS. (C3585)	Austral Engineering Products Pty. Ltd., 209 O'Riordan St, Mascot. 2020.	14250	Premise Match	127m	South West
GEAR CUTTERS &/OR MFRS.(G2250)	Austral Engineering Products Pty. Ltd., 209 O'Riordan St,Mascot. 2020.	35934	Premise Match	127m	South West
FAN &/OR BLOWER MFRS. &/OR DISTS. (F0225)	Industrial Air Handling Equipment Pty. Ltd., 205 O'Riordan St., Mascot. 2020.	29941	Premise Match	127m	South West
MOTOR PANEL BEATERS &/OR SPRAY PAINTERS. (M7360)	Kewin, G. H., 283 King St., Mascot. 2020.	58436	Premise Match	127m	South West
AIR EQUIPMENT MFRS. &/OR DISTS. (A3870)	A.E.P. Engineering Sales Pty, Ltd., 209 O'Riordan St, Mascot2020.	2188	Premise Match	127m	South West
PNEUMATIC TOOLS MFRS. &/OR DISTS. (P6920)	A.E.P. Engineering Sales Pty. Ltd., 209 O'Riordan St., Mascot2020.	65495	Premise Match	127m	South West
CHAIN DRIVE SPECIALISTS. (C3420)	A.E.P. Engineering Sales Ry. Ltd., 209 O'Riordan St., Mascot.2020.	14189	Premise Match	127m	South West
ENGINEERS - FABRICATING (E6870)	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot 2020.	27450	Premise Match	127m	South West
SHEET METAL WORKERS. (S2595)	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot. 2020.	74213	Premise Match	127m	South West
ENGINEERS-GENERAL &/OR MANUFACTURING &/OR MECHANICAL. (E7140)	Austral Engineering Products Pty. Ltd., 209 O'Riordan St,Mascot. 2020.	27817	Premise Match	127m	South West
CUSTOMS BY-LAW CONSULTANTS. (C9180)	A.M.A. Meadows, 283 King St., Mascot. 2020.	18734	Premise Match	127m	South West

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1982 Business Directory Records Road or Area Matches

Records from the 1982 UBD Business Directory, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:


Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
BOX & CASE MFRS. &/OR MERCHANTS. (B5390)	Winna Box Factory Pty. Ltd., 181 O'Riordan St., Mascot. 2020.	8366	Road Match	0m
PACKERS &/OR PACKING SERVICES. (P0120)	World Wide Packers Pty. Ltd., 181 O'Riordan St., Mascot. 2020.	62253	Road Match	0m

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
ARTISTS - COMMERCIAL &INDUSTRIAL. (A7385)	A.S, Promotion, King St., Mascot. 2020,	3415	Road Match	140m
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Kings Street Auto Port, King St., Mascot. 2020.	57051	Road Match	140m
GALVANISING &/OR TINNING.(G0200)	Mascot Galvanising Works Pty. Ltd., 342 King St., Mascot. 2020.	35590	Road Match	140m
ENGINEERS-GENERAL &/OR MANUFACTURING &/OR MECHANICAL. (E7140)	Sweetings Service Station, King St., Mascot. 2020.	28403	Road Match	140m
MOTOR ACCESSORIES DEALERS.(M4690)	Sweetings Service Station, King St., Mascot. 2020.	53981	Road Match	140m
MOTOR BODY REPAIRS &/OR CONVERTERS. (M5140)	Sweetings Service Station, King St., Mascot. 2020.	54329	Road Match	140m
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Sweetings Service Station, King St., Mascot. 2020.	57664	Road Match	140m
MOTOR PANEL BEATERS &/OR SPRAY PAINTERS. (M7360)	Sweetings Service Station, King St., Mascot. 2020.	58766	Road Match	140m

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1978 Historical Business Directory Records

Historical Business Directories

146-154 O'Riordan Street, Mascot, NSW 2020

1978 Business Directory Records Premise or Road Intersection Matches

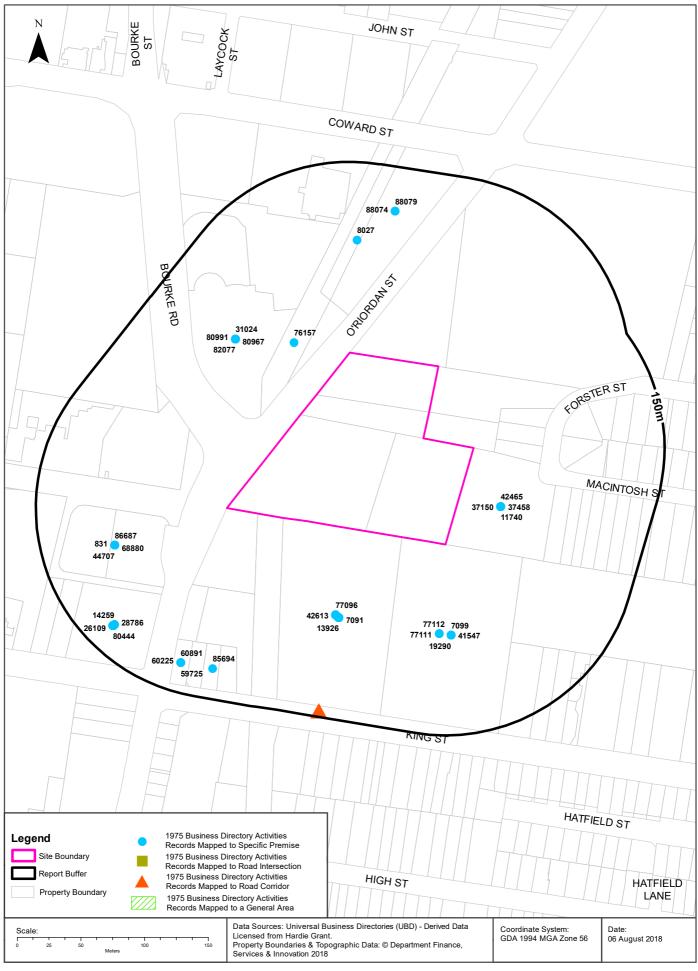
Records from the 1978 UBD Business Directory, mapped to a premise or road intersection, within the dataset buffer:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
FURNITURE MFRS. &/OR W/SALERSOFFICE.	Bendix Furniture Pty. Ltd., 70 Macintosh St., Mascot.	32006	Premise Match	33m	East
FURNITURE-TUBULAR STEEL MFRS. &/OR W/SALERS.	Bendix Furniture Pty. Ltd., 70 Macintosh St., Mascot.	32271	Premise Match	33m	East
HOSPITAL SUPPLIES & EQUIPMENT MFRS. &/OR DISTS.	Bendix Furniture Pty. Ltd., 70 Macintosh St., Mascot.	35768	Premise Match	33m	East
CHAIR MFRS.	Bendix Furniture Pty. Ltd., 70 Macintosh St., Mascot.	12381	Premise Match	33m	East
HOTEL &/OR MOTEL EQUIPMENT SUPPLIES.	Bendix Furniture Pty. Ltd., 70 Macintosh St., Mascot.	35903	Premise Match	33m	East
CAFE EQUIPMENT &/OR SUPPLIES.	Bendix Furniture Pty. Ltd., 70 Macintosh St., Mascot.	10362	Premise Match	33m	East
CONTAINER REPAIR & STORAGE.	Aust Forwarding Agency Group, 263 King St, Mascot	16138	Premise Match	69m	South
FREIGHT FORWARDERS.	Aust Forwarding Agency Group, 263 King St, Mascot	29868	Premise Match	69m	South
FREIGHT FORWARDERS.	Australian Forwarding Agency 263-273 King St. Mascot,	29851	Premise Match	69m	South
CUSTOMS AGENTS.	Aust Forwarding Agency Group, 263 King St, Mascot	16825	Premise Match	69m	South
BOND &/OR FREE STORES.	Aust Forwarding Agency Group, 263 King St, Mascot	6628	Premise Match	69m	South
AIR CARGO AGENTS.	Aust Forwarding Agency Group, 263 King St, Mascot	1692	Premise Match	69m	South
CUSTOMS BY-LAW CONSULTANTS.	Aust Forwarding Agency Group, 263 King St, Mascot	16954	Premise Match	69m	South
CUSTOMS AGENTS.	Australian Forwarding Agency Pty. Ltd. 263-273 King St., Mascot,	16798	Premise Match	69m	South
MOTOR PAINTERS.	Kewin, G. H., 273 King St., Mascot.	51491	Premise Match	70m	South West
MOTOR PANEL BEATERS	Kewin, G. H., 273 King St., Mascot.	52134	Premise Match	70m	South West
HAULAGE CONTRACTORS.	Cook, A. & Sons Pty. Ltd., 247 King St., Mascot,	35131	Premise Match	71m	South East
CARRIERS &/OR CARTAGE CONTRACTORS - MASTER.	Cook. A. & Sons Pty. Ltd., 247 King St., Mascot.	11987	Premise Match	71m	South East
CRANES-MOBILE- PROPRIETORS &/OR HIRERS.	Cook, A. & Sons Pty. Ltd., 247 King St., Mascot	16664	Premise Match	71m	South East
BOND &/OR FREE STORES.	Cook. A. & Sons Pty. Ltd., 247 King St., Mascot.	6633	Premise Match	71m	South East
TALLOW MERCHANTS &/OR REFINERS.	Gearin O'Riordan Pty. Limited 177 O'Riordan St., Mascot,	69554	Premise Match	72m	North West
STOCK FOODS MFRS. &/OR DISTS.	Gearin O'Riordan Pty. Limited 177 O'Riordan St., Mascot,	68502	Premise Match	72m	North West
TALLOW MERCHANTS &/OR REFINERS.	Gearin O'Riordan Pty. Ltd., 177 O'Riordan St, Mascot	69560	Premise Match	77m	North West
STOCK FOODS MFRS. &/OR DISTS.	Gearin O'Riordan Pty. Ltd., 177 O'Riordan St, Mascot	68524	Premise Match	77m	North West
EXPORTERS.	Gearin O'Riordan Pty. Ltd., 177 O'Riordan St, Mascot	26869	Premise Match	77m	North West
FREIGHT FORWARDERS.	Tradex Transport Pty. Ltd., 185 O'Riordan St., Mascot.	29970	Premise Match	78m	West
CUSTOMS AGENTS.	Tradex Transport Pty. Ltd., 185 O'Riordan St., Mascot.	16937	Premise Match	78m	West

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
ADHESIVES MFRS. &/OR DISTS.	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot.	1100	Premise Match	93m	West
POLISH MFRS. &/OR DISTS	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot.	58522	Premise Match	93m	West
WAX MFRS. &/OR IMPORTERS.	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot.	74042	Premise Match	93m	West
INSULATING MATERIALS MFRS. &/OR DISTS. &/OR SUPPLIERS.	Bostik Australia Pty. Ltd 191 O'Riordan St., Mascot.	37793	Premise Match	93m	West
ZINC MFRS.&/OR MERCHANTS.	Lysaght Durham Chemical Co. Pty. Ltd., 163 O'Riordan St., Mascot.	75442	Premise Match	115m	North
ZINC OXIDE MFRS.	Lysaght Durham Chemical Co. Pty. Ltd., 163 O'Riordan St., Mascot.	75446	Premise Match	115m	North
TYRE &/OR TUBE MFRS. &/OR DISTS.	Gwynne, R. L. Pty. Ltd., 279 King St., Mascot.	73023	Premise Match	125m	South West
AIR CARGO AGENTS.	Manton Customs Services Pty. Ltd., 279 King St., Mascot.	1724	Premise Match	125m	South West
ELECTRICAL METER BOX &/OR SURROUNDS MFRS.	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot	22599	Premise Match	127m	South West
STEEL FABRICATORS.	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot	68037	Premise Match	127m	South West
ELECTRICAL SWITCHBOARD MFRS. &/OR DISTS. SWITCHBOARD	A.E.P. Sheet Metal Pty. Ltd 205 ORiordan St, Mascot	23008	Premise Match	127m	South West
CHAIN SPROCKET MFRS.	Austral Engineering Products Pty. Ltd, 209 O'Riordan St, Mascot	12377	Premise Match	127m	South West
CHAIN SPROCKET MFRS.	Austral Engineering Products Pty. Ltd. 205-213 O'Riordan St., Mascot	12376	Premise Match	127m	South West
GEAR CUTTERS &/OR MFRS.	Austral Engineering Products Pty. Ltd. 205-213 O'Riordan St., Mascot	32580	Premise Match	127m	South West
GEAR CUTTERS &/OR MFRS.	Austral Engineering Products Pty. Ltd., 209 O'Riordan St, Mascot	32586	Premise Match	127m	South West
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Viscount Service Centre, 283 King St., Mascot.	51041	Premise Match	127m	South West
CHAIN DRIVE SPECIALISTS.	A E.P. Engineering Sales Pty. Ltd. 205-213 O'Riordan St., Mascot	12328	Premise Match	127m	South West
CHAIN DRIVE SPECIALISTS.	A.E.P. Engineering Sales Pty. Ltd, 209 O'Riordan St, Mascot	12330	Premise Match	127m	South West
AIR EQUIPMENT MFRS. &/OR DISTS.	A.E.P. Engineering Sales Pty. Ltd. 205-213 O'Riordan St., Mascot	2092	Premise Match	127m	South West
PNEUMATIC TOOLS MFRS. &/OR DISTS.	A.E.P. Engineering Sales Pty. Ltd. 205-213 O'Riordan St., Mascot,	58482	Premise Match	127m	South West
PNEUMATIC TOOLS MFRS. &/OR DISTS.	A.E.P. Engineering Sales Pty. Ltd., 209 O'Riordan St, Mascot	58486	Premise Match	127m	South West
SHEET METAL WORKERS.	A.E.P. Sheet Metal Pty. Ltd, 205 O'Riordan St, Mascot	65678	Premise Match	127m	South West
SHEET METAL WORKERS.	A.E.P. Sheet Metal Pty. Ltd. 205 O'Riordan St. Mascot	65667	Premise Match	127m	South West
ENGINEERS-FABRICATING.	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot	24515	Premise Match	127m	South West
ENGINEERS-HOT WATER HEATING &/OR VENTILATING.	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot	25575	Premise Match	127m	South West
AIR EQUIPMENT MFRS. &/OR DISTS.	A.EP. Engineering Sales Pty. Ltd., 209 O'Riordan St, Mascot	2094	Premise Match	127m	South West
STORAGE & DELIVERY DEPOT.	Aust Forwarding Agency Group, 283 King St, Mascot	68694	Premise Match	127m	South West
ENGINEERS- GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Austral Engineering Products Pty. Ltd. 205-213 O.'Riordan St., Mascot	24820	Premise Match	127m	South West
ENGINEERS- GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Austral Engineering Products Pty. Ltd., 209 O'Riordan St, Mascot	24893	Premise Match	127m	South West
AIR CARGO AGENTS.	Wathen Curnow & Cocks (Sydney) Pty. Ltd., 209 O'Riordan St., Mascot.	1750	Premise Match	127m	South West
CHAIN-HEAVY-MFRS. &/OR IMPS. &/OR DISTS.	A.EP. Engineering Sales Pty. Ltd., 209 O'Riordan St, Mascot	12342	Premise Match	129m	South West

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1978 Business Directory Records Road or Area Matches


Records from the 1978 UBD Business Directory, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
SCRAP METAL MERCHANTS.	Major Metals & Disposal Pty. Ltd., 183 O'Riordan St., Mascot.	65181	Road Match	0m
BOX & CASE MFRS. &/OR MERCHANTS.	Winna Box Factory Pty. Ltd., 181 O'Riordan St Mascot.	7284	Road Match	0m
CARRIERS &/OR CARTAGE CONTRACTORS - MASTER.	Ferns R.SPty. Ltd., Bourke Rd., Mascot.	11995	Road Match	40m
ARTISTS-COMMERCIAL & INDUSTRIAL.	A.S. Promotion, King St., Mascot.	3251	Road Match	140m
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Kings Street Auto Port, King St., Mascot.	50334	Road Match	140m
GALVANISING &/OR TINNING.	Mascot Galvanising Works Pty. Ltd., 342 King St., Mascot.	32332	Road Match	140m
MOTOR PAINTERS.	Sweetings Service Station, King St- Mascot.	51712	Road Match	140m
ENGINEERS GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Sweetings Service Station, King St., Mascot.	25448	Road Match	140m
MOTOR BODY REPAIRS &/OR CONVERTERS.	Sweetings Service Station, King St., Mascot.	47873	Road Match	140m
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Sweetings Service Station, King St., Mascot.	50915	Road Match	140m
MOTOR PANEL BEATERS	Sweetings Service Station, King St., Mascot.	52406	Road Match	140m
MOTOR ACCESSORIES DEALERS.	Sweetings Service Station, King St Mascot.	47516	Road Match	140m

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1975 Historical Business Directory Records

Historical Business Directories

146-154 O'Riordan Street, Mascot, NSW 2020

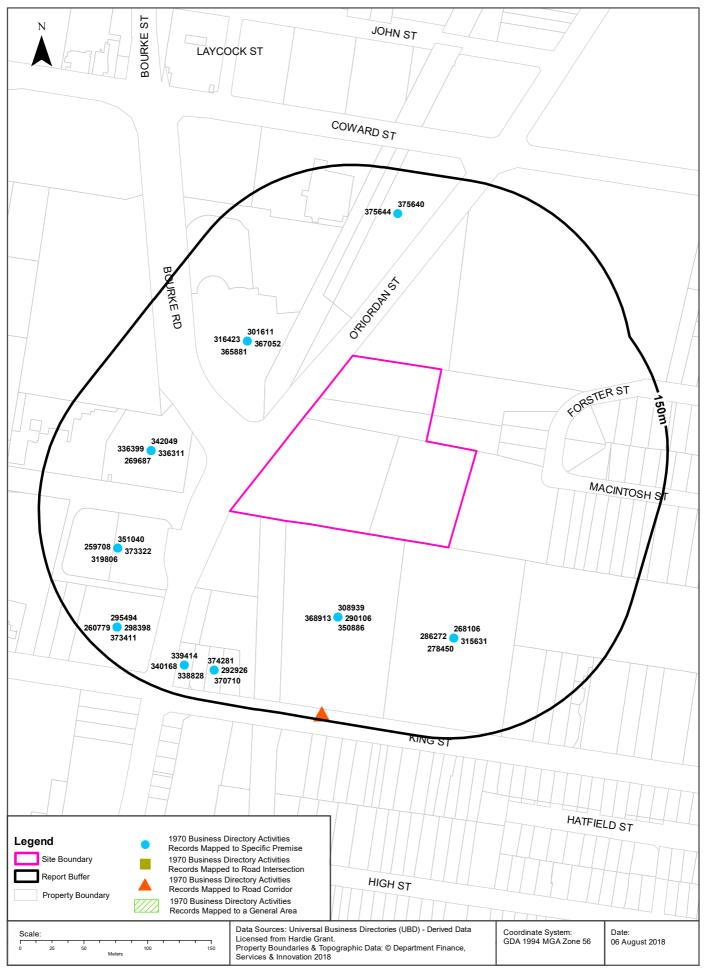
1975 Business Directory Records Premise or Road Intersection Matches

Records from the 1975 UBD Business Directory, mapped to a premise or road intersection, within the dataset buffer:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
HOSPITAL SUPPLIES & EQUIPMENT MFRS. &/OR DISTS.	Bendix Consolidated Industries Ltd., 70 Macintosh St., Mascot	42465	Premise Match	33m	East
CHAIR MFRS.	Bendix Consolidated Industries Ltd., 70 Macintosh St., Mascot.	14309	Premise Match	33m	East
FURNITURE MFRS. &/OR W/SALERS OFFICE	Bendix Consolidated Industries Ltd., 70 Macintosh St., Mascot.	37150	Premise Match	33m	East
FURNITURE-TUBULAR STEEL MFRS. &/OR W/SALERS.	Bendix Consolidated Industries Ltd., 70 Macintosh St., Mascot.	37458	Premise Match	33m	East
HOTEL &/OR MOTEL EQUIPMENT SUPPLIES.	Bendix Consolidated Industries Ltd., 70 Macintosh St,	42624	Premise Match	33m	East
CAFE EQUIPMENT &/OR SUPPLIES.	Bendix Consolidated Industries Ltd., 70 Macintosh St., Mascot.	11740	Premise Match	33m	East
SCRAP METAL MERCHANTS.	R. & G. Trading, 183 O'Riordan St., Mascot.	76157	Premise Match	39m	North West
HOTEL &/OR MOTEL EQUIPMENT SUPPLIES.	Accommodation Accessories Pty. Ltd., 269 King St., Mascot	42613	Premise Match	69m	South
SHIPPING &/OR FORWARDING AGENTS.	A.F.A. Australia Forwarding Agency Group 263., 273 King St. Mascot	77096	Premise Match	69m	South
PUMP HIRERS.	Ardec. 267 King St, Mascot	71212	Premise Match	69m	South
CARRIERS &/OR CARTAGE CONTRACTORS - MASTER.	Aust Forwarding Agency Group, 263 King St, Mascot	13816	Premise Match	71m	South
CONTAINER TRANSPORT SERVICES.	Aust Forwarding Agency Group, 263 King St, Mascot.	18703	Premise Match	71m	South
CARRIERS DEPOTS- RECEIVING &/OR DESPATCH.	Aust Forwarding Agency Group, 263 King St, Mascot	13926	Premise Match	71m	South
CUSTOMS AGENTS.	A.F.A. Australian Forwarding Agency Group, 263-273 King St., Mascot.	19440	Premise Match	71m	South
CUSTOMS BY-LAW CONSULTANTS	A.F.A. Australian Forwarding Agency Group, 263-273 King St., Mascot.	19569	Premise Match	71m	South
FURNITURE REMOVALS &/OR STORAGE	Aust Forwarding Agency Group, 263 King St, Mascot	37346	Premise Match	71m	South
BOND &/OR FREE STORES.	Aust Forwarding Agency Group, 263 King St, Mascot	7090	Premise Match	71m	South
CUSTOMS AGENTS.	Aust Forwarding Agency Group, 263 King St, Mascot .	19468	Premise Match	71m	South
CUSTOMS BY-LAW CONSULTANTS	Aust Forwarding Agency Group, 263 King St, Mascot.	19575	Premise Match	71m	South
CUSTOMS AGENTS.	Australian Meadows Aircargo Pty. Ltd., 263 King St, Mascot.	19469	Premise Match	71m	South
PARCEL DELIVERY SPECIALISTS.	Australian Meadows Aircargo Pty. Ltd, 263 King St. Mascot	66117	Premise Match	71m	South
AIR CARGO AGENTS.	Australian Meadows Aircargo Pty. Ltd. 263 King St, Mascot	1447	Premise Match	71m	South
BOND &/OR FREE STORES.	Australian Meadows Aircargo Pty. Ltd., 263 King St, Mascot	7091	Premise Match	71m	South
AIR CARGO AGENTS.	Australian Meadows Aircargo Pty. Ltd., 263 King St, Mascot	1460	Premise Match	71m	South
AIR CARGO AGENTS.	Aust Forwarding Agency Group, 263 King St, Mascot	1459	Premise Match	71m	South
SHIPPING &/OR FORWARDING AGENTS.	Aust. Forwarding Agency Group, 253 King St. Mascot	77111	Premise Match	71m	South East

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
SHIPPING &/OR FORWARDING AGENTS.	Australian Meadows Aircargo Pty. Ltd., 253 King St. Mascot	77112	Premise Match	71m	South East
HAULAGE CONTRACTORS.	Cook. A. & Sons Pty. Ltd., 247 King St., Mascot	41547	Premise Match	72m	South East
CRANES-MOBILE- PROPRIETORS &/OR HIRERS.	Cook, A. & Sons Pty. Ltd., 247 King St., Mascot.	19290	Premise Match	72m	South East
BOND &/OR FREE STORES.	Cook, A. & Sons Pty. Ltd., 247 King St., Mascot.	7099	Premise Match	72m	South East
TALLOW MERCHANTS &/OR REFINERS.	Gearin O'Riordan Pty. Limited 177 O'Riordan St, Mascot,	82068	Premise Match	77m	North West
TALLOW MERCHANTS &/OR REFINERS.	Gearin O'Riordan Pty. Ltd. 177 O'Riordan St, Mascot	82077	Premise Match	77m	North West
STOCK FOODS MFRS. &/OR DISTS.	Gearin O'Riordan Pty. Limited,177 O'Riordan St, Mascot.	80967	Premise Match	77m	North West
STOCK FOODS MFRS. &/OR DISTS.	Gearin O'Riordan Pty. Ltd, 177 O'Riordan St, Mascot	80991	Premise Match	77m	North West
EXPORTERS.	Gearin O'Riordan Pty. Ltd, 177 O'Riordan St, Mascot	31024	Premise Match	77m	North West
BOX & CASE MFRS. &/OR MERCHANTS.	Winna Box Factory Pty. Ltd., 181 O'Riordan St., Mascot	8027	Premise Match	89m	North
WAX MFRS. &/OR IMPORTERS.	Bostik Australia Pty, Ltd., 191 O'Riordan St. Mascot.	86687	Premise Match	93m	West
INSULATING MATERIALS MFRS. &/OR DISTS. &/OR SUPPLIERS.	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot	44707	Premise Match	93m	West
POLISH MFRS. &/OR DISTS.	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot	68880	Premise Match	93m	West
ADHESIVES MFRS. &/OR DISTS.	Bostik Australia Pty. Ltd., 191 O'Riordan St., Mascot.	831	Premise Match	93m	West
ZINC OXIDE MFRS.	Durham Chemicals Australia Pty. Ltd. 163 O'Riordan St. Mascot	88079	Premise Match	115m	North
ZINC MFRS. &/OR MERCHANTS.	Durham Chemicals Australia Pty. Ltd., 163 O'Riordan St. Mascot.	88074	Premise Match	115m	North
TYRE &/OR TUBE MFRS. &/OR DISTS.	Gwynne. R. L. Pty. Ltd., 279 King St., Mascot.	85694	Premise Match	126m	South West
CHAIN-HEAVY-MFRS. &/OR IMPS. &/OR DISTS.	A.E.P. Engineering Sales Pty. Ltd, 209 O'Riordan St, Mascot	14275	Premise Match	127m	South West
GEAR CUTTERS &/OR MFRS.	Austral Engineering Products Pty. Ltd., 209 O'Riordan St, Mascot	37849	Premise Match	127m	South West
MOTOR PANEL BEATERS.	Kewin, G. H., 283 King St., Mascot.	60891	Premise Match	127m	South West
MOTOR PAINTERS.	Kewin. G. H 283 King St., Mascot.	60225	Premise Match	127m	South West
MOTOR GARAGES &/OR ENGINEERS.	Viscount Service Station, 283 King St., Mascot.	59725	Premise Match	127m	South West
CHAIN DRIVE SPECIALISTS.	A.E.P. Engineering Sales Pty. Ltd, 209 O'Riordan St, Mascot	14259	Premise Match	127m	South West
PNEUMATIC TOOLS MFRS. &/OR DISTS,.	A.E.P. Engineering Sales Pty. Ltd., 209 O'Riordan St, Mascot	68850	Premise Match	127m	South West
ENGINEERS - GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Austral Engineering Products Pty. Ltd., 209 O'Riordan St, Mascot	28786	Premise Match	127m	South West
CHAIN-HEAVY-MFRS. &/OR IMPS. &/OR DISTS.	A. E. P. Engineering Sales Pty. Ltd. 205-213 O'Riordan St., Mascot	14274	Premise Match	129m	South West
ELECTRICAL SWITCHBOARD MFRS. &/OR DISTS	A.E.P. Sheet Metal Pty. Ltd. 205 O'Riordan St, Mascot	26652	Premise Match	129m	South West
ELECTRICAL METER BOX &/OR SURROUNDS MFRS.	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot	26109	Premise Match	129m	South West
STEEL FABRICATORS.	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot	80444	Premise Match	129m	South West
CHAIN SPROCKET MFRS.	Austral Engineering Products Pty. Ltd. 205-213 O'Riordan St., Mascot,	14303	Premise Match	129m	South West
GEAR CUTTERS &/OR MFRS.	Austral Engineering Products Pty. Ltd., 205-213 O'Riordan St., Mascot	37841	Premise Match	129m	South West
CHAIN DRIVE SPECIALISTS.	A. E. P. Engineering Sales Pty. Ltd. 205-213 O'Riordan St., Mascot	14257	Premise Match	129m	South West
AIR EQUIPMENT MFRS. &/OR DISTS.	A.E.P. Engineering Sales Pty. Ltd. 205-213 O'Riordan St.,	1808	Premise Match	129m	South West

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
PNEUMATIC TOOLS MFRS. &/OR DISTS,.	A.E.P. Engineering Sales. Pty. Ltd. 205-213 O'Riordan St. Mascot	68846	Premise Match	129m	South West
ENGINEERS-HOT WATER "HEATING &/OR VENTILATING.	A.E.P. Sheet Metal Pty. Ltd, 205 O'Riordan St, Mascot	29544	Premise Match	129m	South West
SHEET METAL WORKERS.	A.E.P. Sheet Metal Pty. Ltd, 205 O'Riordan St, Mascot	76746	Premise Match	129m	South West
SHEET METAL WORKERS.	A.E.P. Sheet Metal Pty. Ltd. 205 O'Riordan St., Mascot,	76730	Premise Match	129m	South West
WELDERS., Electric &/OR OXY.	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot	86755	Premise Match	129m	South West
ENGNEERS-FABRICATING	A.E.P. Sheet Metal Pty. Ltd., 205 ORiordan St, Mascot	28366	Premise Match	129m	South West
ENGINEERS - GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Austral Engineering Products Pty. Ltd. 205-213 O'Riordan St., Mascot	28707	Premise Match	129m	South West


1975 Business Directory Records Road or Area Matches

Records from the 1975 UBD Business Directory, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
SUGAR REFINERS.	Industrial Sugar Mills Pty. Ltd., 389 King St, Mascot.	81276	Road Match	140m
MOTOR SERVICE STATIONS - PETROL, OIL	Kings Street Auto Port, King St., Mascot. 2020	61836	Road Match	140m
GALVANISING &/OR TINNING.	Mascot Galvanising Works Pty. Ltd., 342 King St., Mascot.	37549	Road Match	140m

1970 Historical Business Directory Records

Historical Business Directories

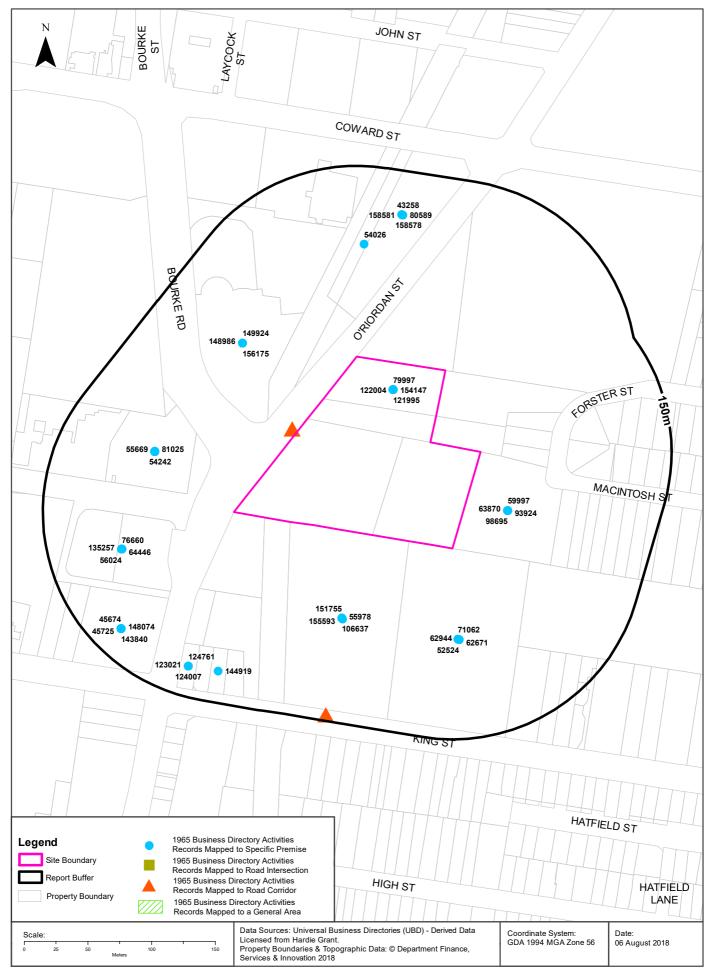
146-154 O'Riordan Street, Mascot, NSW 2020

1970 Business Directory Records Premise or Road Intersection Matches

Records from the 1970 UBD Business Directory, mapped to a premise or road intersection, within the dataset buffer:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
PLYWOOD MFRS./MERCHANTS (P622)	Bretts Timber Agencies Pty. Ltd., 263 King St., Mascot	350886	Premise Match	69m	South
DOOR MANUFACTURERS (D480)	Bretts Timber Agencies Pty.Ltd., 263 King St., Mascot	290106	Premise Match	69m	South
TIMBER MERCHANTS (T385)	Bretts Timber Agencies Pty.Ltd., 263 King St., Mascot	368913	Premise Match	69m	South
BUILDERS' SUPPLIERS (B814)	Bretts Timber Agencies Pty. Ltd., 263 King St., Mascot	271251	Premise Match	69m	South
FURNITURE/CABINET MAKERS'SUPPLIES (F695)	Bretts Timber Agencies Pty.Ltd., 263 King St., Mascot	308939	Premise Match	69m	South
TIMBER IMPORTERS &/OR DISTRIBUTORS (T380)	Bretts Timber Agencies Pty.Ltd., 263 King St., Mascot	368822	Premise Match	69m	South
CARRIERS & CARTAGE CONTRACTORS (C150)	Cook, A. & Sons Pty. Ltd., 247-261 King St., Mascot	278015	Premise Match	71m	South East
CARRIERS & CARTAGE CONTRACTORS-MASTER (C147)	Cook, A. & Sons Pty. Ltd., 247-261 King St., Mascot	278450	Premise Match	71m	South East
HAULAGE CONTRACTORS (H323)	Cook, A. & Sons Pty. Ltd., 247-261 King St., Mascot	315631	Premise Match	71m	South East
CRANESMOBILE- PROPRIETORS &/OR HIRERS (C737)	Cook, A. & Sons Pty. Ltd., 247-261 King St., Mascot	286272	Premise Match	71m	South East
BOND & FREE STORES (B525)	Cook, A. & Sons Pty. Ltd., 247-261 King St., Mascot	268106	Premise Match	71m	South East
TALLOW MERCHANTS &/OR REFINERS (T040)	Gearin O'Riordan Pty.Ltd., 177 O'Riordan St., Mascot.	367052	Premise Match	72m	North West
STOCK FOODS MANUFACTURERS&/OR DISTRIBUTORS (S757)	Gearln O'Riordan Pty.Ltd., 177 O'Riordan St,Mascot	365881	Premise Match	72m	North West
EXPORTERS (E835)	Gearin O'Riordan Pty.Ltd., 177 O'Riordan St., Mascot	301611	Premise Match	72m	North West
HOLDING COMPANIES (H470)	Gearin O'Riordan Pty. Ltd., 177 O'Riordan St., Mascot	316423	Premise Match	72m	North West
EARTH MOVING EQUIP.MFRS.,IMPORTERS &/OR DISTS.(E020)	American Heavy Equipment Co.Pty.Ltd., 185 O'RiordanSt., Mascot	292922	Premise Match	78m	West
MOTOR SPARE PARTS MFRS. &/OR WHOLESALERS (M732)	Thiess (Sales) Pty. Ltd., 185 O'Riordan St., Alexandria, 2015	342225	Premise Match	78m	West
COAL MINING CONTRACTORS- OPEN CUT (C500)	Thiess Bros Pty. Ltd., 185-189 O'Riordan St., Mascot	284805	Premise Match	78m	West
MOTOR CAR/TRUCK IMPORTERS/DISTRIBUTORS (M524)	Thiess (Sales) Pty. Ltd., 185 O'Riordan St., Alexandria, 2015	336399	Premise Match	78m	West
MOTOR CAR/TRUCK DEALERS- NEW/USED (M520)	Thiess (Sales) Pty. Ltd., 185 O'Riordan St., Alexandria, 2015	336311	Premise Match	78m	West
MOTOR SPARE PARTS DEALERS-RETAIL (M728)	Thiess (Sales) Pty. Ltd., 185 O'Riordan St., Alexandria, 2015	342049	Premise Match	78m	West
BRIDGE BUILDERS & CONTRACTORS (B728)	Thiess Bros Pty. Ltd., 185-189 O'Riordan St., Mascot	269687	Premise Match	78m	West
POLISH MFRS./DISTRIBUTORS (P638)	Bostik Aust. Pty. Ltd.,191-203 O'Riordan St.,Mascot	351040	Premise Match	93m	West
WAX MANUFACTURERS &/OR IMPORTERS (W115)	Bostik Aust.Pty.Ltd.,191-203 O'Riordan St.,Mascot	373322	Premise Match	93m	West
ADHESIVE MFRS &/OR DISTS (A120)	Bostik AustPty. Ltd., 191-203 O'Riordan St, Mascot	259708	Premise Match	93m	West

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
INSULATING MATERIAL MFRS. (1470)	Bostik Australia Pty. Ltd.,191-203 O'Riordan St.,Mascot	319806	Premise Match	93m	West
ZINC MFRS.&/OR MERCHANTS (Z010)	Durham Chemicals A/asia Pty.Ltd., 163-173 O'Riordan St., Mascot	375640	Premise Match	116m	North
ZINC OXIDE MFRS.(Z020)	Durham Chemicals A/asia Pty.Ltd., 163-173 O'Riordan St., Mascot	375644	Premise Match	116m	North
EARTH MOVING EQUIP.MFRS.,IMPORTERS &/OR DISTS.(E020)	Ateco Pty.Ltd., 279 King St., Mascot	292926	Premise Match	125m	South West
TRAILER & SEMI-TRAILER SPARE PARTS-MFRS.&/OR DISTS.(T590)	Gwynne,R.L.Pty.Ltd., 279 King St., Mascot	370710	Premise Match	125m	South West
WINCH MANUFACTURERS &/OR DISTRIBUTORS (W220)	McKee Sales Pty.Ltd, 279 King St, Mascot	374281	Premise Match	125m	South West
STEEL FABRICATORS (S673)	A.E.P. Sheet Metal Pty. Ltd., 205 O'Riordan St., Mascot, 2020	365148	Premise Match	127m	South West
ELECTRICAL METER BOX & SURROUNDS-MFRS.(E318)	A.E.P.Sheet Metal Pty.Ltd., 205 O'Riordan St., Mascot, 2020	295494	Premise Match	127m	South West
ELECTRICAL SWITCHBOARD MANUFACTURERS (E335)	A.E.P.Sheet Metal Pty.Ltd., 205 O'Riordan St., Mascot, 2020.	296188	Premise Match	127m	South West
MOTOR PANEL BEATERS (M680)	Kewin,G. H., 283 King St., Mascot	340168	Premise Match	127m	South West
MOTOR PAINTERS (M672)	Kewln,G. H., 283 King St., Mascot	339414	Premise Match	127m	South West
MOTOR GARAGES & ENGINEERS(M6S6)	Viscount Service Station, 283 King St. MASCOT	338828	Premise Match	127m	South West
ENGINEERS-HOT WATER, VENTILATING (E640)	A. E. P. Sheet Metal Pty. Ltd., 205 O'Riordan St., Mascot, 2020	299841	Premise Match	127m	South West
SHEET METAL WORKERS (S230)	A. E. P. Sheet Metal Pty. Ltd., 205 O'Riordan St., Mascot, 2020	360516	Premise Match	127m	South West
ENGINEERS-FABRICATING (E580)	A.E.P. Sheet Metal Pty. Ltd., 205 O'Riordan St., Mascot, 2020	298398	Premise Match	127m	South West
ENGINEERS-AIR CONDITIONING (E490)	A.E.P.Air Conditioning Pty.Ltd., 205 O'Riordan St., Mascot	297316	Premise Match	127m	South West
VENTILATING EQUIPMENT MFRS.&/OR DISTRIBUTORS (V120)	A.E.P.Sheet Metal Pty.Ltd., 205 O'Riordan St., Mascot, 2020	372516	Premise Match	127m	South West
WELDERS-ELECTRIC &/OR OXY (W145)	A.E.P.Sheet Metal Pty.Ltd., 205 O'Riordan St., Mascot, 2020	373411	Premise Match	127m	South West
AIR CONDITIONING UNITS &MACHINERY MFRS(A250)	A.E.P. Air Conditioning Pty. Ltd., 205 O'Riordan St., Mascot	260779	Premise Match	127m	South West


1970 Business Directory Records Road or Area Matches

Records from the 1970 UBD Business Directory, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
BOX & CASE MERCHANTS &/OR MANUFACTURERS (B645)	Winna Box Factory Pty. Ltd., 181 O'Riordan St., Mascot	269485	Road Match	0m
MOTOR SERVICE STATIONS- PETROL,OIL,Etc. (M716)	King Street Auto Port,King St. MASCOT	341250	Road Match	140m
GALVANISING & TINNING (G030)	Mascot Galvanising Works Pty.Ltd., 342 King St., Mascot	310215	Road Match	140m

1965 Historical Business Directory Records

Historical Business Directories

146-154 O'Riordan Street, Mascot, NSW 2020

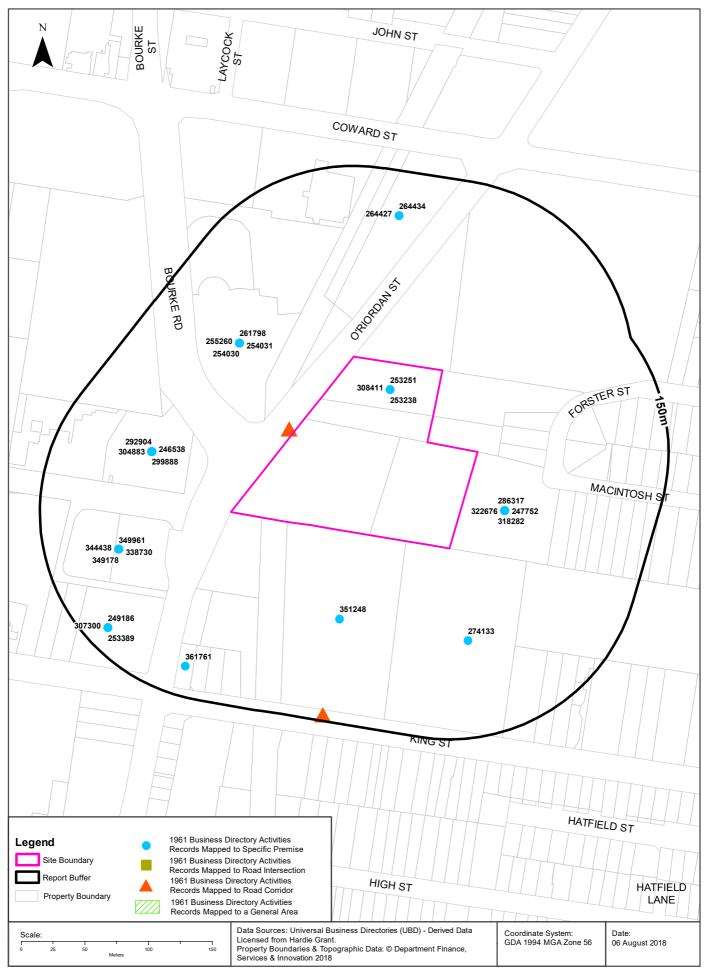
1965 Business Directory Records Premise or Road Intersection Matches

Records from the 1965 UBD Business Directory, mapped to a premise or road intersection, within the dataset buffer:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
Fork-Lift Truck Manufacturers	Apac Industries Limited, 146 O'Riordan St., Mascot	89276	Premise Match	0m	Onsite
Trucks & Trolleys - Industrial - Imports. &/or Mfrs.	Apac Industries Limited, 146 O'Riordan St., Mascot	154147	Premise Match	0m	Onsite
Electronic Equipment Mfrs. &/or Dists.	Crypton A/asia Pty. Limited, , 146 O'Riordan St., Mascot	79997	Premise Match	0m	Onsite
Motor Garage Equipment/Tool Mfrs./Distributors	Crypton A/asia Pty. Ltd., 146 O'Riordan St., Mascot	122004	Premise Match	0m	Onsite
Motor Foundation Hard Trim	Apac Industries Limited, 146 O'Riordan St., Mascot	121995	Premise Match	0m	Onsite
SPRAYING EQUIPMENT MFRS. &/OR DISTRIBUTORS	Apac Industries Ltd. , 146 O'Riordan St., Mascot	146796	Premise Match	0m	Onsite
Lawn Mowers - Motor Powered - Importers, Distributors &/or Manufacturers	Apac Industries Ltd., 146 O'Riordan St., Mascot	107229	Premise Match	Om	Onsite
Lubricating Equipment Manufacturers	Apac Industries Ltd., 146 O'Riordan St., Mascot	108469	Premise Match	0m	Onsite
Material-Handling Equip. Manufacturers	Apac Industries Ltd., 146 O'Riordan St., Mascot	110380	Premise Match	0m	Onsite
Conveyors & Conveying Equip. Manufacturers	Apac Industries Ltd., 146 O'Riordan St., Mascot	70393	Premise Match	0m	Onsite
Motor Testing/Tuning Equipment Mfrs./Distributors	Crypton A'asia Pty. Limited, 146 O'Riordan St., Mascot	126960	Premise Match	0m	Onsite
Battery Charging & Testing Equipment Distributors	Crypton A'asia Pty. Ltd. , 146 O'Riordan St., Mascot	50009	Premise Match	0m	Onsite
Furniture - Office - Mfrs. &/or Wholesalers	Bendix Industries (N.S.W.) Pty. Ltd. , 70 Macintosh St., Mascot	93924	Premise Match	33m	East
Furniture - Tubular Steel - Mfrs. &/or W'Salers	Bendix Industries (N.S.W.) Pty. Ltd. , 70 Macintosh St., Mascot	94251	Premise Match	33m	East
Chair Manufacturers	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	63870	Premise Match	33m	East
Hospital Equipment Mfrs. &/or Suppliers	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	100746	Premise Match	33m	East
Hotel Equipment/Supplies	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	101295	Premise Match	33m	East
Hairdressers' Supplies	Bendix Industries (N.S.W.) Pty. Ltd. , 70 Macintosh St., Mascot	98695	Premise Match	33m	East
Café Equipment & Supplies	Bendix Industries (N.S.W.) Pty. Ltd. , 70 Macintosh St., Mascot	59997	Premise Match	33m	East
Pump Manufacturers &/or Distributors	Royle, Arlan Pty. Ltd. , 267 King St., Mascot	137566	Premise Match	69m	South
TIMBER MERCHANTS	Bretts Timber Agencies Pty. Ltd. , 263 King St., Mascot	151755	Premise Match	69m	South
Wallboard Mfrs.	Bretts Timber Agencies Pty. Ltd., 263 King St., Mascot	155593	Premise Match	69m	South
Joinery Merchants	Bretts Timber Agencies Pty. Ltd., 263 King St., Mascot	106637	Premise Match	69m	South
Builders' Suppliers	Ashfield Plywood & Timber Pty. Ltd. , 263 King St., Mascot	55978	Premise Match	69m	South
Cranes - Mobile - Proprietors & Hirers	Cook, A. & Sons Pty. Ltd. , 247 King St., Mascot	71062	Premise Match	71m	South East
Carriers & Cartage Contractors - Master	Cook, A. & Sons Pty. Ltd. , 247-261 King St., Mascot	62671	Premise Match	72m	South East

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
Carriers & Cartage Contractors	Cook, A. & Sons Pty. Ltd., 247-261 King St., Mascot	62944	Premise Match	72m	South East
BOND & FREE STORES	Cook, A. & Sons Pty. Ltd. , 247 King St., Mascot. 67 4946	52524	Premise Match	72m	South East
TALLOW MERCHANTS &/OR REFINERS	Gearin O'Riordan Pty. Ltd. , 177 O'Riordan St., Mascot	149924	Premise Match	77m	North West
STOCK FOODS MANUFACTURERS &/OR DISTRIBUTORS	Gearin, O'Riordan Pty. Limited , 177 O'Riordan St., Mascot	148986	Premise Match	77m	North West
Weighbridges	Gearin O'Riordan Pty. Limited , 177 O'Riordan St., Mascot	156175	Premise Match	77m	North West
Earth Moving Equipment - Mfrs., Importers &/or Dists.	American Heavy Equipment Co. Pty. Ltd., 185 O'Riordan St., Mascot	76868	Premise Match	78m	West
Coal Mining Contractors - Open Cut	Thiess Bros. Pty. Ltd., 185-189 O'Riordan St., Mascot	69457	Premise Match	78m	West
Engineers - Civil	Thiess Bros. Pty. Limited, , 185-189 O'Riordan St., Mascot	80895	Premise Match	78m	West
Earth-Moving Contractors	Thiess Bros. Pty. Limited, 185-189 O'Riordan St., Mascot	76818	Premise Match	78m	West
Engineers - Constructional	Thiess Bros. Pty. Ltd. , 185-189 O'Riordan St., Mascot	81025	Premise Match	78m	West
Bride Builders & Contractors	Thiess Bros. Pty. Ltd. , 185-189 O'Riordan St., Mascot	54242	Premise Match	78m	West
Builders & Contractors	Thiess Bros. Pty. Limited , 185-189 O'Riordan St., Mascot	55669	Premise Match	78m	West
Road - Making Contractors	Thiess Bros. Pty. Limited , 185-189 O'Riordan St., Mascot	140749	Premise Match	78m	West
Contractors - General	Thiess Bros. Pty. Limited, 185-189 O'Riordan St., Mascot	70303	Premise Match	78m	West
Box & Case Merchants &/or Mfrs.	Winne Box Factory Pty, Ltd. , 181 O'Riordan St., Mascot	54026	Premise Match	89m	North
Chemists - Manufacturing &/or Wholesale	B. B. Chemical of Aust. Pty. Ltd., 191 O'Riordan St., Alexandria	64446	Premise Match	93m	West
Dye & Bleach Manufacturers Imports. &/or Dists.	B.B. Chemical Co. of Aust. Pty. Ltd., 191 O'Riordan St., Alexandria	76660	Premise Match	93m	West
Adhesive Mfrs. &/or Dists.	Bostik Aust. Pty. Ltd. , 191-203 O'Riordan St., Mascot	44588	Premise Match	93m	West
Polish Manufacturers/Distributors	Bostik Aust. Pty. Ltd. , 191-203 O'Riordan St., Mascot	135257	Premise Match	93m	West
Wax Mfrs. &/or Importers	Bostik Aust. Pty. Ltd. , 191-203 O'Riordan St., Mascot	156078	Premise Match	93m	West
Sealing Compounds	Bostik Australia Pty. Ltd., 191-203 O'Riordan St., Mascot	143423	Premise Match	93m	West
Insulating Material Mfrs.	Bostik Australia Pty. Ltd., 191-203 O'Riordan St., Mascot	103950	Premise Match	93m	West
Motor Painters	Kabble & Abbey Ply. Ltd., 191 O'Riordan St., Mascot	124001	Premise Match	93m	West
Motor Body Repairs/Converters	Kable & Abbey Pty. Ltd., 191 O'Riordan St., Mascot	120171	Premise Match	93m	West
Motor Trimmers	Hyde, Frank, 191 O'Riordan St., Mascot	127233	Premise Match	93m	West
Builders' Suppliers	Bostik Australia Pty. Limited , 191-203 O'Riordan St., Mascot	56024	Premise Match	93m	West
Milk Vendors	Taylor, J, W., 191 O'Riordan St., Mascot	115933	Premise Match	93m	West
Engineers - Abbattoirs	Keith Engineering (Ault) Pty. Ltd. , 163 O'Riordan St., Mascot	80589	Premise Match	115m	North
ABATTOIRS' MACHINERY SUPPLIES - MFRS.	Keith Engineering Sales Pty. Ltd, 163 O'Riordan St., Mascot	43258	Premise Match	115m	North
Zinc Mfrs.	Durham Chemicals A/asia Pty. Ltd. , 163-173 O'Riordan St., Mascot	158578	Premise Match	116m	North
Zinc Oxide	Durham Chemicals A/asia Pty. Ltd. , 163-173 O'Riordan St., Mascot	158581	Premise Match	116m	North
SIGNWRITERS	Taylor, R., 279 King St., Mascot	144919	Premise Match	125m	South West
STEEL FABRICATORS	Austral Engineering Products Pty. Ltd. , 205 O'Riordan St., Mascot	148074	Premise Match	127m	South West
Electrical Meter Box & Surrounds - Mfrs.	Austral Engineering Products Pty. Ltd. , 205 O'Riordan St., Mascot		Premise Match		South West
Electrical Switchboard Mfrs.	Austral Engineering Products Pty. Ltd. , 205 O'Riordan St., Mascot	79868	Premise Match	127m	South West

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
Motor Painters	Kewin, G. H., 283 King St., Mascot	124007	Premise Match	127m	South West
Motor Panel Beaters	Kewin, G. H., 283 King St., Mascot	124761	Premise Match	127m	South West
Motor Garages & Engineers	Viscount Service Station, 283 King St. Mascot	123021	Premise Match	127m	South West
Air Equipment Mfrs. &/or Dists.	A.E.P. Air Conditioning Pty. Ltd. , 205 O'Riordan St., Mascot	45725	Premise Match	127m	South West
Air Conditioning Units & Machinery Mfrs.	A.E.P. Air Conditioning Pty. Ltd. , 205 O'Riordan St., Mascot	45674	Premise Match	127m	South West
Air Conditioning Units & Machinery Mfrs.	Austral Engineering Products Pty. Ltd. , 205 O'Riordan St., Mascot	45679	Premise Match	127m	South West
Engineers - Air Conditioning	Austral Engineering Products Pty. Ltd. , 205 O'Riordan St., Mascot	80658	Premise Match	127m	South West
Engineers - Fabricating	Austral Engineering Products Pty. Ltd. , 205 O'Riordan St., Mascot	81677	Premise Match	127m	South West
Sheet Metal Workers	Austral Engineering Products Pty. Ltd. , 205 O'Riordan St., Mascot	143840	Premise Match	127m	South West
Welders - Electric &/or Oxy	Austral Engineering Products Pty. Ltd. , 205 O'Riordan St., Mascot	156232	Premise Match	127m	South West
Ventilating Equipment Mfrs. &/or Distributors	Austral Engineering Products Pty. Ltd., 205 O'Riordan St., Mascot	155351	Premise Match	127m	South West
Engineers - Hot Water, Heating/Ventilating	Austral Engineering. Products Pty. Ltd. , 205 O'Riordan St., Mascot	83102	Premise Match	127m	South West


1965 Business Directory Records Road or Area Matches

Records from the 1965 UBD Business Directory, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
Engineers General &/or Mfrg. &/or Mechanical	Lekod Pty. Ltd. , 210 O'Riordan St., Mascot	82567	Road Match	Om
Motor Car Spring Mfrs.	Lewis, A. H. Pty. Ltd., O'Riordan St., Mascot	121212	Road Match	0m
Engineers - Repitition	Standfield, R. A, Pty. Ltd. , 210 O'Riordan St., Mascot	84103	Road Match	0m
Plastic Manufacturers &/or Moulders	Standfield, R. A. Pty, Ltd., 210 O'Riordan St., Mascot	134149	Road Match	0m
Engineers General &/or Mfrg. &/or Mechanical	Standfield, R. A. Pty. Ltd. , 210 O'Riordan St., Mascot	82888	Road Match	Om
Condiment Mfrs. &/or Dists.	Standfield, R. A. Pty. Ltd., 210 O'Riordan St., Mascot	70019	Road Match	0m
Metal Pressers/Stampers	Standfield, R. A. Pty. Ltd., 210 O'Riordan St., Mascot	114520	Road Match	0m
Galvanising & Tining	Mascot Galvanising Works Pty. Ltd. , 342 King St., Mascot	94410	Road Match	140m
Irrigation Systems & Equipment Mfrs. &/or Dists.	McCarey Irrigation Pty. Ltd., 338a King St., Mascot	105407	Road Match	140m

1961 Historical Business Directory Records

Historical Business Directories

146-154 O'Riordan Street, Mascot, NSW 2020

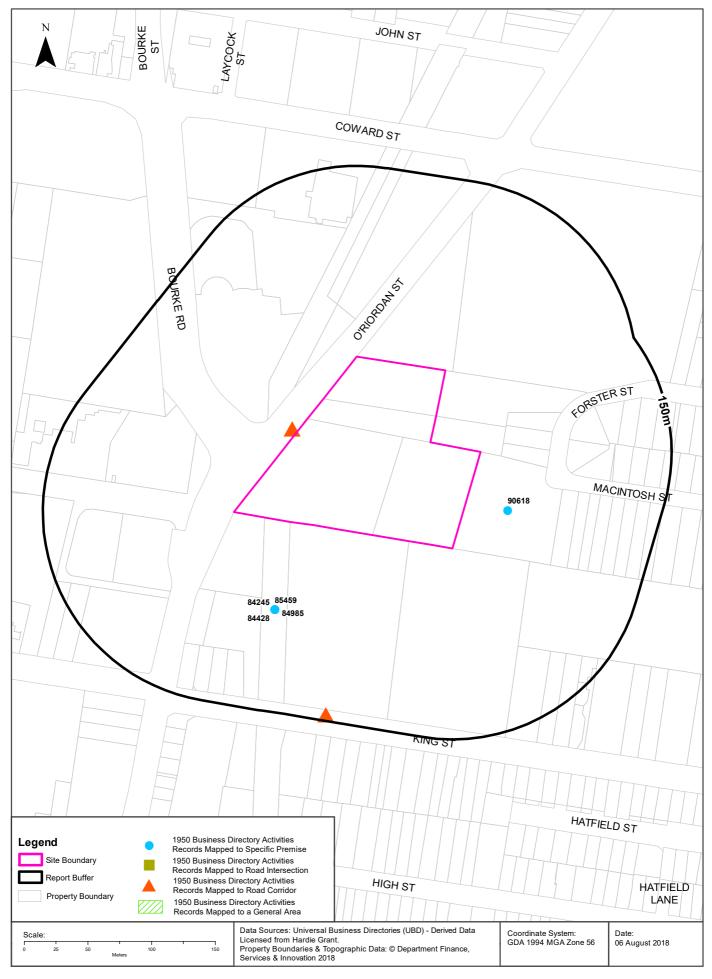
1961 Business Directory Records Premise or Road Intersection Matches

Records from the 1961 UBD Business Directory, mapped to a premise or road intersection, within the dataset buffer:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
STEAM GENERATOR MFRS.	Clayton Manufacturing (Aust.) Pty. Ltd., 146 O'Riordan St., Mascot	253251	Premise Match	0m	Onsite
STEAM CLEANING EQUIP. MFRS.	Clayton Manufacturing (Aust.) Pty. Ltd., 146 O'Riordan St., Mascot	253238	Premise Match	0m	Onsite
ENGINEERS-STEAM	Clayton Manufacturing (Aust.) Pty. Ltd., 146 O'Riordan St., Mascot	308411	Premise Match	0m	Onsite
FURNITURE-OFFICE-MFRS.	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	318124	Premise Match	33m	East
FURNITURE-TUBULAR STEEL- MFRS. &/OR W'SALERS	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	318281	Premise Match	33m	East
BEDSTEAD MANUFACTURERS	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	272953	Premise Match	33m	East
CHAIR MANUFACTURERS	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	286317	Premise Match	33m	East
HAIRDRESSERS' EQUIP. MFRS.	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	322663	Premise Match	33m	East
HOSPITAL EQUIPMENT MFRS. &/OR SUPPLIERS	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	324669	Premise Match	33m	East
HOTEL EQUIPMENT/SUPPLIES	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St. Mascot	325058	Premise Match	33m	East
FURNITURE-TUBULAR STEEL- MFRS. &/OR W'SALERS	Bendix Industries (NSW) Pty Ltd 70 Macintosh St., Mascot	318282	Premise Match	33m	East
HAIRDRESSERS' SUPPLIES	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	322676	Premise Match	33m	East
SANITARYWARE IMPORTERS	Bendix Industries (N.S.W.) Pty. Ltd., 70 Macintosh St., Mascot	247752	Premise Match	33m	East
MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Viscount Service Station, 273b King St. MASCOT	351248	Premise Match	69m	South
BOND & FREE STORES	Cook A & Sons Pty Ltd 247-261 King St., Mascot	274133	Premise Match	74m	South East
TALLOW MERCHANTS &/OR REFINERS	Gearin O'Riordan Pty Limited 177 O'Riordan St., Mascot.	255259	Premise Match	77m	North West
TALLOW MERCHANTS &/OR REFINERS	Gearin O'Riordan Pty. Ltd., 177 O'Riordan St., Mascot	255260	Premise Match	77m	North West
STOCK FOODS MANUFACTURERS &/OR DISTRIBUTORS	Gearin O'Riordan Pty Limited 177 O'Riordan St., Mascot	254030	Premise Match	77m	North West
STOCK FOODS MANUFACTURERS &/OR DISTRIBUTORS	Gearin, O'Riordan Pty. Limited, 177 O'Riordan St., Mascot	254031	Premise Match	77m	North West
WEIGHBRIDGES	Gearin, O'Riordan Pty. Limited, 177 O'Riordan St., Mascot	261798	Premise Match	77m	North West
EARTH MOVING MACHINERY PARTS-MFRS. &/OR DISTS.	American Heavy Equipment Co. Pty. Ltd., 185 O'Riordan St., Mascot	299708	Premise Match	78m	West
EARTH-MOVING EQUIPMENT MFRS., IMPORTERS	American Heavy Equipment Co. Pty. Ltd., 185 O'Riordan St., Mascot	299888	Premise Match	78m	West
CRUSHING MACHINE MFRS. &/OR DISTRIBUTORS	American Heavy Equipment Company Pty. Ltd., 185 O'Riordan St., Mascot	293836	Premise Match	78m	West
MOTOR CAR/TRUCK DEALERS—NEW/USED	American Heavy Equipment Co. Pty. Ltd., 185 O'Riordan St., Mascot	344831	Premise Match	78m	West
MOTOR CAR/TRUCK IMPORTERS/DISTRIBUTORS	Thiess (Sales) Pty. Ltd., 185 O'Riordan St., Mascot	345552	Premise Match	78m	West
EARTH-MOVING CONTRACTORS	Thiess Bros Pty Limited 185-189 O'Riordan St., Mascot	299864	Premise Match	78m	West

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
ENGINEERS-CIVIL	Thiess Bros Pty Limited 185-189 O'Riordan St., Mascot P.O. Box 98-Mascot	304883	Premise Match	78m	West
ENGINEERS-CIVIL	Thiess Bros. Pty. Limited, 185-189 O'Riordan St., Mascot	304884	Premise Match	78m	West
MOTOR CAR/TRUCK DEALERS—NEW/USED	Thiess (Sales) Pty. Ltd., 185 O'Riordan St., Mascot	345423	Premise Match	78m	West
EARTH-MOVING CONTRACTORS	Thiess Bros. Pty. Limited, 185-189 O'Riordan St., Mascot	299865	Premise Match	78m	West
BUILDERS & CONTRACTORS	Thiess Bros Pty Limited 185-189 O'riordan St., Mascot	276677	Premise Match	78m	West
BUILDERS & CONTRACTORS	Thiess Bros. Pty. Limited, 185-189 O'Riordan St., Mascot	276678	Premise Match	78m	West
CONTRACTORS-GENERAL	Thiess Bros Pty Limited 185-189 O'Riordan St., Mascot	292903	Premise Match	78m	West
ROAD-MAKING CONTRACTORS	Thiess Bros Pty Limited 185-189 O'Riordan St., Mascot	246538	Premise Match	78m	West
ROAD-MAKING CONTRACTORS	Thiess Bros. Pty. Limited, 185-189 O'Riordan St., Mascot	246539	Premise Match	78m	West
CONTRACTORS-GENERAL	Thiess Bros. Pty. Limited, 185-189 O'Riordan St., Mascot	292904	Premise Match	78m	West
MOTOR PAINTERS	Smith & Bassett Pty. Ltd., 191 O'Riordan St., Mascot	349178	Premise Match	93m	West
MOTOR PANEL BEATERS	Smith & Bassett Pty. Ltd., 191 O'Riordan St., Mascot	349961	Premise Match	93m	West
MOTOR BODY REPAIRS/CONVERTERS	Smith & Bassett Pty. Ltd., 191 O'Riordan St., Mascot	344438	Premise Match	93m	West
MOTOR TRIMMERS	Hyde, Frank, 191 O'Riordan St., Mascot	352284	Premise Match	93m	West
MILK VENDORS	Taylor, J. W., 191 ORiordan St., Mascot	338730	Premise Match	93m	West
ZINC MERCHANTS	Durham Chemicals Aust. Pty. Ltd., 163-173 O'Riordan St., Mascot	264427	Premise Match	115m	North
ZINC OXIDE MFRS.	Durham Chemicals Aust. Pty. Ltd., 163-173 O'Riordan St., Mascot	264434	Premise Match	115m	North
PRESSURE VESSEL MFRS.	Byrne & Thomas Pty. Ltd., 283 King St., Mascot	361761	Premise Match	127m	South West
STEEL FABRICATORS	Austral Engineering Products Pty. Ltd., 205 O'Riordan St., Mascot	253389	Premise Match	133m	South West
SHEET METAL WORKERS	Austral Engineering Products Pty. Ltd., 205 O'Riordan St., Mascot	249186	Premise Match	133m	South West
ENGINEERS-HOT WATER, HEATING/VENTILATING	Austral Engrg. Products Pty. Ltd., 205 O'Riordan St., Mascot	307300	Premise Match	133m	South West

1961 Business Directory Records Road or Area Matches


Records from the 1961 UBD Business Directory, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
CRANES-MOBILE-IMPORTERS &/OR DISTRIBUTORS	American Heavy Equipment Company Pty. Ltd., 183 O'Riordan St., Mascot	293666	Road Match	0m
MOTOR GARAGE EQUIPMENT/TOOL MFRS./DISTRIBUTORS	Clayton (Aust.) Pty. Ltd., O'Riordan St., Mascot	346420	Road Match	0m
STEAM PLANT EQUIPMENT MFRS. &/OR DISTS.	Clayton Industries (Aust.) Pty. Ltd., O'Riordan St., Mascot	253263	Road Match	0m
MOTOR GARAGES & ENGINEERS	Clayton Manufacturing Pty. Ltd., O'Riordan St. MASCOT	346898	Road Match	0m
MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Lewis, A. H. Pty. Ltd., O'Riordan St. MASCOT	350787	Road Match	0m
MOTOR CAR SPRING MFRS.	Lewis, A. H. Pty. Ltd., O'Riordan St., Mascot	344797	Road Match	0m

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
WELDING ARC SET MFRS.	Samson Arcwell Electrical Pty. Ltd., 4-6 Old Botany Rd., Mascot	262606	Road Match	0m
WELDING MACHINE MFRS.	Samson Arcwell Electrical Pty. Ltd., 4-6 Old Botany Rd., Mascot	262675	Road Match	0m
ELECTRODES (WELDERS') - MANUFACTURERS	Samson Arcwell Electrical Pty. Ltd., 6 Old Botany Rd., Mascot	303704	Road Match	0m
PENCIL SHARPENER MFRS.	Standfield R A Pty Ltd 210 O'Riordan St., Mascot	357308	Road Match	0m
CONDIMENT MFRS. &/OR DISTS.	Standfield, R. A. Pty. Ltd., 210 O'Riordan St., Mascot	292560	Road Match	0m
ENGINEERS-GENERAL/MFRG./ MECHANICAL	Standfield, R. A. Pty. Ltd., 210 O'Riordan St., Mascot	307055	Road Match	0m
ENGINEERS-REPETITION	Standfield, R. A. Pty. Ltd., 210 O'Riordan St., Mascot	308330	Road Match	0m
METAL PRESSERS/STAMPERS	Standfield, R. A. Pty. Ltd., 210 O'Riordan St., Mascot	338319	Road Match	0m
BOX & CASE MERCHANTS &/OR MANUFACTURERS	Winna Box Factory Pty. Ltd., 181 O'Riordan St., Mascot	275586	Road Match	0m
BOND & FREE STORES	Cook, A. & Sons Pty. Ltd., 747-761 King St., Mascot.	274134	Road Match	140m
GALVANISING & TINNING	Mascot Galvanising Works Pty. Ltd., 342 King St., Mascot	318453	Road Match	140m
ENGINEERS-GENERAL/MFRG./ MECHANICAL	McCarey Irigation & Engineering, King St., Mascot	306747	Road Match	140m
IRRIGATION SYSTEMS & EQUIPMENT MFRS. &/OR DISTS.	McCarey Irrigation & Engineering, King St., Mascot	328757	Road Match	140m

1950 Historical Business Directory Records

Historical Business Directories

146-154 O'Riordan Street, Mascot, NSW 2020

1950 Business Directory Records Premise or Road Intersection Matches

Records from the 1950 UBD Business Directory, mapped to a premise or road intersection, within the dataset buffer:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Feature Point	Direction
PAINT, VARNISH & STAIN MANUFACTURERS	Campbell, W. F. Pty. Ltd., 70 Macintosh St., Mascot	90618	Premise Match	33m	East
MOTOR GARAGES &/OR ENGINEERS	Quartly, A., 273 King St., Mascot	84245	Premise Match	70m	South West
MOTOR PAINTERS	Quartly, A., 273 King St., Mascot	84985	Premise Match	70m	South West
MOTOR PANEL BEATERS	Quartly, A., 273 King St., Mascot	85459	Premise Match	70m	South West
MOTOR GARAGES &/OR ENGINEERS	Stevens, W. H., 265 King St., Mascot	84428	Premise Match	70m	South West

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1950 Business Directory Records Road or Area Matches

Records from the 1950 UBD Business Directory, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
STEAM CLEANING EQUIPMENT MANUFACTURERS	Andersen Engineering Pty. Ltd., 29-35 Old Botany Rd., Mascot	105132	Road Match	0m
CHEMICAL MANUFACTURERS	Andersen Products Pty. Ltd., 29 Old Botany Rd., Mascot	20985	Road Match	0m
MACHINERY MERCHANTS &/OR IMPORTERS	Andersen Products Pty. Ltd., 29 Old Botany Rd., Mascot	70007	Road Match	0m
MANUFACTURERS' AGENTS	Andersen Products Pty. Ltd., 29-35 Old Botany Rd., Mascot	70749	Road Match	0m
ENGINEERS-GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Andersen, P. M. Eng. Pty. Ltd., 29-35 Old Botany Rd., Mascot	40398	Road Match	0m
CHEMISTS-MANUFACTURING & WHOLESALE	Andersol Chemicals Pty. Ltd., 20-35 Old Botany Rd., Mascot	70405	Road Match	0m
CHEMICAL MANUFACTURERS	Andersol Chemicals Pty. Ltd., 29 Old Botany Rd., Mascot	20986	Road Match	0m
CLEANSER & CLEANING PREPARATIONS MFRS. &/OR DISTRIBUTORS	Andersol Chemicals Pty. Ltd., 29-35 Old Botany Rd., Mascot	23005	Road Match	0m
DETERGENT MFRS. &/OR DISTRIBUTORS	Andersol Chemicals Pty. Ltd., 29-35 Old Botany Rd., Mascot	32554	Road Match	0m
ENGINEERS-STEAM	Anderson, P. M. Engineering Pty. Ltd., 29 Old Botany Rd., Mascot	42349	Road Match	0m
FOUNDERS-FERROUS	Cole Bros., 42 Old Botany Rd., Mascot	47651	Road Match	0m
CARRIERS & CARTAGE CONTRACTORS (MASTER)	Corfield, E. G. Estate of the Late, "Aliceville," Old Botany Rd., Mascot	20153	Road Match	0m
BUILDERS' SUPPLIERS	Corfield, E. G., 124 Old Botany Rd., Mascot	11741	Road Match	0m

Business Activity	Premise	Ref No.	Location Confidence	Distance to Road Corridor or Area
GRAVEL, SAND & SOIL SUPPLIES	Corfield, E. G., 124 Old Botany Rd., Mascot	55127	Road Match	0m
ZINC MERCHANTS	Durham Chemicals Australia Pty. Ltd., 58-66 Old Botany Rd., Mascot	114769	Road Match	0m
ZINC MERCHANTS	Gearin, M. and Sons Pty. Ltd., 58-60 Old Botany Rd., Mascot	114771	Road Match	0m
STOCK FOODS MFRS. &/OR DISTRIBUTORS	Gearin, O'Riordan Ltd., 41 Old Botany Rd., Mascot	105678	Road Match	0m
FERTILIZER MANUFACTURERS & SUPPLIERS	Gearin, O'Riordan Ltd., Old Botany Rd., Mascot	43769	Road Match	0m
TALLOW MERCHANTS & REFINERS	Gearin, O'Riordan Ltd.,. 70 Old Botany Rd., Mascot	106922	Road Match	0m
DOG FOOD &/OR MEDICINE MANUFACTURERS	Gearin, O'Riordan, 70 Old Botany Rd., Mascot	33195	Road Match	0m
POULTRY FOOD MFRS. &/OR DISTRIBUTORS	Gearin, O'Riordan Ltd., Old Botany Rd., Mascot	94423	Road Match	0m
BISCUIT MFRS. &/OR DISTRIBUTORS	Hackshall's Ltd., 4-18 Old Botany Rd., Mascot	8222	Road Match	0m
CARRIERS & CARTAGE CONTRACTORS	Jarvie, A., 38 Old Botany Rd., Mascot	19097	Road Match	0m
HAULAGE CONTRACTORS- HEAVY	Jarvie, A., 38 Old Botany Rd., Mascot	61877	Road Match	0m
TRANSPORT SERVICES- INTERSTATE	Jarvie, A., 38 Old Botany Rd., Mascot	110248	Road Match	0m
MOTOR CAR SPRING MANUFACTURERS	Lewis, A. H., 11 Old Botany Rd., Mascot	82767	Road Match	0m
SPRING MANUFACTURERS	Lewis, A. H., 11 Old Botany Rd., Mascot	104794	Road Match	0m
AGRICULTURAL MACHINERY PARTS MFRS.	Paterson, J., 144 Old Botany Rd., Mascot	1419	Road Match	0m
ENGINEERS-GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Paterson, J., 144 Old Botany Rd., Mascot	41096	Road Match	0m
ENGINEERS-STRUCTURAL	Paterson, J., 144 Old Botany Rd., Mascot	42484	Road Match	0m
SHEET METAL WORKERS	Paterson, J., 144 Old Botany Rd., Mascot	101795	Road Match	0m
WELDERS-ELECTRIC &/OR OXY	Paterson, J., 144 Old Botany Rd., Mascot	112989	Road Match	0m
WIREWORKERS-GENERAL	Salwey, G. H., 13 Old Botany Rd., Mascot	113959	Road Match	0m
DISPLAY FITTINGS MFRS. &/OR SUPPLIERS	Salwey, G. II., 13 Old Botany Rd., Mascot	33065	Road Match	0m
MILK BARS & CONFECTIONERS	Shearer, A. A., 142 Old Botany Rd., Mascot	77348	Road Match	0m
ENGINEERS-GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Stiff, C. J., 48 Old Botany Rd., Mascot	41291	Road Match	0m
MOTOR GARAGES &/OR ENGINEERS	Stiff, C. J., 48 Old Botany Rd., Mascot	84432	Road Match	0m
MILK VENDORS	Taylor, J. W., Old Botany Rd., Mascot	77946	Road Match	0m
LIVERY STABLES	Vallely, H., 104 Old Botany Rd., Mascot	69668	Road Match	0m
RIDING SCHOOLS	Vallely, H., 104 Old Botany Rd., Mascot	99545	Road Match	0m
BUTCHERS-RETAIL	Ball, A., King St., Mascot	13093	Road Match	140m
GROCERS-RETAIL	Bastow, J. E., King St., Mascot	56393	Road Match	140m
BEAUTY SALONS &/OR LADIES' HAIRDRESSERS	Betty's Beauty Box, King St., Mascot	6890	Road Match	140m
GROCERS-RETAIL	Bray, W., King St. East, Mascot	56525	Road Match	140m
PAINT, VARNISH & STAIN MANUFACTURERS	Consolidated Paints and Products Co., 358 King St., Mascot	90625	Road Match	140m
GROCERS-RETAIL	Jerome, B. W., King St., Mascot	57888	Road Match	140m
GALVANISING	Mascot Galvanising Works, 342 King St., Mascot	53925	Road Match	140m
GROCERS-RETAIL	Murphy's Corner, King and Sharp Sts., Mascot	58513	Road Match	140m

Historical Business Directories

146-154 O'Riordan Street, Mascot, NSW 2020

Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer:

Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Feature Point	Direction
MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Viscount Service Station, 273b King St. MASCOT	351248	1961	Premise Match	69m	South
MOTOR GARAGES &/OR ENGINEERS	Quartly, A., 273 King St., Mascot	84245	1950	Premise Match	70m	South West
MOTOR GARAGES &/OR ENGINEERS	Stevens, W. H., 265 King St., Mascot	84428	1950	Premise Match	70m	South West
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Viscount Service Centre, 283 King St., Mascot.	51041	1978	Premise Match	127m	South West
MOTOR GARAGES &/OR ENGINEERS.	Viscount Service Station, 283 King St., Mascot.	59725	1975	Premise Match	127m	South West
MOTOR GARAGES & ENGINEERS(M6S6)	Viscount Service Station, 283 King St. MASCOT	338828	1970	Premise Match	127m	South West
Motor Garages & Engineers	Viscount Service Station, 283 King St. Mascot	123021	1965	Premise Match	127m	South West
MOTOR SERVICE STATIONS-PETROL, Etc.	Quartleys Garage, Cnr. King St. and Old Botany Rd., Mascot	86311	1950	Road Intersection	154m	South West
MOTOR GARAGES & ENGINEERS	Smalley, W. J. Pty. Ltd., 50 Macintosh St. MASCOT	348145	1961	Premise Match	176m	East
MOTOR GARAGES &/OR ENGINEERS	Smalley, W. J., 50 Macintosh St., Mascot	84380	1950	Premise Match	176m	East
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Quartly's Service Station, 322 King St., Mascot.	50702	1978	Premise Match	180m	South West
MOTOR GARAGES &/OR ENGINEERS.	Quartly's Service Station, 322 King St , Mascot.	59427	1975	Premise Match	180m	South West
Motor Garages & Engineers	Quartly's Service Station, 322 King St. Mascot	123014	1965	Premise Match	180m	South West
MOTOR GARAGES & ENGINEERS	Quartly's Service Station, 322 King St. Mascot	347961	1961	Premise Match	180m	South West
MOTOR GARAGES & ENGINEERS(M6S6)	Quartly's Service Station, 322 King St. MASCOT	338461	1970	Premise Match	213m	South West
MOTOR GARAGES & ENGINEERS(M6S6)	Geary,K. R. (Mascot) Pty. Ltd., 149 O'Riordan St. MASCOT	337853	1970	Premise Match	216m	North
MOTOR GARAGES &/OR ENGINEERS.	Cook. W. H. & Son, 276a King St., Mascot.	58692	1975	Premise Match	221m	South East
MOTOR GARAGES & ENGINEERS(M6S6)	Rex-Press, 295 King St. MASCOT, 2020	338507	1970	Premise Match	228m	West
Motor Service Stations - Petrol, Oil, Etc.	Golden Fleece Service Station, 131-133 O'Riordan St. Alexandria	125357	1965	Premise Match	316m	North
MOTOR GARAGES & ENGINEERS	Golden Fleece Service Station, 131-133 O'Riordan St. City of Sydney	347247	1961	Premise Match	316m	North
MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Golden Fleece Service Station, 131-133 O'Riordan St. MASCOT	350613	1961	Premise Match	316m	North
MOTOR SERVICE STATIONS - PETROL, OIL	Airport Service Station, 239 O'Riordan St., Mascot.	61362	1975	Premise Match	330m	South West
MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Airport Service Station, 239 O'Riordan St. MASCOT	350295	1961	Premise Match	330m	South West
Motor Garages & Service Stations	Ampol Mascot Self Serve, 239 O'Riordan St., Mascot 2020	53481	1991	Premise Match	338m	South West
MOTOR GARAGES & SERVICE STATIONS.	Airport Service Station, 239 O'Riordan St., Mascot.	63866	1986	Premise Match	338m	South West

Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Feature Point	Direction
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Airport Service Station, 239 O'Riordan St., Mascot. 2020.	55937	1982	Premise Match	338m	South West
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Airport Service Station, 239 O'Riordan St., Mascot.	49216	1978	Premise Match	338m	South West
Motor Garages & Engineers	Truck Sales & Service Pty. Ltd., 200 O'Riordan St. Mascot	123019	1965	Premise Match	341m	South
MOTOR SERVICE STATIONS- PETROL,OIL,Etc. (M716)	Airport Service Station, 239 O'Riordan St. MASCOT	340739	1970	Premise Match	371m	South West
Motor Service Stations - Petrol, Oil, Etc.	Airport Service Station, 239 O'Riordan St. Mascot	125904	1965	Premise Match	371m	South West
MOTOR GARAGES & SERVICE STATIONS.	Caltex Mascot Service Station, 125 O'Riordan St., Mascot.	64360	1986	Premise Match	382m	North East
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Golden Fleece Mascot Service Station, 125 O'Riordan St Mascot2020.	56851	1982	Premise Match	382m	North East
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Golden Fleece Service Station, 125 O'Riordan St., Mascot.	50173	1978	Premise Match	382m	North East
MOTOR GARAGES & ENGINEERS(M6S6)	Robey Auto Repairs & Towing Service, 64 Robey St. MASCOT	338523	1970	Premise Match	427m	South
Motor Garages & Engineers	Hambly, W., 127 Baxter Rd. Mascot	123006	1965	Premise Match	446m	South
Motor Garages & Engineers	Haynes, L. G., 127 Baxter Rd. Mascot	123007	1965	Premise Match	446m	South
MOTOR GARAGES & ENGINEERS	Haynes, L. G., 127 Baxter Rd. MASCOT	347348	1961	Premise Match	446m	South
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Smith, S. H., 844 Botany Rd., Mascot, 2020.	57580	1982	Premise Match	456m	East
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Smith, S. H., 844 Botany Rd., Mascot.	50846	1978	Premise Match	456m	East
MOTOR GARAGES &/OR ENGINEERS.	Smith, S. H., 844 Botany Rd, Mascot.	59545	1975	Premise Match	456m	East
MOTOR GARAGES & ENGINEERS(M6S6)	Smith,S. H., 844 Botany Rd.MASCOT	338617	1970	Premise Match	456m	East
Motor Garages & Engineers	Smith, S. H., 844 Botany Rd. Mascot	123017	1965	Premise Match	456m	East
MOTOR GARAGES & ENGINEERS	Smith, S. H., 844 Botany Rd. MASCOT	348153	1961	Premise Match	456m	East
MOTOR GARAGES &/OR ENGINEERS	Smith, S. H., 844 Botany Rd., Mascot	84385	1950	Premise Match	456m	East
MOTOR SERVICE STATIONS- PETROL, Etc.	Smith, S. H., 844 Botany Rd., Mascot	86400	1950	Premise Match	456m	East
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Right-Way Motor Repairs, 124 O'Riordan St., Mascot.	50742	1978	Premise Match	493m	North East

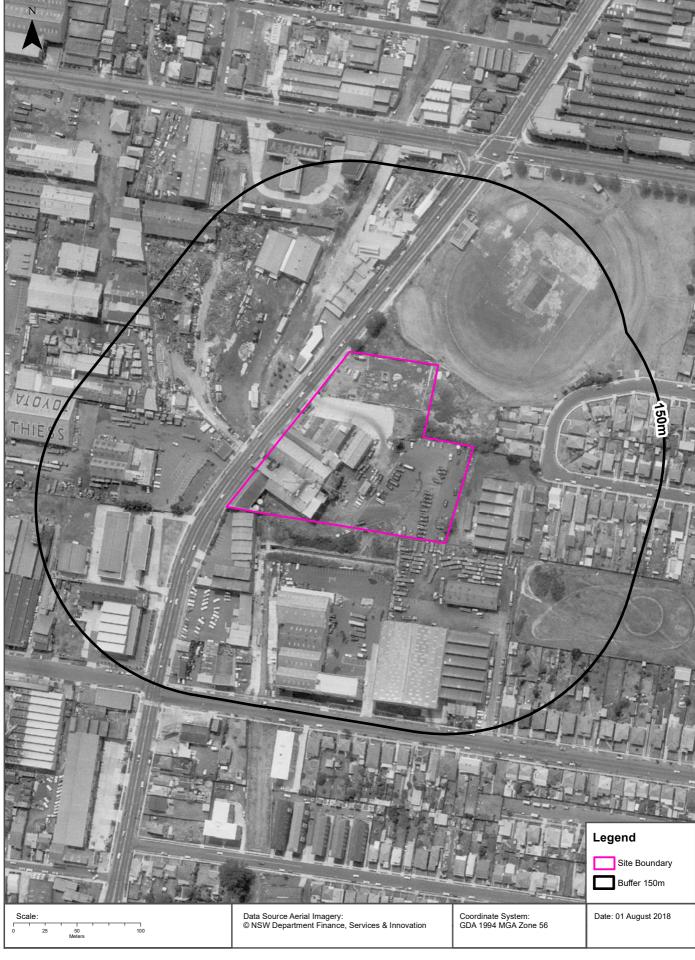
Historical Business Directories

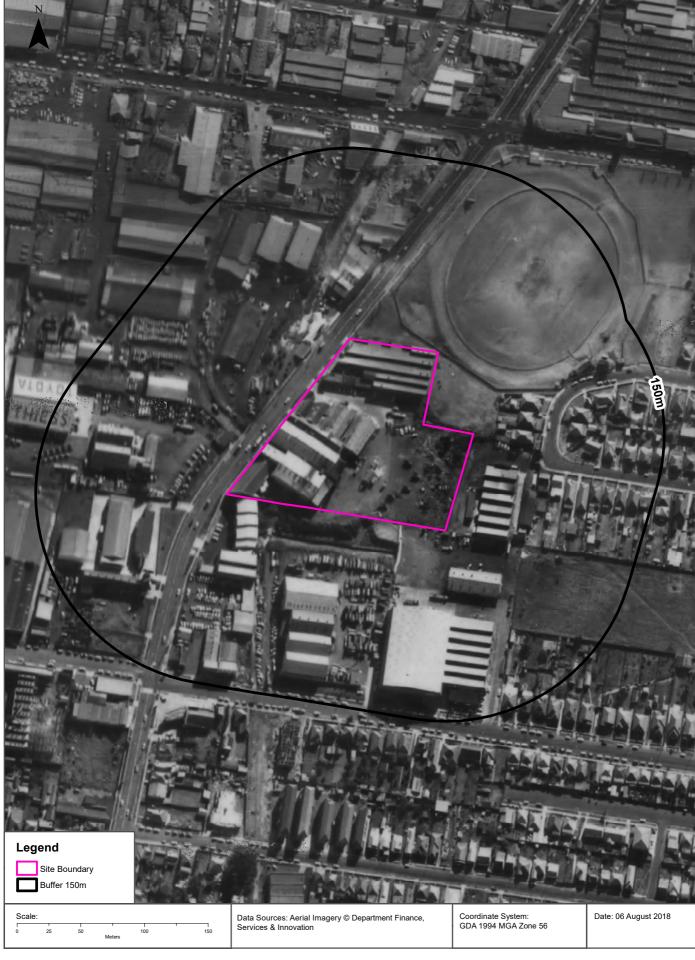
146-154 O'Riordan Street, Mascot, NSW 2020

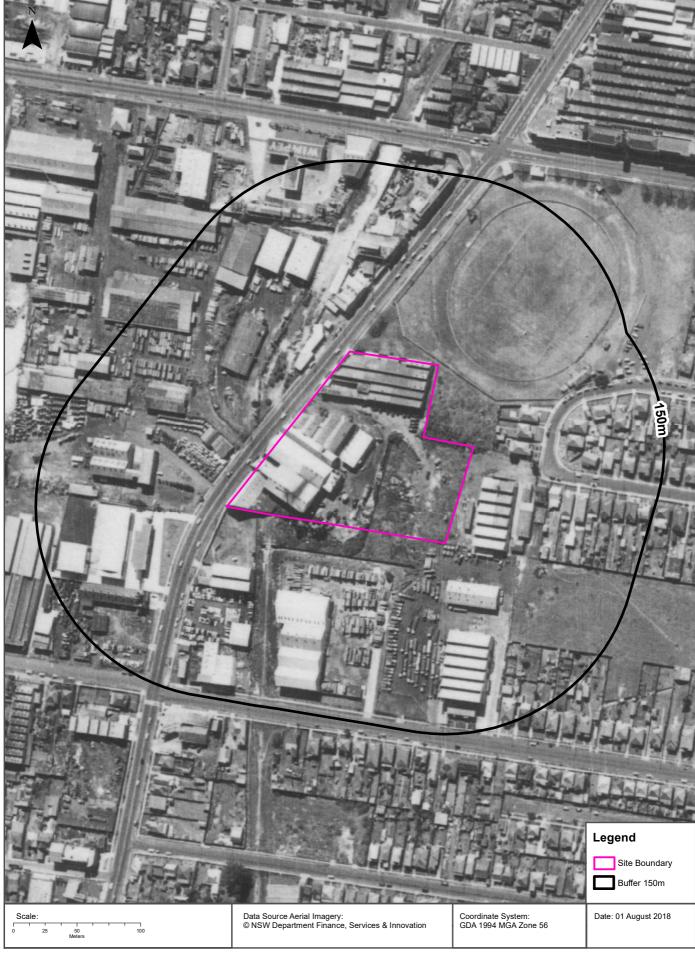
Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

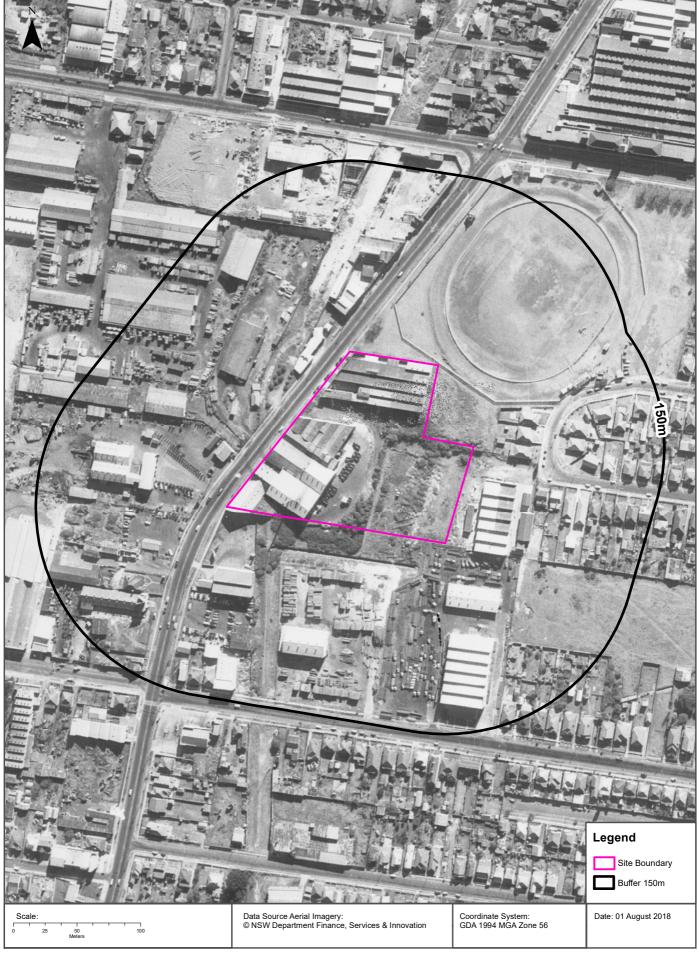
Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

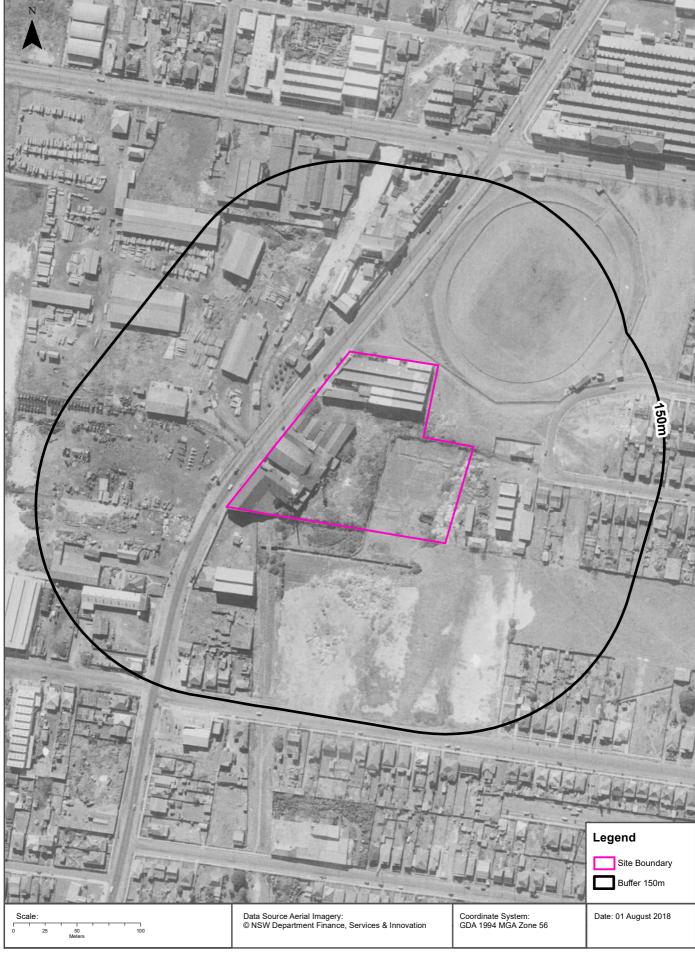
Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
MOTOR GARAGES & ENGINEERS	Clayton Manufacturing Pty. Ltd., O'Riordan St. MASCOT	346898	1961	Road Match	0m
MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Lewis, A. H. Pty. Ltd., O'Riordan St. MASCOT	350787	1961	Road Match	0m
MOTOR GARAGES &/OR ENGINEERS	Stiff, C. J., 48 Old Botany Rd., Mascot	84432	1950	Road Match	0m
MOTOR SERVICE STATIONS- PETROL,OIL,Etc. (M716)	King Street Auto Port,King St. MASCOT	341250	1970	Road Match	140m
MOTOR GARAGES & SERVICE STATIONS.	Kings Street Auto Port, King St., Mascot.	64949	1986	Road Match	140m
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Kings Street Auto Port, King St., Mascot.	50334	1978	Road Match	140m
MOTOR SERVICE STATIONS - PETROL, OIL	Kings Street Auto Port, King St., Mascot. 2020	61836	1975	Road Match	140m
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Kings Street Auto Port, King St., Mascot. 2020.	57051	1982	Road Match	140m
MOTOR GARAGES & SERVICE STATIONS.	Sweetings Service Station, King St., Mascot.	65543	1986	Road Match	140m
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Sweetings Service Station, King St., Mascot.	50915	1978	Road Match	140m
MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Sweetings Service Station, King St., Mascot. 2020.	57664	1982	Road Match	140m
MOTOR GARAGES & ENGINEERS	May & Blake Chalmers Cres. MASCOT	347663	1961	Road Match	262m
MOTOR GARAGES & ENGINEERS(M6S6)	May & Blake Pty. Ltd., Chalmers Cres.MASCOT	338225	1970	Road Match	262m
Motor Garages & Engineers	May & Blake, Chalmers Cres. Mascot	123011	1965	Road Match	262m
MOTOR GARAGES & ENGINEERS	May & Blake, Chalmers Cres. MASCOT	347664	1961	Road Match	262m
MOTOR SERVICE STATIONS - PETROL, OIL	Golden Fleece Service Station, 131 O'Riordan St., Mascot.	61799	1975	Road Match	341m
MOTOR SERVICE STATIONS- PETROL,OIL,Etc. (M716)	Golden Fleece Service Station,131 O'Riordan St.,Mascot	341150	1970	Road Match	341m
Motor Service Stations - Petrol, Oil, Etc.	Lyndon, Peter & David, 243 O'Riordan St. Mascot	125909	1965	Road Match	463m
MOTOR GARAGES & ENGINEERS	Coggins, W. T. Pty. Ltd., 210 Kent Rd. MASCOT	346911	1961	Road Match	471m
MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Coggins, W. T. Pty. Ltd., 210 Kent Rd. MASCOT	350481	1961	Road Match	471m
MOTOR GARAGES &/OR ENGINEERS	Mascot Service Station, Botany Rd Mascot	83385	1950	Road Match	475m
MOTOR SERVICE STATIONS- PETROL, Etc.	Mascot Super Service Garage, Botany Rd., Mascot	85753	1950	Road Match	475m

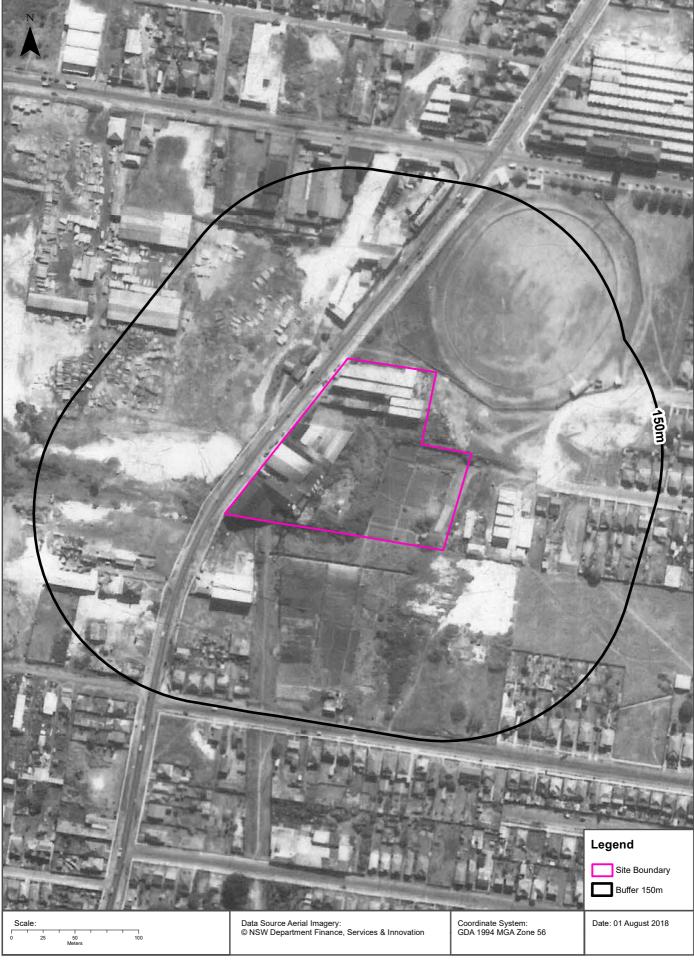


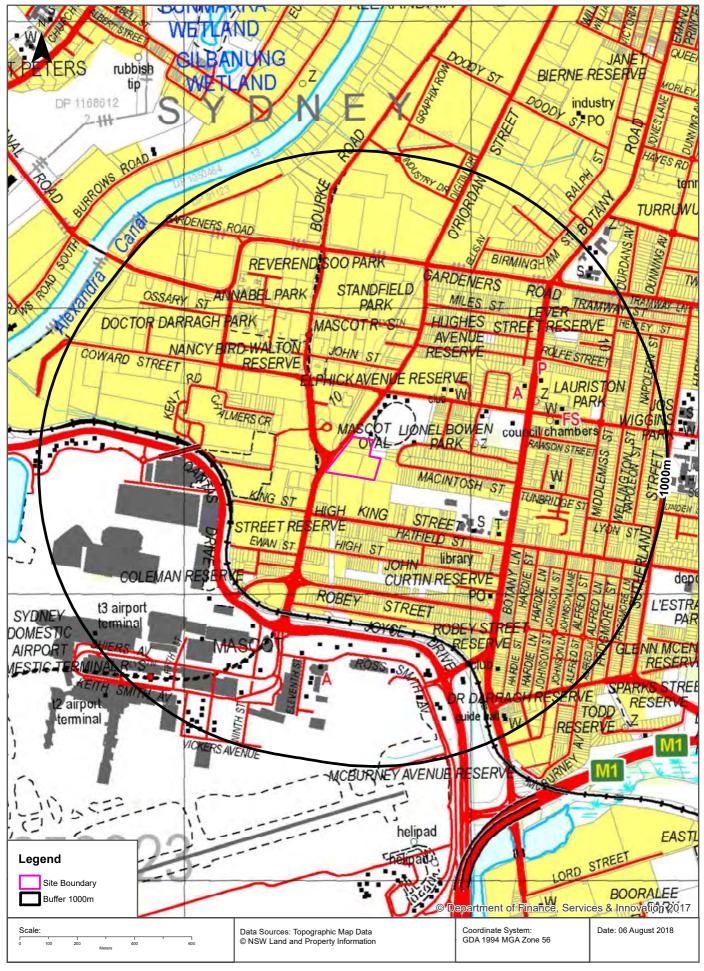


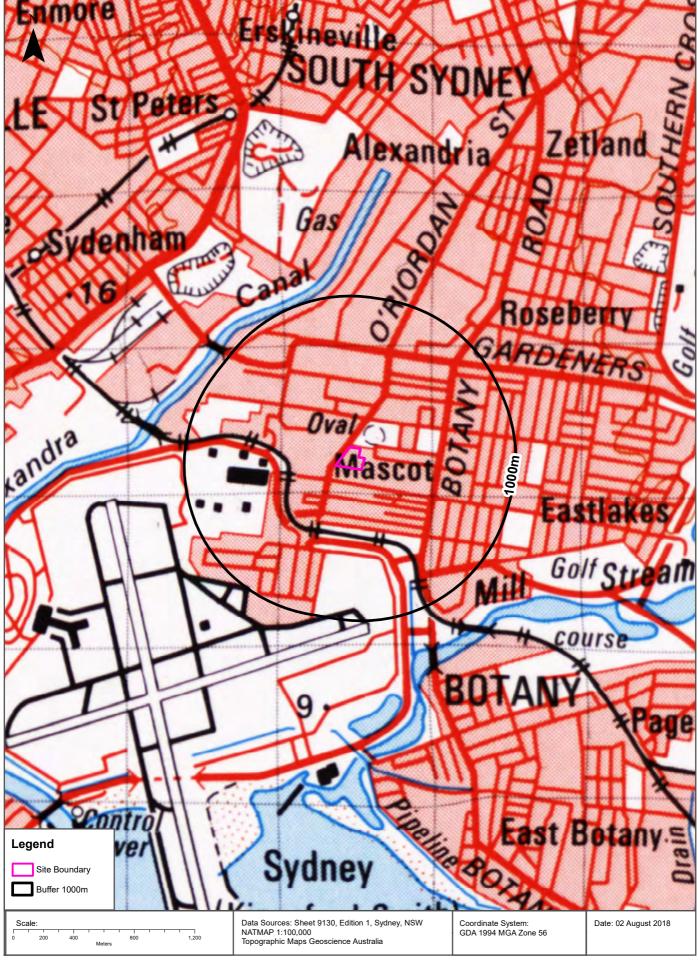


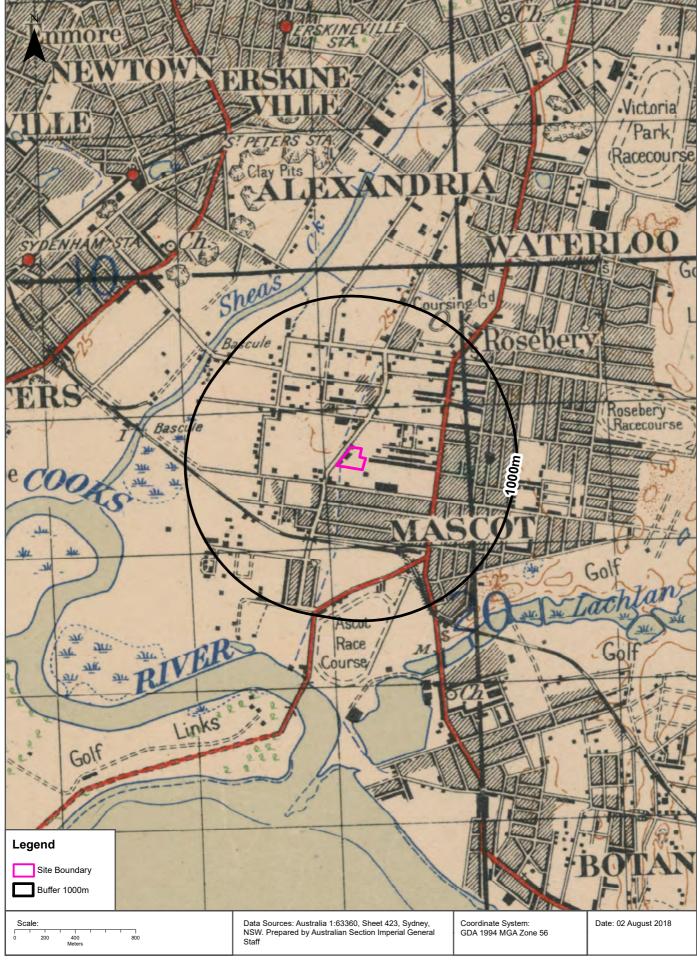


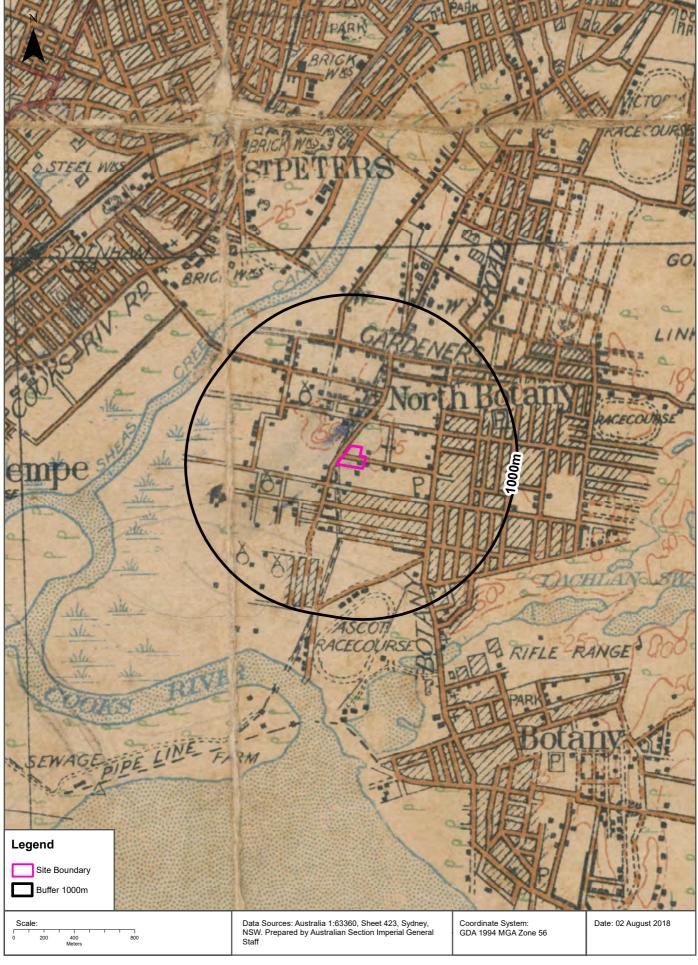


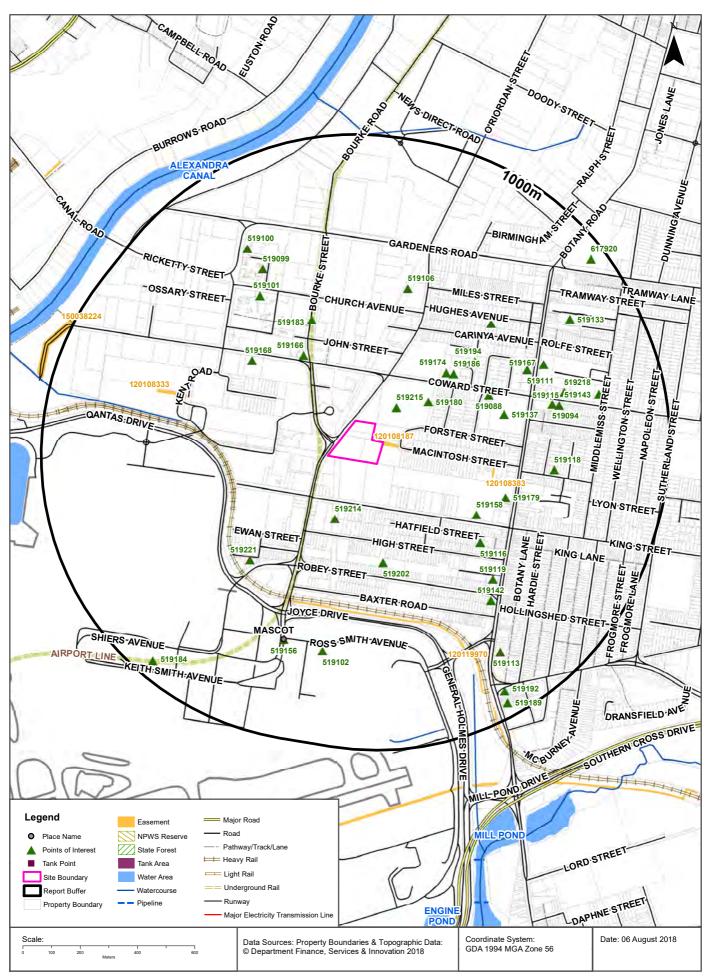





Topographic Map 2015


Historical Map 1975


Historical Map 1936


Historical Map 1917

Topographic Features

Topographic Features

146-154 O'Riordan Street, Mascot, NSW 2020

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
519215	Sports Field	MASCOT OVAL	92m	North East
519180	Park	LIONEL BOWEN PARK	199m	North East
519214	Park	HIGH STREET RESERVE	214m	South
519166	Park	NANCY BIRD-WALTON RESERVE	291m	North West
519174	Club	GRAPHIC ARTS CLUB MASCOT	305m	North East
519186	Place Of Worship	GREEK ORTHODOX CHURCH OF ST CATHERINE	324m	North East
519202	Park	JOHN CURTIN RESERVE	345m	South
519183	Railway Station	MASCOT RAILWAY STATION	384m	North
519158	Primary School	MASCOT PUBLIC SCHOOL	390m	South East
519088	Community Facility	MASCOT SENIOR CITIZENS CENTRE	403m	East
519194	Park	ELPHICK AVENUE RESERVE	409m	North East
519168	Embassy	CONSULATE OF THE REPUBLIC MOZAMBIQUE	413m	North West
519137	Park	MASCOT MEMORIAL PARK	432m	East
519116	Library	MASCOT LIBRARY	453m	South East
519221	Park	COLEMAN RESERVE	454m	South West
519179	Preschool	MASCOT PUBLIC SCHOOL PRESCHOOL	463m	East
519106	Park	STANDFIELD PARK	485m	North
519130	Park	HUGHES AVENUE RESERVE	534m	North East
519101	Park	DOCTOR DARRAGH PARK	548m	North West
519111	Ambulance Station	MASCOT AMBULANCE STATION	562m	North East
519119	Post Office	MASCOT POST OFFICE	571m	South East
519094	Local Government Chambers	THE COUNCIL OF THE CITY OF BOTANY BAY	604m	East
519118	Place Of Worship	ORTHODOX CHURCH	605m	East
519099	Park	ANNABEL PARK	620m	North West
519167	Police Station	MASCOT POLICE STATION	621m	North East
519142	Park	ROBEY STREET RESERVE	622m	South East
519115	Fire Station	MASCOT FIRE STATION	626m	East
519218	Place Of Worship	ROSEBERY UNITING CHURCH	654m	East
519156	Suburb	MASCOT	660m	South
519102	Ambulance Station	MASCOT AIR AMBULANCE STATION	676m	South

Map Id	Feature Type	Label	Distance	Direction
519100	Park	REVEREND SOO PARK	709m	North West
519143	Park	LAURISTON PARK	770m	East
519133	Park	LEVER STREET RESERVE	770m	North East
519113	Club	MASCOT RSL CLUB	786m	South East
519192	Park	DR DARRAGH RESERVE	909m	South East
519184	Railway Station	DOMESTIC TERMINAL RAILWAY STATION	941m	South West
617920	Primary School	GARDENERS ROAD PUBLIC SCHOOL	946m	North East
519189	Place Of Worship	BECKENHAM MEMORIAL CHURCH	950m	South East

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

146-154 O'Riordan Street, Mascot, NSW 2020

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
	No records in buffer					

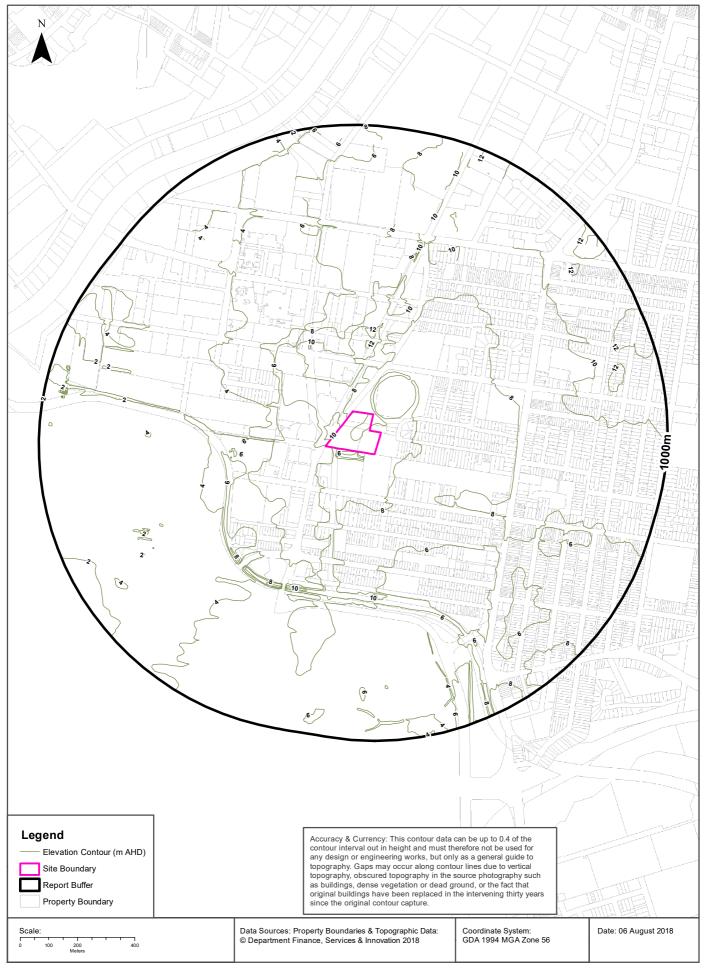
Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

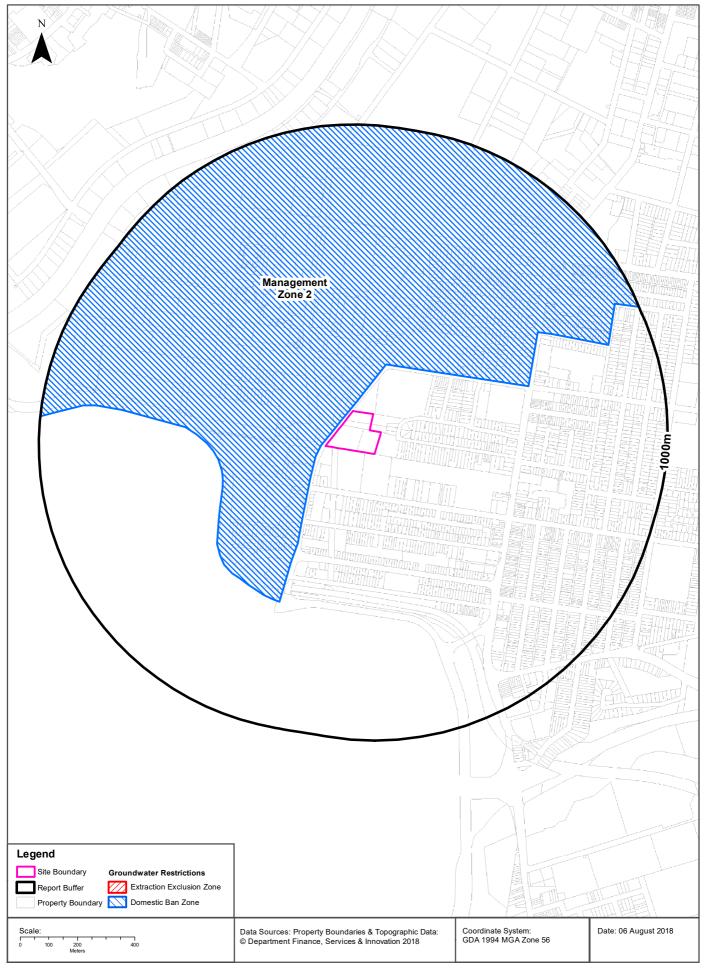
What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).


Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120108187	Primary	Undefined		0m	East
120108383	Primary	Undefined		394m	East
120119970	Primary	Undefined		520m	South
120108333	Primary	Undefined		536m	West
150038224	Primary	Right of way		997m	West

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en


Elevation Contours (m AHD)

Botany Groundwater Management Zones

Topographic Features

146-154 O'Riordan Street, Mascot, NSW 2020

State Forest

What State Forest exist within the dataset buffer?

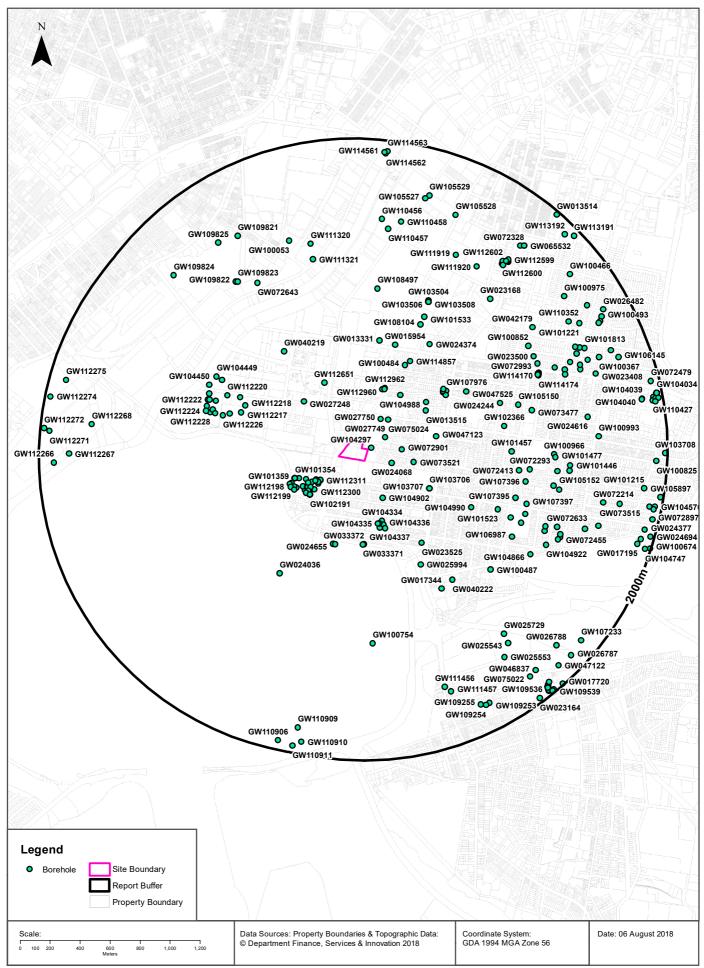
State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?


Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Groundwater Boreholes

Hydrogeology & Groundwater

146-154 O'Riordan Street, Mascot, NSW 2020

Hydrogeology

Description of aquifers on-site:

Description	
Porous, extensive highly productive aquifers	

Description of aquifers within the dataset buffer:

Description	
Porous, extensive highly productive aquifers	

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Botany Groundwater Management Zones

Groundwater management zones relating to the Botany Sand Beds aquifer within the dataset buffer:

Management Zone No.	Restriction	Distance	Direction
2	Domestic ban	11m	North

Botany Groundwater Management Zones Data Source : NSW Department of Primary Industries

Hydrogeology & Groundwater

146-154 O'Riordan Street, Mascot, NSW 2020

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m)		Elev (AHD)	Dist	Dir
GW104 297	10BL156 208, 10WA11 3023	Bore	Private	Domestic	Domestic		20/12/1994		42.00		4.00	0.400		24m	East
GW027 749	10BL021 267	Bore	Local Govt	Irrigation	Recreation (groundwate r)		01/12/1965	16.40	16.50					141m	North East
GW024 068	10BL017 315, 10WA11 2890	Spear	Private	Domestic	Domestic		01/05/1966	4.20	4.30					180m	East
GW027 750	10BL021 266, 10WA11 4789	Bore	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		01/12/1965	17.30	17.40					180m	North East
GW112 310	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		23/01/2002	6.00	6.00					198m	South West
GW112 311	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		24/01/2002	4.00	4.00					200m	South West
GW075 024		Bore	NSW Office of Water		Monitoring Bore	BOTANY BOREFIEL D AT MASCOT OVAL	16/07/1998	19.50	20.50		0.76		8.48	211m	North East
GW112 298	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2002	4.00	4.00					216m	South West
GW112 309	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		22/01/2002	4.00	4.00					216m	South West
GW112 308	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		23/01/2002	6.00	6.00					216m	South West
GW112 307	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		22/01/2002	4.00	4.00					222m	South West
GW112 299	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2002	4.00	4.00					227m	South West
GW072 901		Bore	Private		Domestic		15/11/1994	7.00	7.00					229m	East
GW112 291	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		14/01/2002	6.00	6.00					246m	South West
GW112 202	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/05/1996	5.90	5.90					263m	South West
GW112 306	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		22/01/2002	4.00	4.00					269m	South West
GW112 300	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2002	4.00	4.00					273m	South West
GW112 302	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		22/01/2002	4.00	4.00					276m	South West
GW104 902	10BL157 111, 10WA11 3115	Bore	Private	Domestic	Domestic		27/09/1995	7.10	7.10	Good	1.83	1.000		277m	South East
GW112 305	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2002	4.00	4.00					289m	South West
GW112 304	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		22/01/2002	4.00	4.00					292m	South West
GW112 301	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		22/01/2002	6.00	6.00					294m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)		Elev (AHD)	Dist	Dir
GW112 303	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		22/01/2001	4.00	4.00				295m	South West
GW112 292	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2002	4.00	4.00				297m	South West
GW112 203	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/05/1996	6.00	6.00				300m	South West
GW112 293	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2002	4.00	4.00				302m	South West
GW112 294	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2002	4.00	4.00				303m	South West
GW112 295	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2001	4.00	4.00				307m	South West
GW112 196	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/07/1996	5.05	5.05				309m	South West
GW102 193	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	3.90	3.90				317m	South West
GW102 191	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		18/03/1999	4.00	4.00				317m	South West
GW102 197	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	3.60	3.60				317m	South West
GW102 192	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		19/03/1999	4.00	4.00				317m	South West
GW102 178	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	4.40	4.40				317m	South West
GW102 169	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		07/01/1999	4.50	4.50				317m	South West
GW102 186	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	4.20	4.20				317m	South West
GW102 198	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	3.50	3.50				317m	South West
GW102 190	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		18/03/1999	4.00	4.00				317m	South West
GW102 184	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		18/03/1999	4.20	4.20				317m	South West
GW102 205	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	3.30	3.30				317m	South West
GW102 173	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		06/01/1999	4.50	4.50				317m	South West
GW102 171	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		07/01/1999	6.00	6.00				317m	South West
GW102 188	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	4.00	4.00				317m	South West
GW102 194	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	3.70	3.70				317m	South West
GW102 189	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	4.00	4.00				318m	South West
GW102 172	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		06/01/1999	4.50	4.50				318m	South West
GW102 164	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		07/01/1999	5.00	5.00				318m	South West
GW102 160	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		07/01/1999	5.00	5.00				318m	South West
GW102 168	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		07/01/1999	5.00	5.00				318m	South West
GW102 203	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		18/03/1999	3.50	3.50				318m	South West
GW102 199	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	3.50	3.50				318m	South West
GW102 200	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		19/03/1999	3.50	3.50				318m	South West
GW102 196	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	3.60	3.60				318m	South West
GW102 162	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		07/01/1999	5.00	5.00				318m	South West
GW102 201	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		18/03/1999	3.50	3.50				318m	South West
GW102 165	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		07/01/1999	5.00	5.00				318m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m)	Elev (AHD)	Dist	Dir
GW102 185	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		18/03/1999	4.20	4.20				318m	South West
GW102 176	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		06/01/1999	4.50	4.50				318m	South West
GW102 187	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	4.20	4.20				318m	South West
GW102 204	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	3.30	3.30				318m	South West
GW112 201	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/05/1996	5.60	5.60				318m	South West
GW102 195	10BL159 044	Bore	Private	Monitoring Bore	Monitoring Bore		22/03/1999	3.60	3.60				318m	South West
GW073 521		Spear	Private		Domestic		29/10/1995	3.00	3.00				320m	East
GW112 296	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2002	6.00	6.00				324m	South West
GW112 297	10BL160 586	Bore	Private	Monitoring Bore	Monitoring Bore		21/01/2002	6.00	6.00				325m	South West
GW101 358	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	6.00	6.00				326m	South West
GW101 360	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	6.00	6.00				326m	South West
GW101 354	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	6.00	6.00				326m	South West
GW101 361	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	4.30	4.30				326m	South West
GW101 352	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	5.70	5.70				326m	South West
GW101 359	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	6.00	6.00				326m	South West
GW101 350	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	5.90	5.90				326m	South West
GW101 362	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	5.90	5.90				326m	South West
GW101 357	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	5.90	5.90				326m	South West
GW101 353	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	6.00	6.00				326m	South West
GW101 355	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	6.00	6.00				326m	South West
GW101 356	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	5.60	5.60				326m	South West
GW101 351	10BL157 307	Bore	Private	Monitoring Bore	Monitoring Bore		22/11/1995	5.05	5.05				326m	South West
GW112 197	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/05/1996	5.70	5.70				350m	South West
GW112 195	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/05/1996	5.90					357m	South West
GW112 960	10BL602 812	Bore	Private	Monitoring Bore	Monitoring Bore	Caltex - Mascot	17/11/2008	5.50	5.50				359m	North East
GW112 204	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/05/1996	6.00	6.00				361m	South West
GW112 961	10BL602 812	Bore	Private	Monitoring Bore	Monitoring Bore	Caltex - Mascot	17/11/2008	5.00	5.00				367m	North East
GW112 200	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/05/1996	6.00	6.00				370m	South West
GW112 198	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/05/1996	6.00	6.00				372m	South West
GW112 962	10BL602 812	Bore	Private	Monitoring Bore	Monitoring Bore	Caltex - Mascot	17/11/2008	5.00	5.00				373m	North East
GW112 199	10BL156 771	Bore	Private	Monitoring Bore	Monitoring Bore		27/05/1996	6.00	6.00				379m	South West
GW103 588	10BL160 017, 10WA11 3300	Bore		Domestic	Domestic		18/02/2001	7.00	7.00				386m	North East
GW027 248	10BL020 568	Spear	Private	Industrial	Industrial		01/11/1965	4.80	4.90				408m	North West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m)		Elev (AHD)	Dist	Dir
GW112 651	10BL604 737	Bore	Private	Dewatering (groundwater)	Dewatering (groundwate r)		23/12/2011	6.00	6.00					416m	North West
GW104 334	10BL160 591	Bore	Private	Monitoring Bore	Monitoring Bore		05/04/2002	3.50	3.50		0.90			420m	South
GW104 335	10BL160 591	Bore	Private	Monitoring Bore	Monitoring Bore		05/04/2002	3.50	3.50		1.40			430m	South
GW104 333	10BL160 591	Bore	Private	Monitoring Bore	Monitoring Bore		05/04/2002	3.50	3.50		1.20			430m	South
GW104 336	10BL160 591	Bore	Private	Monitoring Bore	Monitoring Bore		05/04/2002	3.50	3.50		1.00			445m	South
GW104 337	10BL160 591	Bore	Private	Monitoring Bore	Monitoring Bore		05/04/2002	3.50	3.50		1.40			457m	South
	10BL008 626, 10WA11 2796	Spear	Private	Domestic	Domestic		01/01/1958	8.20	8.20					460m	North East
GW047 123	10BL105 637, 10WA11 4669	Bore	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		01/07/1973	18.90	18.90					465m	East
GW104 338	10BL160 591	Bore	Private	Monitoring Bore	Monitoring Bore		05/04/2002	3.50	3.50		1.20			471m	South
GW103 706	10BL160 099	Bore		Monitoring Bore	Monitoring Bore		02/11/2000	4.30	4.30					471m	South East
GW103 707	10BL160 099	Bore		Monitoring Bore	Monitoring Bore		03/11/2000	4.20	4.20					471m	South East
GW103 705	10BL160 099	Bore		Monitoring Bore	Monitoring Bore		02/11/2000	4.70	4.70					471m	South East
GW104 988	10BL160 392, 10WA11 3311	Bore	Private	Domestic	Domestic		15/12/2001	7.00	7.00		4.00	1.000		488m	North East
GW033 372	10BL024 741	Bore	Federal Govt	Industrial	Industrial		01/03/1970	11.80	11.90					558m	South
GW033 371	10BL024 740	Bore	Federal Govt	Industrial	Industrial		01/03/1970	11.80	11.90					559m	South
GW100 484	10BL157 840	Bore	Private	Monitoring Bore	Monitoring Bore		19/12/1996	4.00	4.00		0.00			569m	North East
GW031 808	10BL024 739	(Unkn own)	P.W.D.	Test Bore	G/water Xplore		01/06/1969	18.20	18.30					581m	South
GW024 655	10BL018 264	Bore	Private	Industrial	General Use		01/06/1966	9.10	9.10					582m	South
GW114 857	10BL605 586	Bore	Private	Monitoring Bore	Monitoring Bore		15/05/2014	6.00	6.00					609m	North East
GW112 403	10BL602 019, 10WA11 4432	Well	Private	Groundwater Remediation	Groundwate r Remediatio		29/11/2007	0.90	0.90					619m	North East
GW112 404	10BL602 019, 10WA11 4432	Well	Private	Groundwater Remediation	Groundwate r Remediatio n		29/11/2007	1.30	1.30					622m	North East
GW113 311	10BL160 868	Bore	Private	Monitoring Bore	Monitoring Bore	Shell	01/01/2002	4.00	4.00		1.78			624m	North East
GW112 405	10BL602 019, 10WA11 4432	Well	Private	Groundwater Remediation	Groundwate r Remediatio n		29/11/2007	1.30	1.30					633m	North East
GW107 976	10BL164 933	Spear	Private	Dewatering (groundwater)	Dewatering (groundwate r)		05/10/2004	3.50	3.50					642m	North East
GW015 954	10BL006 808	Bore	Private	Industrial	Industrial		01/05/1957	20.10	20.10					667m	North
GW023 525	10BL016 753	Spear	Private	Domestic	General Use		01/11/1965	5.90	5.90					669m	South East
GW013 331	10BL006 748	Bore	Private	General Use, Industrial	Industrial		01/08/1954	14.90	14.90					670m	North
GW112 218	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					708m	West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW112 217	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.10	4.10					712m	West
GW040 219		Spear	Private		Industrial			6.30	6.30				3.89	740m	North West
GW047 525	10BL105 640, 10WA11 4683	Bore	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		01/05/1975	17.10	19.40					756m	North East
GW112 219	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					764m	North West
GW024 374	10BL016 571	Spear	Private	Irrigation	General Use		01/12/1965	5.10	5.20	Poor				775m	North East
GW112 227	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	3.50	3.50					779m	West
GW104 990	10BL160 430, 10WA11 3313	Bore	Private	Domestic	Domestic		22/01/2002	6.00	6.00		3.50	1.000		779m	South East
GW025 994	10BL016 721	Bore	Private	Not Known	General Use		01/03/1966	13.20	13.30	Good				789m	South East
GW112 226	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.40	4.40					819m	West
GW112 220	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					845m	North West
GW108 104	10BL160 615	Bore		Industrial	Industrial		10/05/2007		20.00			13.00		858m	North East
GW112 225	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.10	4.10					871m	West
GW024 036	10BL017 949	Spear	Private	Industrial	General Use		01/01/1966	6.00	6.10					873m	South West
GW112 229	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					895m	West
GW112 231	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					897m	West
GW112 228	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					905m	West
GW101 533	10BL157 298	Bore	Private	Industrial	Industrial		06/11/1997	20.00	20.00	Good	4.40	1.000		915m	North East
GW102 366	10BL159 184, 10WA11 3281	Bore		Domestic	Domestic		23/05/1999	7.00	7.00					925m	East
GW104 448	10BL160 854	Bore	Private	Monitoring Bore	Monitoring Bore		25/11/2002	3.50	3.50			1.000		928m	North West
GW112 224	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.10	4.10					935m	West
GW024 244	10BL018 810, 10WA11 2967	Spear	Private	Domestic	General Use		01/11/1965	3.00	3.00	Fair				936m	East
GW112 230	10BL160 943	Bore	Private	Monitoring Bore			03/12/2002	4.00	4.00					940m	West
GW112 223	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		31/12/2002	4.20	4.20					940m	West
GW101 523	10BL158 689, 10WA11 3260	Bore	Private	Domestic	Domestic		01/06/1998	6.10	6.10	Good	1.52	1.000		949m	East
GW112 222	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.20	4.20					950m	West
GW112 221	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.20	4.20					958m	West
GW101 457	10BL158 490, 10WA11 3250	Spear	Private	Domestic	Domestic		02/03/1998	6.00	6.00					962m	East
GW104 449	10BL160 854	Bore	Private	Monitoring Bore	Monitoring Bore		01/01/2002	3.50	3.50			1.000		973m	North West
GW104 450	10BL160 854	Bore	Private	Monitoring Bore	Monitoring Bore		01/01/2002	3.50	3.50			0.500		985m	North West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW040 222		Well	Private		Industrial			7.00	7.00				8.69	989m	South East
GW017 344	10BL008 344	Bore	Private	Not Known	Industrial		01/02/1955	13.80	13.80					999m	South East
GW108 497	10BL161 956, 10WA11 4717	Bore	Private	Recreation (groundwater)			16/01/2008	8.00				3.000		1011m	North
GW103 507	10BL159 488	Bore		Monitoring Bore	Monitoring Bore		14/10/1999	6.00	6.00					1016m	North East
GW103 508	10BL159 488	Bore		Monitoring Bore	Monitoring Bore		15/10/1999	6.00	6.00					1016m	North East
GW103 506	10BL159 488	Bore		Monitoring Bore	Monitoring Bore		13/10/1999	6.00	6.00					1016m	North East
GW103 505	10BL159 488	Bore		Monitoring Bore	Monitoring Bore		14/10/1999	6.00	6.00					1016m	North East
GW072 413	10BL156 159, 10WA11 3021	Spear	Private	Domestic	Domestic		31/10/1994	6.00	6.00					1020m	East
GW103 504	10BL159 488	Bore		Monitoring Bore	Monitoring Bore		13/10/1999	6.10	6.10					1025m	North East
GW107 395	10BL163 147	Bore		Monitoring Bore	Monitoring Bore		22/07/2003	3.60	3.60					1037m	East
GW075 023		Bore	NSW Office of Water		Monitoring Bore	BOTANY BOREFIEL D AT LESTRAN GE PARK	15/07/1998	18.50	26.00				8.44	1048m	South East
GW105 150	10BL157 080, 10WA11 3111	Bore	Private	Domestic	Domestic		20/09/1995	5.00	5.00					1049m	East
GW107 396	10BL163 147	Bore		Monitoring Bore	Monitoring Bore		22/07/2003	3.50	3.50					1076m	East
GW072 293		Spear	Private		Domestic		29/11/1994	6.60						1092m	East
GW106 987	10BL161 311, 10WA11 3334	Spear	Private	Domestic	Domestic		10/04/2005	7.00	7.00					1108m	South East
GW100 487	10BL157 229	Bore		Domestic			01/01/1996	5.00			4.00			1112m	South East
GW107 397	10BL163 147	Bore		Monitoring Bore	Monitoring Bore		27/07/2003	3.60	3.60					1120m	East
GW073 477	10BL157 226, 10WA11 3127	Bore		Domestic	Domestic		20/10/1995	5.00						1125m	East
GW023 605	10BL017 288, 10WA11 2883	Spear	Private	Domestic	General Use		01/01/1966	4.50	4.60	Good				1127m	South East
GW105 117	10BL160 666, 10WA11 4711	Bore	Private	Recreation (groundwater)	Recreation (groundwate r)		12/12/2012	14.00	14.00	220	1.30	5.000		1132m	East
GW072 643	10BL156 189	Bore	Local Govt	Test Bore	Test Bore		25/09/1996	12.00	12.00					1215m	North West
GW100 754	10BL156 761, 10WA11 4629	Bore	Private	Industrial	Industrial		21/06/1995	148.00	148.00	560	6.00	8.200		1220m	South
GW111 321	10BL601 845	Bore	Private	Monitoring Bore	Monitoring Bore		09/01/2007	5.00	5.00		2.63			1222m	North
GW114 173	10BL604 101	Bore	Private	Monitoring Bore	Monitoring Bore		05/10/2010	4.00	4.00					1240m	East
GW114 174	10BL604 101	Bore	Private	Monitoring Bore	Monitoring Bore		05/10/2010	4.00	4.00					1243m	East
GW114 172	10BL604 101	Bore	Private	Monitoring Bore	Monitoring Bore		05/10/2010	4.00	4.00					1243m	North East

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW100 966	10BL156 935, 10WA11 3086	Spear	Private	Domestic	Domestic		23/08/1995	5.50	5.50	Good	1.83	1.000		1245m	East
GW114 171	10BL604 101	Bore	Private	Monitoring Bore	Monitoring Bore		05/10/2010	4.00	4.00					1248m	North East
GW114 170	10BL604 101	Bore	Private	Monitoring Bore	Monitoring Bore		05/10/2010	4.00	4.00					1251m	North East
GW101 477	10BL158 449, 10WA11 3241	Spear	Private	Domestic	Domestic		05/01/1998	6.00	6.00					1255m	East
GW026 070	10BL017 804, 10WA11 2932	Spear	Private	Domestic	Domestic		01/01/1966	3.60	3.70					1263m	East
GW023 500	10BL017 646, 10WA11 2923	Spear	Private	Domestic	General Use		01/01/1966	5.40	5.50	Good				1265m	North East
GW023 168	10BL017 001	Spear	Private	Domestic	General Use		01/01/1966	4.50	4.60					1265m	North East
GW100 852	10BL157 549, 10WA11 3165	Spear	Private	Domestic	Domestic		14/03/1996	6.10	6.10	Good	1.83	1.000		1266m	North East
GW072 993	10BL156 242, 10WA11 3026	Bore		Domestic			01/01/1995	48.77	48.76			0.667		1268m	North East
GW104 866	10BL161 625, 10WA11 3339	Bore	Private	Domestic	Domestic		17/03/2003	6.71	6.71		3.66	1.190		1273m	South East
GW101 475	10BL158 448, 10WA11 3240	Spear	Private	Domestic	Domestic		04/02/1998	6.00	6.00					1275m	East
GW072 632		Bore	Private		Domestic		02/12/1994	5.00	5.00					1285m	East
GW101 787	10BL157 379, 10WA11 3154	Bore		Domestic	Domestic		18/12/1995	5.80	5.80	Good	1.83	1.000		1291m	South East
GW109 823	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		23/10/2000	29.00	29.00	10.6	12.5 0	0.100		1298m	North West
GW109 822	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		04/04/1997	10.45	10.45	958	3.00			1305m	North West
GW023 472	10BL017 260, 10WA11 2877	Spear	Private	Domestic	General Use		01/03/1966	3.60	3.70	Good				1307m	East
GW111 320	10BL601 845	Bore	Private	Monitoring Bore	Monitoring Bore		09/01/2007	5.20	5.20		2.52			1327m	North
GW104 922	10BL160 557, 10WA11 3318	Bore	Private	Domestic	Domestic		09/03/2002	7.00	7.00		3.50	1.000		1338m	South East
GW105 152	10BL157 076, 10WA11 3110	Bore	Private	Domestic	Domestic		20/09/1995	5.00	5.00					1354m	East
GW042 179		Well	Private		Not Known			24.00	24.00				12.26	1355m	North East
GW101 446	10BL158 458, 10WA11 3243	Spear	Private	Domestic	Domestic		04/01/1998	6.00	6.00					1356m	East
GW072 633		Bore	Private		Domestic		03/12/1994	5.00	5.00					1360m	East
GW023 162	10BL016 979	Spear	Private	Domestic	General Use		01/01/1966	4.80	4.90	Good				1363m	North East

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW111 919	10BL602 004	Spear	Private	Monitoring Bore	Monitoring Bore		01/01/2007	7.00	7.00		90.0	0.200		1377m	North East
GW111 920	10BL602 005	Spear	Private	Monitoring Bore	Monitoring Bore		01/01/2007	6.00	6.00		9.00	0.200		1380m	North East
GW100 053	10BL154 407, 10WA11 4697	Spear	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		20/04/1994	7.00	7.00		1.00	1.800		1385m	North
GW072 634		Spear	Private		Domestic		24/10/1994	6.10	6.10					1395m	South East
GW100 803	10BL156 210, 10WA11 3024	Bore		Domestic			31/12/1994	6.00	6.00		2.00			1397m	East
GW072 455	10BL156 142, 10WA11 3019	Bore		Domestic	Domestic		24/10/1994	5.80	5.80					1402m	South East
GW023 561	10BL017 493, 10WA11 2901	Spear	Private	Domestic	General Use		01/01/1966	5.40	5.50	Good				1409m	East
GW110 457	10BL603 007	Well	Private	Monitoring Bore	Monitoring Bore		01/05/2009	3.60	3.60		1.70			1415m	North
GW023 968		Spear	Private		General Use		01/01/1966	4.50	4.60	Good				1419m	East
GW100 575	10BL158 007, 10WA11 3192	Spear	Private	Domestic	Domestic		20/04/1997	5.00	5.00					1471m	East
GW110 456	10BL603 007	Well	Private	Monitoring Bore	Monitoring Bore		01/05/2009	3.20	3.60		2.30			1474m	North
GW110 458	10BL603 007	Well	Private	Monitoring Bore	Monitoring Bore		01/05/2009	2.80	2.80		2.30			1475m	North
GW024 616	10BL019 001, 10WA11 2979	Spear	Private	Domestic	Domestic		01/09/1966	5.60	5.60					1484m	East
GW025 729	10BL016 155	(Unkn own)	Private	Industrial	Industrial		01/01/1940	21.30						1485m	South East
GW112 603	10BL604 110	Bore	Private	Monitoring Bore	Monitoring Bore	Shell - Alexandria	13/07/2010	5.00	5.00		4.00			1493m	North East
GW112 600	10BL604 110	Bore	Private	Monitoring Bore	Monitoring Bore	Shell - Alexandria	13/07/2010	4.60	4.60		3.30			1495m	North East
GW112 602	10BL604 110	Bore	Private	Monitoring Bore	Monitoring Bore	Shell - Alexandria	13/07/2010	5.00	5.00		3.80			1512m	North East
GW101 231	10BL158 390, 10WA11 3225	Spear	Private	Domestic	Domestic		21/12/1997	7.00	7.00					1516m	East
GW112 598	10BL604 110	Bore	Private	Monitoring Bore	Monitoring Bore	Shell - Alexandria	13/07/2010	5.00	5.00					1525m	North East
GW101 161	10BL157 031, 10WA11 3100	Spear	Private	Domestic	Domestic		06/09/1995	6.10	6.10	Good	3.50	1.000		1526m	East
GW112 599	10BL604 110	Bore	Private	Monitoring Bore	Monitoring Bore	Shell - Alexandria	13/07/2010	4.50	4.50		3.50			1529m	North East
GW100 945	10BL156 905, 10WA11 3083	Spear	Private	Domestic	Domestic		14/08/1995	7.10	7.10	Good	2.13	1.000		1533m	North East
GW112 601	10BL604 110	Bore	Private	Monitoring Bore	Monitoring Bore	Shell - Alexandria	13/07/2010	5.00	5.00		4.20			1535m	North East
GW102 800	10BL159 567, 10WA11 3293	Bore		Domestic	Domestic		12/01/2000	6.10	6.10	Good				1539m	East
GW112 597	10BL604 110	Bore	Private	Monitoring Bore	Monitoring Bore	Shell - Alexandria	13/07/2010	5.00	5.00		3.90			1543m	North East

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m)		Elev (AHD)	Dist	Dir
GW103 193	10BL159 777, 10WA11 3296	Bore		Domestic	Domestic		01/01/1985	6.70	6.70		2.00	0.378		1543m	North East
GW100 993	10BL156 957, 10WA11 3091	Spear	Private	Domestic	Domestic		29/08/1995	5.49	5.49	Good	2.13	1.000		1544m	East
GW025 543	10BL016 154	Bore	Private	Industrial	Industrial		01/01/1963	18.50	18.60	Good			7.05	1550m	South East
GW109 821	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		03/04/1997	35.00	35.00	4400	14.5 0			1554m	North West
GW100 997	10BL158 173, 10WA11 3201	Spear	Private	Domestic	Domestic		01/10/1997	8.23	8.24	Good		1.000		1568m	North East
GW110 352	10BL602 743, 10WA11 4783	Bore	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		01/01/1975	40.00	40.00		10.0	2.000		1579m	North East
GW109 825	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		10/02/2005	22.00	22.00		14.9 0			1584m	North West
GW023 967	10BL017 821, 10WA11 2935	Spear	Private	Domestic	General Use		01/05/1966	2.70	2.70	Good				1585m	East
GW101 813	10BL157 317, 10WA11 3139	Bore		Domestic	Domestic		16/11/1995	8.54	8.54	Good	2.75	1.000		1597m	North East
GW111 456	10BL604 566	Bore	Private	Monitoring Bore	Monitoring Bore		14/04/2011	5.20	6.20		2.77			1603m	South
GW023 408	10BL016 677	Spear	Private	Domestic	General Use		01/12/1965	7.00	7.00					1603m	East
GW025 553	10BL016 153	(Unkn own)	Private	Industrial	Industrial		01/01/1940	17.00						1610m	South East
GW072 214		Bore	Private		Domestic		01/03/1995	5.00	5.00					1612m	East
GW109 824	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		05/04/2005	20.70	20.70		4.51			1615m	North West
GW105 528	10BL160 254	Bore		Monitoring Bore	Monitoring Bore		02/12/1993	5.00	5.00					1620m	North East
GW023 600	10BL017 286, 10WA11 2881	Spear	Private	Domestic	General Use		01/01/1966	7.30	7.30	Good				1622m	East
GW101 221	10BL158 317, 10WA11 3219	Spear	Private	Domestic	Domestic		12/12/1997	6.10	6.10	Good	2.13	1.000		1637m	North East
GW100 975	10BL156 944, 10WA11 3087	Spear	Private	Domestic	Domestic		10/05/1993	6.10	6.10	Good	2.74	1.000		1645m	North East
GW111 457	10BL604 566	Bore	Private	Monitoring Bore	Monitoring Bore		14/04/2011	6.20	6.20		2.77			1645m	South
GW112 268	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		21/03/2003	12.35	12.35					1659m	West
GW105 527	10BL160 254	Bore		Monitoring Bore	Monitoring Bore		15/12/2000	5.00	5.00					1661m	North
GW100 367	10BL157 662, 10WA11 3172	Spear	Private	Domestic	Domestic		30/05/1995	6.00	6.00	Good	2.90	0.500		1662m	East
GW017 782	10BL009 960	Bore	Private	Industrial (low Security)	Industrial		01/09/1959	15.50	15.50					1665m	North East
GW072 328	10BL155 241	Bore	Private	Industrial	Industrial		18/06/1994	13.00	14.00					1681m	North East
GW065 532		Bore	Private		Industrial		01/11/1990	18.00						1681m	North East
GW105 529	10BL160 254	Bore		Monitoring Bore	Monitoring Bore		07/02/2001	5.00	5.00					1688m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW073 515	10BL157 331, 10WA11 3143	Spear	Private	Domestic	Domestic		23/11/1995	7.00	7.00					1722m	East
GW101 037	10BL158 242, 10WA11 3209	Spear	Private	Domestic	Domestic		24/11/1997	4.88	4.88	Good		1.000		1741m	North East
GW101 226	10BL158 322, 10WA11 3223	Spear	Private	Domestic	Domestic		09/12/1997	5.30	5.30	Good	3.36	0.500		1751m	East
GW024 023	10BL018 142	Spear	Private	Domestic	General Use		01/05/1966	8.20	8.20	Good				1752m	North East
GW100 466	10BL157 947, 10WA11 3186	Spear	Private	Domestic	Domestic		12/03/1997	5.00	5.00					1765m	North East
GW100 813	10BL156 314, 10WA11 3035	Spear	Private	Domestic	Domestic		25/11/1994	10.98	10.98	Good	7.93	0.800		1767m	North East
GW026 788	10BL016 246	Spear	Private	Industrial	Industrial		01/11/1965	20.40	20.40					1777m	South East
GW106 145	10BL157 073, 10WA11 3108	Spear	Private	Domestic	Domestic		14/09/1995	5.79	5.79	Good		0.800		1782m	East
GW100 493	10BL157 767, 10WA11 3175	Spear	Private	Domestic	Domestic		08/11/1996	9.75	9.75	Fresh	5.80			1788m	North East
GW112 267	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		20/03/2003	12.12	12.12					1798m	West
GW109 255	10BL602 488	Bore	Private	Monitoring Bore	Monitoring Bore		21/08/2008	7.30	7.30	Fresh	0.72			1803m	South East
GW046 837	10BL107 198	Bore	Local Govt	Test Bore	Recreation (groundwate r)		01/11/1970	14.80	14.80					1806m	South East
GW075 022		Bore	NSW Office of Water		Monitoring Bore	BOTANY BOREFIEL D AT BORALEE PARK	14/07/1998	15.75	16.75		1.77		8.45	1816m	South East
GW026 482	10BL018 808	Spear	Private	Domestic	General Use		01/01/1966	5.40	5.50	Good				1819m	North East
GW109 253	10BL602 488	Bore	Private	Monitoring Bore	Monitoring Bore		21/08/2008	10.30	10.30	Fresh	1.42			1820m	South East
GW109 254	10BL602 488	Bore	Private	Monitoring Bore	Monitoring Bore		21/08/2008	9.70	9.70	Fresh	1.03			1822m	South East
GW110 909	10BL603 566	Well	Private	Monitoring Bore	Monitoring Bore		19/01/2010	5.80	5.80		2.50			1829m	South
GW104 040	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		10/11/2000	7.00	7.00		2.80			1859m	East
GW101 215	10BL158 280, 10WA11 3217	Spear	Private	Domestic	Domestic		24/11/1997	7.62	7.62	Good		1.000		1862m	East
GW104 039	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		10/11/2000	7.00	7.00		2.80			1864m	East
GW107 233	10BL161 832, 10CA11 4693	Bore		Irrigation, Recreation (groundwater)	Irrigation, Recreation (groundwate r)		28/06/2005	21.50	21.50		0.37	11.00 0		1879m	South East
GW047 122	10BL105 636, 10WA11 4677	Bore	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		01/11/1970	19.50	19.50					1882m	South East
GW112 275	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		27/02/2003	16.50	16.50					1888m	West
GW026 787	10BL016 247	Spear	Private	Industrial	Industrial		01/10/1965	24.80	24.80					1895m	South East

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW112 266	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		19/03/2003	10.37	10.37					1897m	West
GW017 195	10BL008 550, 10WA11 2795	Spear	Private	Domestic	General Use		01/12/1957	3.30	3.40	Good				1904m	East
GW114 562	10BL605 489	Bore	Other Govt	Monitoring Bore	Monitoring Bore	SCA	06/12/2013	4.00	2.70	448	2.51			1912m	North
GW114 561	10BL605 489	Bore	Other Govt	Monitoring Bore	Monitoring Bore	SCA	06/12/2013	4.00	4.00	529	2.92			1917m	North
GW102 741	10BL159 434, 10WA11 3288	Bore		Domestic	Domestic		28/10/1999	7.00	7.00					1919m	East
GW072 958		Bore	Private		Domestic		14/08/1995	5.00	5.00					1920m	East
GW113 192	10BL605 409	Bore	Private	Monitoring Bore	Monitoring Bore		05/07/2013	5.30	5.30					1920m	North East
GW110 910	10BL603 566	Well	Private	Monitoring Bore	Monitoring Bore		19/01/2010	6.00	6.00		3.00			1921m	South
GW109 542	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		20/07/2007	6.00						1923m	South East
GW024 377	10BL018 538, 10WA11 2954	(Unkn own)	Private	Domestic	General Use		01/07/1966	4.50	4.60					1925m	East
GW100 825	10BL157 608, 10WA11 3169	Spear	Private	Domestic	Domestic		23/04/1996	7.01	7.02	Good	4.88	1.000		1927m	East
GW114 563	10BL605 489	Bore	Other Govt	Monitoring Bore	Monitoring Bore	SCA	06/12/2013	4.00	3.90	591				1928m	North
GW110 427	10BL160 571	Bore	Private	Monitoring Bore	Monitoring Bore		13/02/2002	7.00	7.00					1929m	East
GW109 541	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		20/07/2007	6.00						1934m	South East
GW112 271	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		07/03/2003	19.51	19.51					1935m	West
GW110 428	10BL160 571	Bore	Private	Monitoring Bore	Monitoring Bore		12/02/2002	4.00	4.00					1937m	East
GW110 906	10BL603 567	Well	Private	Monitoring Bore	Monitoring Bore		19/01/2010	5.80	5.80		3.50			1938m	South
GW109 540	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		20/07/2007	6.00						1939m	South East
GW109 538	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		20/07/2007	6.00						1942m	South East
GW072 479	10BL156 278, 10WA11 3028	Bore	Private	Domestic	Domestic		21/11/1994	5.80	5.80		2.60	1.000		1943m	East
GW110 430	10BL160 571	Bore	Private	Monitoring Bore	Monitoring Bore		12/02/2002	4.00	4.00					1944m	East
GW110 429	10BL160 571	Bore	Private	Monitoring Bore	Monitoring Bore		12/02/2002	4.00	4.00					1946m	East
GW109 537	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		08/02/2006	6.00						1948m	South East
GW101 445	10BL158 450, 10WA11 3242	Spear	Private	Domestic	Domestic		08/01/1998	6.00	6.00					1950m	East
GW110 431	10BL160 571	Bore	Private	Monitoring Bore	Monitoring Bore		12/02/2002	5.00	5.00					1952m	East
GW110 911	10BL603 566	Well	Private	Monitoring Bore	Monitoring Bore		19/01/2010	6.00	6.00		3.20			1954m	South
GW113 191	10BL605 409	Bore	Private	Monitoring Bore	Monitoring Bore		05/07/2013	8.00	8.00					1954m	North East
GW104 570	10BL161 119, 10WA11 3327	Bore		Domestic	Domestic		09/12/2002	6.50	6.50					1955m	East

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW109 536	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		24/01/2006	6.00						1955m	South East
GW072 897		Spear	Private		Domestic		10/12/1994	5.80	5.80	Good				1956m	East
GW109 535	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		25/01/2006	6.00						1961m	South East
GW112 274	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		26/02/2003	13.70	13.70					1962m	West
GW104 747	10BL156 760, 10WA11 3076	Bore	Private	Domestic	Domestic		01/01/1995	5.49	5.48					1963m	East
GW104 032	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		08/11/2000	7.00	7.00		2.00			1965m	East
GW104 031	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		08/11/2000	7.00	7.00		2.00			1965m	East
GW104 035	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		09/11/2000	7.00	7.00		2.00			1965m	East
GW104 034	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		09/11/2000	7.00	7.00		2.00			1965m	East
GW104 033	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		08/11/2000	4.00	4.00		2.00			1965m	East
GW104 038	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		10/11/2000	4.00	4.00		2.00			1965m	East
GW104 036	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		09/11/2000	7.00	7.00		2.00			1965m	East
GW104 037	10BL159 958	Bore		Monitoring Bore	Monitoring Bore		09/11/2000	4.00	4.00		2.00			1965m	East
GW109 534	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		27/01/2006	6.00						1967m	South East
GW023 164	10BL016 801, 10WA11 2846	Bore	Private	Domestic	General Use		01/01/1960	3.60	3.70	Good				1969m	South East
GW110 414	10BL160 571	Bore	Private	Monitoring Bore	Monitoring Bore		13/02/2002	4.00	4.00					1971m	East
GW112 272	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		03/03/2003	14.84	14.84					1973m	West
GW024 694	10BL018 847, 10WA11 2970	Bore	Private	Domestic	General Use		01/08/1966	3.00	3.00	Good				1976m	East
GW013 514	10BL008 711	Spear	Private	Industrial	Industrial		01/03/1958	9.10	9.10	Good				1978m	North East
GW105 897	10BL162 078, 10WA11 3346	Bore		Domestic			12/05/2005							1980m	East
GW109 539	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		06/11/2008	6.00						1981m	South East
GW109 533	10BL601 927	Bore	Private	Monitoring Bore	Monitoring Bore		30/01/2006	6.00						1982m	South East
GW103 708	10BL160 084, 10WA11 3301	Bore		Domestic	Domestic		26/04/2001	6.00	6.00					1985m	East
GW017 720	10BL008 578	Bore	Private	Industrial	Industrial		01/10/1956	20.40	20.40					1991m	South East
GW100 674	10BL156 858, 10WA11 3079	Spear	Private	Domestic	Domestic		21/08/1995	5.49	5.49	Good		1.000		1995m	East

Borehole Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

146-154 O'Riordan Street, Mascot, NSW 2020

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

Groundwater No	Drillers Log	Distance	Direction
GW027749	0.00m-2.43m Sand 2.43m-5.18m Sand Peaty 5.18m-5.79m Peat Sandy 5.79m-8.22m Sand Very Dirty Peaty 8.22m-10.97m Peat Small 8.22m-10.97m Clay 10.97m-16.15m Sand White Water Supply 16.15m-16.45m Clay White Puggy	141m	North East
GW024068	0.00m-1.52m Loam Light Sandy 1.52m-2.13m Loam Dark Brown 2.13m-2.74m Loam Sandy Water Supply 2.74m-3.35m Loam Dark Brown 3.35m-4.26m Sand	180m	East
GW027750	0.00m-4.57m Sand Dry 4.57m-10.97m Sand Water Supply 10.97m-11.28m Clay Sandy Pete 11.28m-12.80m Sand Grey Slightly Peaty Water Supply 12.80m-14.63m Sand Very Dirty Pete Water Supply 14.63m-15.84m Sand Peaty Water Supply 15.84m-17.37m Sand Grey Clay Pete Water Supply 17.37m-17.38m Clay Sandy	180m	North East
GW075024	0.00m-4.00m PEATY SAND,BLACK 4.00m-9.00m SAND,FINE COFFEE BROWN 9.00m-11.00m PEATY SAND,DARK BROWN 11.00m-15.50m SILTY SAND,MED GRAINED,GREY 15.50m-19.00m SANDY CLAY,DARK GREY	211m	North East
GW072901	0.00m-7.00m Peaty Sand Fine To Medium	229m	East
GW104902	0.00m-7.10m UNCONSOLIDATED ALL SANDS	277m	South East
GW102169	0.00m-0.10m Fill: Light brown/red Silty Sand, dry 0.10m-1.80m Fill: Dark brown Clayey Sand, moist, with plastic, wire, steel fragments 1.80m-2.50m Light Grey Clayey Sand, wet 2.50m-3.50m Dark grey Clayey Sand, wet, some Silt and Peat 3.50m-4.50m Dark brown Sand, wet, with Silt and Peat	317m	South West
GW102171	0.00m-0.30m Fill: Brown/red Sand, some Silt 0.30m-0.80m Fill: Dark brown Sand, some Silt, wire, Clay, pipe and metal fragments 0.80m-1.70m Fill: Grey Clayey Sand, moist 1.70m-3.70m Dark grey/brown Silty Sand, wet, some Clay and Silt 3.70m-6.00m Dark Grey Silty Sand, some Peat	317m	South West
GW102173	0.00m-0.70m Fill: Brown/red Silty Sand, dry, steel, rock and glass fragments 0.70m-1.00m Dark brown Sand, moist, some Silt and Peat 1.00m-2.20m Light brown Sand, moist, some Silt and Peat 2.20m-3.40m Dark grey Clayey Sand, some Silt and Clay 3.40m-4.50m Dark grey Sand, wet, some Silt and Peat	317m	South West
GW102178	0.00m-0.17m Concrete 0.17m-2.70m Fill: Dark grey/black Sand, concrete fragments, timber and sandstone fragments 2.70m-3.50m Dark brown/grey Clayey Sand, moist, with Silt and Peat. 3.50m-4.40m Dark brown/grey Sand, wet, some Silt and Peat	317m	South West
GW102184	0.00m-2.40m Fill: Dark grey/black Sand, moist, some rock, glass asbestos fragments 2.40m-3.40m Dark brown/red Clayey Sand, moist, some Silt and Peat 3.40m-4.20m Dark grey/black Sand, wet, some Silt and Peat	317m	South West
GW102186	0.00m-0.19m Concrete 0.19m-2.70m Fill: Dark brown/red Sand, moist, concrete, brick and asbestos fragments 2.70m-3.70m Dark brown/black Sand, wet, some Silt and Peat 3.70m-4.20m Light brown Sand, wet, some Silt and Peat	317m	South West

Groundwater No	Drillers Log	Distance	Direction
GW102188	0.00m-0.20m Concrete 0.20m-2.70m Fill: Dark brown/red Sand, moist, rock fragments 2.70m-4.00m Dark grey/black Sand, moist, some Silt and Peat	317m	South West
GW102190	0.00m-0.17m Concrete 0.17m-2.70m Fill: Dark brown/grey Sand, moist, glass and Sandstone fragments 2.70m-3.60m Black Peaty Clay, moist, some Sand 3.60m-4.00m Dark brown Sand, wet, some Silt and Peat	317m	South West
GW102191	0.00m-0.22m Concrete 0.22m-2.70m Fill: Dark gre/black Sand, moist, rock and metal fragments 2.70m-4.00m Dark brown/grey Sand, some Silt and Peat	317m	South West
GW102192	0.00m-0.22m Concrete 0.22m-2.50m Fill: Brown/grey Sand, moist, rocks and steel fragments 2.50m-3.20m Black Peaty Clay, moist, some Sand 3.20m-4.00m Brown/black Sand, wet, some Silt and Peat	317m	South West
GW102193	0.00m-0.17m Concrete 0.17m-2.60m Fill: Dark brown Sand, moist, rocks and concrete fragments 2.60m-3.90m Dark brown/black Sand, moist, some Silt and Peat	317m	South West
GW102194	0.00m-0.19m Concrete 0.19m-2.40m Fill: Dark brown Sand, rock and concrete fragments 2.40m-3.00m Dark grey/black Clayey Sand, moist, some Silt and Peat 3.00m-3.70m Dark brown Sand, wet, some Silt and Peat	317m	South West
GW102197	0.00m-0.16m Concrete 0.16m-2.30m Fill: Light and dark brown Sand, moist, cocnrete and rock fragments 2.30m-3.60m Dark brown/grey Sand, moist, some Silt and Peat	317m	South West
GW102198	0.00m-0.15m Concrete 0.15m-2.30m Fill: Dark brown/black Sand, moist, some Clay and rubble 2.30m-3.10m Dark brown/grey Sand, moist, some Silt, Clay and Peat 3.10m-3.50m Black Peaty Clay, moist, some Sand	317m	South West
GW102205	0.00m-2.20m Fill: Dark brown Sand, moist, wire, timber, and metal fragments 2.20m-3.30m Dark brown/grey Sand, moist, some Silt and Peat	317m	South West
GW102160	0.00m-0.15m Concrete 0.15m-1.50m Fill: dark brown/grey, moist Sand, tile and metal fragments 1.50m-2.60m Fill: Klinker ash, dark grey, moist, loose 2.60m-3.80m Dark brown/grey Sandy Clay, moist, some ash 3.80m-5.00m Dark brown Sand, wet, some peat	318m	South West
GW102162	0.00m-0.15m Concrete 0.15m-2.50m Fill: Dark grey/black Sand, Silt, and Concrete fragments 2.50m-3.70m Dark brown/grey Clayey Sand, with Silt 3.70m-5.00m Dark brown/grey Sand, wet, some Silt and Peat	318m	South West
GW102164	0.00m-0.15m Concrete 0.15m-2.60m Fill: Dark brown/grey Sand, some metal, rock, brick 2.60m-3.80m Dark brown/grey Clayey Sand, wet, some Silt and Clay 3.80m-5.00m Dark brown/black Sand, wet, some Silt and Peat	318m	South West
GW102165	0.00m-0.10m Concrete 0.10m-0.70m Fill: Dark brown/grey Sand, moist, glass fragments 0.70m-2.60m Fill: Light brown/red Sand, moist, some Sandstone 2.60m-4.20m Black Peaty Clay, moist, some Sand 4.20m-5.00m Dark brown Sand, wet, some Silt and Peat	318m	South West
GW102168	0.00m-0.10m Concrete 0.10m-0.80m Fill: Dark brown/grey Sandy Clay, moist, some brick and rock fragments 0.80m-2.40m Fill: Sandstone boulders 2.40m-3.20m Black Peaty Clay, moist 3.20m-5.00m Brown/black Sand, wet, some Silt and Peat	318m	South West
GW102172	0.00m-0.70m Fill: Dark brown/grey Sandy Clay, moist, rock fragments 0.70m-1.80m Dark brown/grey Silty Sand, moist 1.80m-2.80m Light brown Sand, some Silt and Peat 2.80m-4.50m Dark grey/brown Sand, wet, some Silt and Peat	318m	South West
GW102176	0.00m-0.10m Fill: Light brown/grey Sand, dry, some Silt 0.10m-0.70m Fill: Dark brown Sand, dry, steel, broken concrete 0.70m-2.20m Dark brown Sand, some Silt 2.20m-2.90m Light brown Sand, moist, some Peat 2.90m-3.40m Dark grey Clayey Sand, wet, some Silt and Peat 3.40m-4.50m Dark grey Sand, wet, some Silt and Peat	318m	South West
GW102185	0.00m-0.16m Concrete 0.16m-2.70m Fill: Dark grey Sand,moist, rock and brick fragments 2.70m-3.60m Dark grey/black Sand, moist, some Silt and Peat 3.60m-4.20m Light brown Sand, wet, some Sllt and Peat	318m	South West

Groundwater No	Drillers Log	Distance	Direction
GW102187	0.00m-0.22m Concrete 0.22m-2.80m Fill: Grey/brown Sand, moist, Sandstone fragments and timber 2.80m-3.70m Dark brown/black Sand, moist, some Silt and Peat 3.70m-4.20m Light brown Sand, wet, some Sllt and Peat	318m	South West
GW102189	0.00m-0.20m Concrete 0.20m-2.70m Fill: Dark brown/red Sand, moist, brick and rock fragments 2.70m-3.50m Dark brown/black Clayey Sand, moist, some Silt and Peat 3.50m-4.00m Dark brown/black Sand, wet, some Silt and Peat.	318m	South West
GW102195	0.00m-0.15m Concrete 0.15m-2.40m Fill: Light and dark brown Sandy Clay, rubble 2.40m-3.60m Dark grey/black Sandy Clay, wet, sheen on soil	318m	South West
GW102196	0.00m-0.12m Concrete 0.12m-2.40m Fill: Dark brown/grey Sand, moist, brick and concrete fragments 2.40m-3.60m Dark brown Sand, wet, some Clay, Silt and Peat	318m	South West
GW102199	0.00m-0.15m Concrete 0.15m-2.30m Fill: Dark brown/grey Sand, moist, clay, brick, and rock fragments 2.30m-3.00m Dark brown Clayey Sand, moist, some Silt and Peat 3.00m-3.50m Dark grey/brown Sand, wet, some Silt and Peat	318m	South West
GW102200	0.00m-0.16m Concrete 0.16m-1.50m Fill: Ripped Sandstone with metal and brick fragments 1.50m-2.30m Dark brown/black Sand, moist, some Silt and Peat 2.30m-3.50m Light brown/grey Sand, wet, some Silt and Peat	318m	South West
GW102201	0.00m-1.20m Fill: Dark brown/grey Sandy Clay, moist, rock fragments 1.20m-2.70m Light brown Sand, moist, some Silt and Peat 2.70m-3.50m Brown/grey Sand, wet, some Silt and Peat	318m	South West
GW102203	0.00m-1.20m Fill: Dark brown Sand, brick and metal fragments 1.20m-2.70m Light brown Sand, moist, some Silt and Peat 2.70m-3.50m Dark brown/grey Sand, wet, some Silt and Peat	318m	South West
GW102204	0.00m-2.20m Fill: Dark brown/red Sand, moist, metal, wire, and Sandstone fragments 2.20m-3.30m Dark brown/grey Sand, moist, some Silt and Peat	318m	South West
GW101350	0.00m-5.90m SAND. FINE TO MEDIUM GRAINED	326m	South West
GW101351	0.00m-5.05m SAND. SILTY,PEATY, WITH TRACES OF CLAY	326m	South West
GW101352	0.00m-5.70m SAND. SILTY, PEATY	326m	South West
GW101353	0.00m-6.00m SAND.FINE TO MEDIUM GRAINED, TRACE OF SILT	326m	South West
GW101354	0.00m-6.00m SAND. FINE TO MEDIUM GRAINED WITH SOME SILT	326m	South
GW101355	0.00m-6.00m SAND. SILTY,PEATY WITH TRACE OF CLAY	326m	South West
GW101356	0.00m-5.60m SAND.silty, peaty with traces of clay and some thin peat lenses	326m	South
GW101357	0.00m-5.90m SAND. FINE TO MEDIUM GRAINED, TRACE OF SILT	326m	South West
GW101358	0.00m-6.00m SAND. FINE TO MEDIUM GRAINED	326m	South
GW101359	0.00m-6.00m SAND.FIE TO MEDIUM GRAINED WITH SOME SILT. SOME PEAT LENSES	326m	South West
GW101360	0.00m-6.00m SAND.FINE TO MEDIUM GRAINED, TRACE OF SILT SOME PEAT LENSES	326m	South West
GW101361	0.00m-4.30m SAND. FINE TO MEDIUM GRAINED WITH SOME SILT	326m	South West
GW101362	0.00m-5.90m SAND. FINE TO MEDIUM GRAINED	326m	South West
GW103588	0.00m-7.00m SAND	386m	North East
GW027248	0.00m-1.21m Topsoil 0.00m-1.21m Loam Sandy 1.21m-3.04m Sand 3.04m-4.87m Sand Slightly Silty Water Supply	408m	North West
GW112651	0.00m-6.00m SAND LIGHT M/GRAIN	416m	North West
GW104334	0.00m-0.30m TOPSOIL:SILTY SAND 0.30m-3.50m SAND	420m	South

Groundwater No	Drillers Log	Distance	Direction
GW104333	0.00m-0.20m TOPSOIL/SILTY SAND 0.20m-0.90m FILL:GRAVELLY SAND 0.90m-3.50m SAND: CLAYEY PEATY SAND	430m	South
GW104335	0.00m-0.10m PAVEMENT: CONCRETE 0.10m-0.80m FILL:SILKTY SAND 0.80m-1.80m BOTANY SAND:SILTY SAND 1.80m-3.50m BOTANY SAND:SAND	430m	South
GW104336	0.00m-0.10m PAVEMENT: CONCRETE 0.10m-0.60m FILL:GRAVELLY CLAYEY SAND 0.60m-1.00m BOTANY SAND: SAND 1.00m-2.80m BOTANY SAND:CLAY/PEAT 2.80m-3.50m BOTANY SAND :SAND	445m	South
GW104337	0.00m-0.10m PAVEMENT:CONCRETE AND BRICK 0.10m-3.50m BOTANY SAND:SAND	457m	South
GW013515	0.00m-8.22m Sand	460m	North East
GW047123	0.00m-1.52m Soil Black Sandy 1.52m-10.06m Sand Peat Water Supply 10.06m-10.67m Peat Sand 10.67m-14.94m Sand Some Peat Water Supply, Traces Clay 14.94m-15.24m Peat Sand 15.24m-18.29m Sand Some Peat Water Supply 18.29m-18.90m Peat Sand 18.90m-18.91m Clay Grey	465m	East
GW103705	0.00m-0.15m CONCRETE PAVEMENT 0.15m-0.70m SAND:MEDIUM BROWN /ROCKS AND GLASS 0.70m-1.60m SAND:WHITE,NATURAL MATERIAL 1.60m-4.70m SAND:VERY DARK BROWN	471m	South East
GW103706	0.00m-0.11m CONCRETE SLAB 0.11m-0.26m FILL 0.26m-0.36m CONCRETE SLAB 0.36m-0.50m SAND:BROWN 0.50m-1.60m SAND:YELLOW-BROWN 1.60m-2.40m LOAMY SAND:DARK BROWN 2.40m-3.40m SANDY LOAM:VERY DARK BROWN 3.40m-4.30m SANDY LOAM:DARK GREY	471m	South East
GW103707	0.00m-0.90m SAND:ORANGE-BROWN 0.90m-1.20m SAND:RED 1.20m-1.50m SAND:SHARP BOUNDARY,PALE IN COLOUR 1.50m-1.70m SAND:GREY 1.70m-2.10m SAND:WHITE 2.10m-2.30m LOAMY SAND 2.30m-2.80m LOAMY SAND:PALER RED-BROWN 2.80m-4.20m SAND:YELLOW-GREY	471m	South East
GW104338	0.00m-0.10m PAVEMENT:CONCRETE 0.10m-0.80m FILL:GRAVELLY SAND 0.80m-1.60m BOTANY SAND:SAND 1.60m-3.50m BOTANY SAND:CLAYEY PEATY SAND	471m	South
GW104988	0.00m-7.00m SAND	488m	North East
GW033372	0.00m-0.91m Made Ground 0.91m-3.04m Sand 3.04m-4.57m Sand Wet 4.57m-5.18m Peat 5.18m-5.79m Sand Peaty Water Supply 5.79m-6.70m Sand Grey Clay Seams 6.70m-9.14m Sand Peat 9.14m-9.60m Sand Water Supply 9.60m-11.58m Sand Peat Water Supply 11.58m-11.88m Clay Stiff Peaty	558m	South
GW033371	0.00m-0.91m Made Ground 0.91m-4.26m Sand 4.26m-4.41m Sand Peat Water Supply 4.41m-5.02m Clay Peaty 5.02m-6.09m Sand Peat Water Supply 6.09m-8.83m Sand Water Supply 8.83m-9.75m Clay Yellow Sandy 9.75m-10.97m Sand Water Supply Peat Fine 10.97m-11.58m Peat Sandy 11.58m-11.88m Clay Peaty	559m	South
GW100484	0.00m-0.30m CONCRETE 0.30m-2.50m FILL 2.50m-4.00m NATURAL SANDS	569m	North East

Groundwater No	Drillers Log	Distance	Direction
GW031808	0.00m-0.15m Sand Dark Brown Light Brown 0.15m-5.63m Sand Yellow Fine 0.15m-5.63m Clay Yellow 5.63m-6.55m Sand 5.63m-6.55m Clay Black Silty 6.55m-6.85m Sand Black 6.55m-6.85m Sand Black 6.55m-8.38m Sand 8.38m-9.14m Clay 9.14m-9.90m Sand Yellow Fine Water Supply 9.90m-11.12m Sand Grey 9.90m-11.12m Clay Grey Fossils:wood Water Supply 11.12m-11.43m Sand Black 11.12m-11.43m Sand Black 11.12m-11.43m Clay Black 11.43m-11.58m Clay Black 11.58m-11.88m Sand Grey Clayey 11.88m-12.80m Sand 11.88m-12.80m Clay Water Supply 12.80m-12.95m Clay Grey Dry 12.80m-12.95m Sand Grey 12.95m-14.17m Clay White Light Grey Sandy 14.17m-16.15m Clay Grey Yellow Red 16.15m-18.28m Clay Dark Grey Stiff	581m	South
GW024655	0.00m-1.21m Ash Rubble 1.21m-2.43m Sand Peaty 2.43m-5.48m Peat Black 5.48m-7.92m Sand Peaty 5.48m-7.92m Clay Seams Water Supply 7.92m-9.14m Sand Grey Clean Water Supply	582m	South
GW114857	0.00m-0.21m CONCRETE 0.21m-2.20m FILL CLAYEY SILTY SAND DARK BROWN,TRACE OF SANDSTONE 2.20m-2.80m SAND, FINE TO MED. GRAINED 2.80m-4.20m CLAYEY SILTY SAND, FINE GRAINED 4.20m-6.00m SAND,FINE TO MEDIUM GRAINED YELLOW AND GREY BROWN	609m	North East
GW107976	0.00m-0.70m topsoil, fill 0.70m-2.00m sand, loose 2.00m-2.50m sandy, coarse 2.50m-3.50m sand, peaty	642m	North East
GW015954	0.00m-0.30m Made Ground 0.30m-1.82m Sand White Fine 1.82m-5.10m Sand Fine 5.10m-5.18m Peat 5.18m-6.70m Sand Fine 6.70m-6.78m Peat 6.78m-8.22m Sand Fine Water Supply 8.22m-8.61m Peat 8.61m-10.97m Sand Dark Brown Fine Water Supply 10.97m-11.12m Peat 11.12m-12.80m Sand Dark Brown Fine Water Supply 12.80m-13.71m Sand Fine Water Supply 13.71m-13.79m Peat 13.79m-16.15m Sand Dark Grey Fine Water Supply 16.15m-17.98m Sand Dark Brown Fine Water Supply 17.98m-19.20m Sand Dark Grey Water Supply 19.20m-19.50m Clay Dark Grey 19.50m-19.81m Sand Clay 19.81m-20.11m Clay	667m	North
GW023525	0.00m-2.43m Sand 2.43m-3.04m Sand Hard Cemented 3.04m-5.94m Sand Water Supply	669m	South East
GW013331	0.00m-1.52m Sand Yellow Loamy 1.52m-7.92m Sand Peaty Dirty 7.92m-10.36m Sand Dirty Water Supply 10.36m-10.66m Wood Peaty 10.66m-12.19m Sand Peaty Water Supply 12.19m-12.49m Clay Sandy 12.49m-14.94m Sand Dark Pete Water Supply	670m	North
GW047525	0.00m-0.61m Peat Sandy 0.61m-1.52m Sand Peaty 1.52m-4.27m Sand Dirty Water Supply 4.27m-6.25m Sand Indurated Water Supply 6.25m-12.95m Sand Dirty Water Supply 12.65m-12.95m Clay Soft Sandy Water Supply 12.95m-13.87m Sand Grey Some Clay Water Supply 13.87m-17.07m Sand Grey Dirty Water Supply Wood Decomposed 17.07m-19.20m Clay Grey Peaty Sandy 19.20m-19.35m Sandstone	756m	North East

Groundwater No	Drillers Log	Distance	Direction
GW024374	0.00m-5.18m Sand Water Supply	775m	North East
GW104990	0.00m-6.00m SAND	779m	South East
GW025994	0.00m-0.30m Made Ground 0.30m-4.41m Sand Yellow Moist 4.41m-10.51m Sand Grey Water Supply 10.51m-13.25m Sand Grey White Water Supply	789m	South East
GW024036	0.00m-6.09m Sand	873m	South West
GW101533	0.00m-2.00m FILL, CONCRETE BLOCKS 2.00m-11.00m SAND, BROWN, PEATY 11.00m-13.50m SAND, BLACK, PEATY 13.50m-18.00m SAND, BROWN. W.B. 18.00m-19.50m SAND,BROWN,WITH GREY CLAY SEAMS 19.50m-20.00m CLAY,DARK BROWN	915m	North East
GW102366	0.00m-7.00m SAND	925m	East
GW024244	0.00m-1.52m Soil 1.52m-3.04m Water Supply	936m	East
GW101523	0.00m-6.10m UNCONSOLIDATED SAND	949m	East
GW101457	0.00m-6.00m sand	962m	East
GW017344	0.00m-0.76m Made Ground 0.76m-2.43m Sand Grey 2.43m-3.65m Sand Water Supply 3.65m-4.87m Sand Grey 4.87m-7.01m Sand Greasy 7.01m-7.92m Sand Water Supply 7.92m-8.53m Sand Grey Peaty 8.53m-9.29m Sand Clay 9.29m-10.05m Sand Peat Clay 10.05m-10.36m Sand Water Supply 10.36m-11.58m Sand Peaty 11.58m-11.88m Sand 11.88m-12.34m Clay Grey Peaty 12.34m-13.71m Sand Grey Peaty Water Supply 13.71m-13.80m Peat	999m	South East
GW103505	0.00m-0.16m CONCRETE 0.16m-0.80m FILL(SILTY SAND) SILT AND GRAVEL 0.80m-1.80m FILL(SILTY SAND) SILT AND SHELLS 1.80m-2.70m SAND: BROWN/ORANGE WITH SILT 2.70m-3.30m SAND: GREY,BROWN,MOIST WITH SILT 3.30m-6.00m SAND: BROWN/ORANGE,SOME SILT	1016m	North East
GW103506	0.00m-0.17m CONCRETE 0.17m-1.00m FILL (SILTY SAND) SANDSTONE FRAG. 1.00m-1.30m SAND: GREYMOIST WITH SOME SILT 1.30m-1.80m SAND: BROWN,RED, MOIST,SOME SILT 1.80m-2.30m SAND:WHITE,MOIST 2.30m-3.30m SAND: GREY/BROWN,MOIST SOME SILT 3.30m-6.00m SAND: YELLOW/BROWN,MOIST WITH SILT	1016m	North East
GW103507	0.00m-0.16m CONCRETE 0.16m-1.20m FILL(SILTY SAND),SOME GRAVEL,SHELLS 1.20m-1.80m SAND: BROWN AND GREY,SOME SILT 1.80m-2.30m SAND: WHITE MOIST,FINE GRAINED 2.30m-2.80m SANDY PEAT:DARK BROWN,MOIST,SILT 2.80m-6.00m SILTY SAND:BROWN/ORANGE,WITH SILT	1016m	North East
GW103508	0.00m-0.16m CONCRETE 0.16m-0.70m FILL(SILTY SAND)DARK BROWN,MOIST/GRAVEL 0.70m-1.60m FILL(SILTY SAND)SOME CLAY/SANDSTONE 1.60m-3.40m SAND:RED/BROWN,WITH SILT 3.40m-3.80m SAND:YELLOW/BROWN/MOIST WITH SILT 3.80m-6.00m SILTY SAND:DARK BROWN/GREY/SILT	1016m	North East
GW072413	0.00m-6.00m SAND	1020m	East
GW103504	0.00m-0.50m BITUMEN 0.50m-0.60m FILL(SILTY SAND)/GRAVEL/SANDSTONE 0.60m-2.00m FILL (SAND),GRAVEL,SOME ASH AND CLAY 2.00m-2.80m SANDY LOAM: DARK BROWN WITH SILT 2.80m-6.10m SAND:YELLOW,ORANGE,MOIST	1025m	North East
GW107395	0.00m-0.40m MOSTLY ASH 0.40m-1.00m SILTY SAND 1.00m-3.60m GRADES TO PALE GREY	1037m	East

Groundwater No	Drillers Log	Distance	Direction
GW075023	0.00m-2.00m PEATY SAND 2.00m-8.00m SAND,FINE GRAINED,YELLOW 8.00m-9.50m SAND,DENSE,FINE,OLIVE GREY 9.50m-11.00m PEATY SAND,DARK BROWN 11.00m-12.00m SAND.GREY 12.00m-14.00m PEATY SAND,DARK BROWN 14.00m-15.00m SANDY PEAT,BLACK 15.00m-19.00m CLAYEY SAND,BROWN 19.00m-26.00m CLAY,DARK GREY	1048m	South East
GW105150	0.00m-5.00m SAND	1049m	East
GW107396	0.00m-0.30m SILTY SAND 0.30m-1.00m SILTY SAND,MEDIUM DENSITY 1.00m-3.50m GRADES TO PALE GREY BROWN SAT.	1076m	East
GW106987	0.00m-7.00m Sand	1108m	South East
GW107397	0.00m-0.50m SILTY SAND 0.50m-2.50m SILTY SAND,MEDIUM DENSITY 2.50m-3.60m GRADES TO YELLO/GREY	1120m	East
GW023605	0.00m-0.60m Sand Grey 0.60m-4.57m Sand White Water Supply	1127m	South East
GW105117	0.00m-0.60m GREY SAND 0.60m-0.80m ROCK 0.80m-3.50m SAND LIGHT BROWN 3.50m-6.30m YELLOW SAND 6.30m-9.80m WHITE SAND 9.80m-9.90m GREY CLAY 9.90m-13.30m GREY SAND 13.30m-14.00m PEATY SAND	1132m	East
GW072643	0.00m-2.00m FILL 2.00m-6.50m MEDIUM SANDY GRAVEL 6.50m-7.20m GREY SILTY CLAY WB 7.20m-8.50m MEDIUM SAND WB 8.50m-10.00m BROWN SILTY SAND WB 10.00m-12.00m GREY SHALE CLAY	1215m	North West
GW100754	0.00m-1.30m FILL 1.30m-13.90m LAYERED SANDS 13.90m-15.40m PEAT 15.40m-18.60m LAYERED SANDS 18.60m-24.80m GREY MARINE CLAY 24.80m-38.20m GREY F/G SANDSTONE CLAY MATRIX 38.20m-47.30m MOIST WHITE F/G S/STONE 47.30m-51.70m YELLOW M/G S/S- CLAY MATRIX 51.70m-54.90m FRACTURE WHITE S/STONE 54.90m-63.70m SHALE 63.70m-66.80m SHALE/QUARTZ/S/S CROSS BED 66.80m-93.20m WHITE M/G S/STONE 93.20m-96.50m SILSTONE 96.50m-101.80m WHITE M/G S/STONE 101.80m-117.20m DARK GREY SHALE 117.20m-130.10m WHITE M/G S/STONE 130.10m-135.00m WHITE M/G S-S QUARTZ MATRIX 135.00m-136.30m SHALE 136.30m-139.50m WHITE M/G S/STONE 139.50m-142.00m FRACTURED GREY S/STONE 142.00m-148.00m GREY M/G S/STONE	1220m	South
GW111321	0.00m-0.18m CONCRETE 0.18m-0.90m GRAVELLY CLAYEY SAND, DENSE, MOIST 0.90m-1.60m GRAVEL SILTY, DENSE, VERY MOIST 1.60m-2.00m SAND, CLAYEY SAND, GREY, FINE GRAINED 2.00m-5.00m CLAY, SANDY, SOFT, L/PLASTICITY, SAND FINE GRAINED	1222m	North
GW100966	0.00m-5.50m UNCONSOLIDATEDALL SANDS	1245m	East
GW101477	0.00m-6.00m SAND	1255m	East
GW026070	0.00m-3.65m Sand	1263m	East
GW023168	0.00m-4.57m Sand White Water Supply	1265m	North East
GW023500	0.00m-5.48m Sand Water Supply	1265m	North East
GW100852	0.00m-6.10m UNCONSOLIDATED ALL SAND	1266m	North East

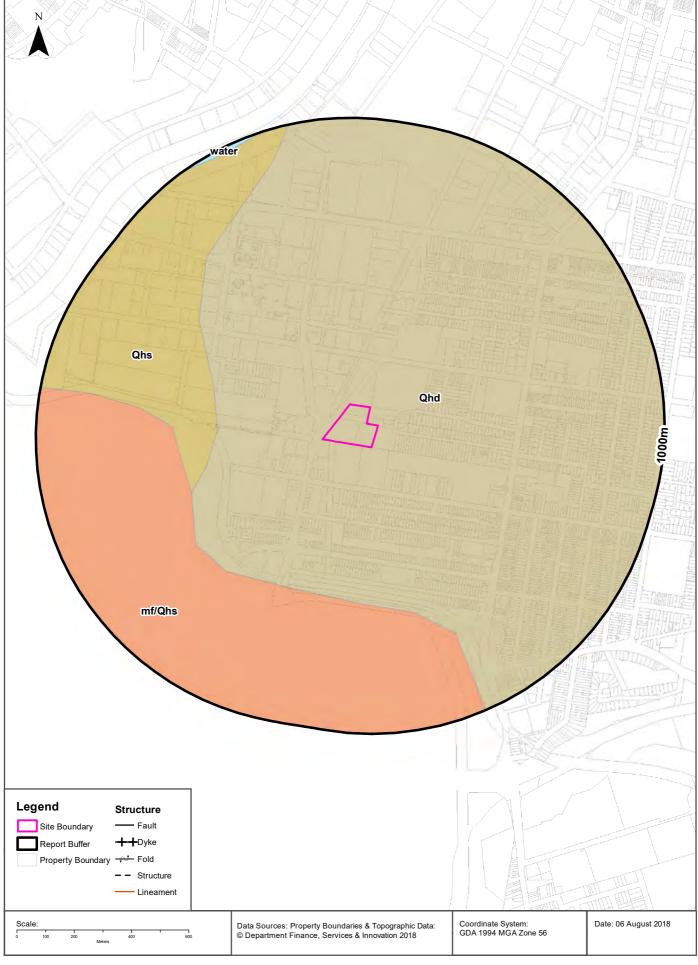
Groundwater No	Drillers Log	Distance	Direction
GW104866	0.00m-6.71m UNCONSOLIDATED ALL SAND	1273m	South East
GW101475	0.00m-6.00m SAND	1275m	East
GW072632		1285m	East
GW101787	0.00m-5.79m Unconsolidated Sand	1291m	South East
GW109823	0.00m-3.00m FILL 3.00m-6.00m CLAYEY SAND 6.00m-8.11m SAND 8.11m-11.50m SANDY CLAY 11.50m-29.00m SHALE	1298m	North West
GW109822	0.00m-2.60m FILL 2.60m-3.80m CLAYEY SAND 3.80m-8.20m SAND 8.20m-10.45m CLAY	1305m	North West
GW023472	0.00m-0.60m Sand Grey 0.60m-1.52m Sand White 1.52m-1.82m Sand Hard Cemented 1.82m-3.65m Sand Yellow Water Supply	1307m	East
GW111320	0.00m-0.18m CONCRETE 0.18m-0.33m SAND,GRAVELLY CLAYEY,M/DENSE 0.33m-0.70m SAND,VERY LOOSE,MOIST 0.70m-1.50m SAND,CLAYEY,MEDIUM DENSE,MOIST,DARK BROWN 1.50m-4.00m SAND,LOOSE, VERY MOIST,BROWN 4.00m-4.50m SAND CLAYEY,MEDIUM DENSE,GREY/BROWN 4.50m-5.20m CLAY SANDY,SOFT,SATURATED,L/PLASTICITY	1327m	North
GW104922	0.00m-7.00m SAND	1338m	South East
GW105152	0.00m-5.00m SAND	1354m	East
GW101446	0.00m-6.00m SAND	1356m	East
GW072633		1360m	East
GW023162	0.00m-2.43m Sand White 2.43m-4.87m Loam Water Supply	1363m	North East
GW100053	0.00m-0.95m FILL 0.95m-2.12m BROWN PEAT & SAND 2.12m-6.00m WHITESAND (WB) 6.00m-7.00m DARK GREY CLAY	1385m	North
GW072634	0.00m-6.10m Unconsolidated Sand	1395m	South East
GW072455	0.00m-5.80m UNCONSOLIDATED ALL SAND	1402m	South East
GW023561	0.00m-0.91m Sand Black 0.91m-5.48m Sand White Water Supply	1409m	East
GW110457	0.00m-0.25m CONCRETE 0.25m-0.90m FILL 0.90m-1.70m SANDY SILT,SILT 1.70m-3.60m SAND	1415m	North
GW023968	0.00m-2.43m Sand White 2.43m-4.57m Loam Water Supply	1419m	East
GW100575	0.00m-5.00m SAND	1471m	East
GW110456	0.00m-0.30m CONCRETE 0.30m-0.50m FILL 0.50m-0.60m CONCRETE 0.60m-1.80m SILTY SAND 1.80m-3.60m SAND	1474m	North
GW110458	0.00m-0.70m FILL 0.70m-2.80m SANDS	1475m	North
GW024616	0.00m-5.63m Sand Water Supply	1484m	East
GW112603	0.00m-1.30m FILL, SANDY ,GRAVELLY,,GRAVEL 1.30m-4.00m SILTY SAND, BROWN,M/GRAINED,WELL GRADED 4.00m-5.00m SILTY SAND,DARK BROWN.FINE TO MED. GRAINED	1493m	North East
GW112600	0.00m-0.30m CONCRETE 0.30m-4.60m (Unknown)	1495m	North East

Groundwater No	Drillers Log	Distance	Direction
GW112602	0.00m-1.50m FILL, CLAYEY,GRAVELLY,BROWN,DRY TO MOIST 1.50m-5.00m SILTY SAND,BROWN TO D/BROWN,WET	1512m	North East
GW101231	0.00m-7.00m Sand	1516m	East
GW112598	0.00m-0.30m CONCRETE 0.30m-1.30m SANDSTONE CRUSHED 1.30m-3.50m SAND,DARK BROWN,FINE TO MEDIUM GRAINED 3.50m-4.50m SAND MOIST TO WET 4.50m-5.00m SAND BROWN TO LIGHT BROWN, WET	1525m	North East
GW101161	0.00m-6.10m UNCONSOLIDATED, ALL SAND	1526m	East
GW112599	0.00m-0.30m CONCRETE 0.30m-0.80m GRAVELLY SAND,FILO,DARK BROWN 0.80m-1.60m SAND GREY FINE TO MED. GRAINED 1.60m-3.50m SAND TO DARK BROWN 3.50m-4.50m SAND WET	1529m	North East
GW100945	0.00m-7.10m ALL SAND UNCONSOLIDATED	1533m	North East
GW112601	0.00m-0.30m CONCRETE 0.30m-1.30m FILL SANDY BROWN, SOME SANDSTONE 1.30m-5.00m FILL, SANDY, BROWN COARSE, MOIST, WET	1535m	North East
GW102800	0.00m-6.10m CONSOLIDATED ALL SANDS	1539m	East
GW112597	0.00m-0.80m FILL, CLAYEY, SANDY GRAVELLY, SANDSTONE 0.80m-1.10m SAND. LIGHT GREY, FINE GRAINED, MOIST 1.10m-3.00m SAND TO DARK BROWN 3.00m-3.90m SAMD TO LIGHT BROWN 3.90m-5.00m SAND WET, STRONG HYDROCARBON ODOUR	1543m	North East
GW100993	0.00m-5.49m UNCONSOLIDATED ALL SANDS	1544m	East
GW025543	0.00m-0.09m Made Ground 0.09m-2.74m Sand Coarse 2.74m-7.62m Sand 7.62m-7.77m Clay Grey 7.77m-9.44m Sand 9.44m-12.49m Sand Grey Water Supply 12.49m-12.80m Wood Peat 12.80m-14.02m Sand Water Supply 14.02m-14.63m Clay Peaty 14.63m-18.28m Sand Water Supply 18.28m-18.59m Clay Peaty	1550m	South East
GW109821	0.00m-2.20m FILL 2.20m-35.00m ASHFIELD SHALE	1554m	North West
GW100997	0.00m-8.23m UNCONSOLIDATED SAND	1568m	North East
GW109825	0.00m-4.50m FILL 4.50m-22.00m SHALE	1584m	North West
GW023967	0.00m-1.82m Sand White 1.82m-2.43m Sand Grey Water Supply 2.43m-2.74m Mud Black	1585m	East
GW101813	0.00m-8.54m UNCONSOLIDATED SAND	1597m	North East
GW023408	0.00m-1.52m Soil Black Hard 1.52m-7.01m Sand Water Supply	1603m	East
GW111456	0.00m-0.60m SAND SILTY 0.60m-6.20m SAND	1603m	South
GW072214		1612m	East
GW109824	0.00m-4.50m FILL 4.50m-9.00m LAMINITE 9.00m-17.00m SHALE 17.00m-20.70m SANDSTONE	1615m	North West
GW105528	0.00m-1.00m SAND,GREY,SOME GRAVEL,CLAY WET 1.00m-1.50m GRAVELLY CLAY,YELLOW BROWN 1.50m-2.50m SANDY SILT,BLACK 2.50m-4.00m SAND,L/BROWN,GREY 4.00m-5.00m SAND GREY,L/BROWN	1620m	North East

Groundwater No	Drillers Log	Distance	Direction
GW023600	0.00m-0.60m Sand Grey 0.60m-7.31m Sand Yellow Water Supply	1622m	East
GW101221	0.00m-6.10m Unconsolidated - all sand.	1637m	North East
GW100975	0.00m-6.10m UNCONSOLIDATED ALL SANDS	1645m	North East
GW111457	0.00m-0.09m ASPHALT 0.09m-0.20m BASE COURSE 0.20m-0.60m SAND FILLING 0.60m-1.30m SAND 1.30m-2.00m COFFEE ROCK 2.00m-6.20m SAND	1645m	South
GW105527	0.00m-0.80m FILL,SANDY GRAVEL 0.80m-2.10m SAND,MEDIUM GRAINED,BROWN/YELLOW 2.10m-5.00m SAND,MEDIUM GRAINED,YELLOW/WHITE	1661m	North
GW100367	0.00m-6.00m ALL SAND - UNCONSOLIDATED	1662m	East
GW017782	0.00m-1.82m Made Ground 1.82m-4.26m Peat 4.26m-4.87m Sand Peaty 4.87m-9.44m Sand 9.44m-10.36m Clay Sandy 10.36m-11.88m Sand Clay 11.88m-14.63m Sand 14.63m-15.54m Sand Clay	1665m	North East
GW072328	0.00m-1.00m FELT 1.00m-8.00m PEATY WHITE SAND 8.00m-9.50m BROWN PEATY SAND 9.50m-10.80m PEAT ON CLAY 10.80m-13.00m BROWN PEATY SAND 13.00m-14.00m SHALEY GREY CLAY	1681m	North East
GW105529	0.00m-2.00m FILL,SILTY SAND/GRAVEL 2.00m-5.00m SAND,BEIGE/BROWN/YELLOW MOT.	1688m	North
GW073515	0.00m-7.00m SAND	1722m	East
GW101037	0.00m-4.88m UNCONSOLIDATED. ALL SAND	1741m	North East
GW101226	0.00m-5.30m Unconsolidated - all sand.	1751m	East
GW024023	0.00m-0.30m Sand White 0.30m-2.13m Sand Hard Cemented 2.13m-8.22m Sand Yellow Water Supply	1752m	North East
GW100466	0.00m-5.00m SAND	1765m	North East
GW100813	0.00m-10.98m UNCONSOLIDATED ALL SANDS	1767m	North East
GW026788	0.00m-1.21m Sand White 1.21m-10.36m Sand 10.36m-10.97m Peat 10.97m-12.19m Sand 12.19m-12.49m Peat 12.49m-13.72m Sand Dirty Pete 13.72m-15.84m Sand Dirty 15.84m-17.67m Sand Yellow 17.67m-18.89m Sand Grey Clayey 18.89m-20.42m Clay Grey Pete	1777m	South East
GW106145	0.00m-5.79m sand, unconsolidated	1782m	East
GW100493	0.00m-0.35m SANDY, GRAVELLY FILL 0.35m-0.60m SAND, GREY, FIND-MED, DRY 0.60m-4.00m SAND, ORANGE, FINE-MED 4.00m-5.80m SAND, LIGHT ORANGE, MOIST 5.80m-9.50m SAND, LIGHT GREY, FINE, WET	1788m	North East
GW109255	0.00m-0.30m FILL, SAND AND GRAVEL 0.30m-2.90m SILTY SAND,WET @ 1.55m BGL 2.90m-7.30m SAND	1803m	South East

Groundwater No	Drillers Log	Distance	Direction
GW046837	0.00m-2.44m Sand Dark Brown 2.44m-5.79m Sand 5.79m-7.01m Sand Peaty 7.01m-7.62m Peat 7.62m-9.14m Sand Dirty 9.14m-9.30m Clay 9.30m-12.19m Sand Dirty 12.19m-12.50m Sand Soak 12.50m-12.80m Sand Water Bearing Water Supply 12.80m-14.02m Peat 14.02m-14.78m Sandstone	1806m	South East
GW075022	0.00m-2.00m SILTY SAND 2.00m-5.00m SAND,YELLOW BROWN 5.00m-6.00m PEATY SAND 6.00m-6.50m SAND,YELLOW 6.50m-8.00m PEATY SAND,GREY 8.00m-9.00m PEAT,FIRM,BLACK 9.00m-13.00m SAND,FINE TO MED GRAINED,BROWN 13.00m-14.00m PEATY SAND.BROWN 14.00m-14.50m PEAT,MED,BLACK 14.50m-15.00m CLAY,GREY 15.00m-15.75m SANDY CLAY,WHITE GREY	1816m	South East
GW026482	0.00m-5.48m Sand Water Supply	1819m	North East
GW109253	0.00m-0.60m FILL, SAND 0.60m-2.80m SILTY SAND 2.80m-10.30m SAND WET BELOW 1.4 m	1820m	South East
GW109254	0.00m-0.30m FILL, SAND AND GRAVEL 0.30m-2.60m SILTY SAND WET @ 1.0 m 2.60m-9.70m SAND	1822m	South East
GW110909	0.00m-0.30m ROADBASE GREY 0.30m-1.00m SAND WITH GRAVEL,BROWN-GREY 1.00m-2.00m SAND WITH GRAVEL DARK GREY 2.00m-3.80m SAND LIGHT BROWN 3.80m-5.80m SAND GREY	1829m	South
GW104040	0.00m-0.10m CONCRETE 0.10m-2.00m FILL,SAND YELLOWISH 2.00m-6.50m SAND,MEDIUM BROWN 6.50m-7.00m SAND,LIGHT BROWN	1859m	East
GW101215	0.00m-7.62m Unconsolidated - all sand.	1862m	East
GW104039	0.00m-0.10m CONCRETE 0.10m-2.00m SAND,DARK BROWN 2.00m-7.00m SAND MEDIUM LIGHT BROWN	1864m	East
GW107233	0.00m-0.30m TOPSOIL 0.30m-1.50m GREY SAND 1.50m-6.50m YELLOW SAND 6.50m-12.20m BROWN SILTY SAND 12.20m-12.60m BLACK PEAT 12.60m-13.10m BLACK PEATY SAND 13.10m-16.70m BROWN PEATY SAND 16.70m-16.90m BLACK PEAT 16.90m-18.40m BROWN SAND 18.40m-18.80m BLACK PEAT 18.80m-21.30m BROWN SAND 21.30m-21.50m BLACK PEAT	1879m	South East
GW047122	0.00m-1.52m Made Ground 1.52m-4.57m Sand Dirty 4.57m-8.23m Sand 8.23m-8.53m Peat 8.53m-9.14m Sand 9.14m-9.45m Peat 9.45m-12.19m Sand Peaty 12.19m-16.46m Sand Water Supply 16.46m-17.68m Sand Peaty Wood Water Supply 17.68m-18.29m Sand Dirty Water Supply 18.29m-19.51m Sand Grey Clay Bands 19.51m-19.52m Clay Stiff Peaty	1882m	South East

Groundwater No	Drillers Log	Distance	Direction
GW026787	0.00m-3.96m Sand Dry 3.96m-6.09m Sand Clean Water Supply 6.09m-8.53m Sand Peaty 8.53m-9.44m Sand Clean Peaty 9.44m-16.45m Sand Peaty 16.45m-18.59m Sand Clean Water Supply 18.59m-21.03m Sand Water Supply 21.03m-21.33m Sand Grey Clayey 21.33m-22.55m Sand Peaty 22.55m-24.84m Clay Dark Grey Stiff	1895m	South East
GW017195	0.00m-3.35m Sand Water Supply	1904m	East
GW114562	0.00m-0.05m ASPHALT 0.05m-0.18m CONCRETE 0.18m-0.58m SILTY SAND DARK BROWN MG.SOFT 0.58m-0.75m SAND, LIGHT BROWN, soft 0.75m-0.95m SILTY SAND DARK BROWN MG.SOFT 0.95m-1.05m SAND,WHITE ORANGE MOTTLED,SOFT 1.05m-1.55m GRAVELLY SAND, LIGHT BEOWN SOFT 1.55m-1.75m SAND ORANGE SOFT 1.75m-2.25m CLAY DARK BROWN FG, SOFT 2.25m-2.70m SILTY CLAY DARK BROWN FG SOFT	1912m	North
GW114561	0.00m-0.15m ASPHALT 0.15m-0.21m CONCRETE 0.22m-0.50m SILTY SAND BLACK ,CG,SOFT 0.50m-1.00m SAND GREY BROWN CG BROWN 1.00m-1.50m SAND WHITE CG SOFT 1.50m-1.60m SANDY CLAY BLACK SOFT 1.60m-2.15m SAND GREY CG SOFT 2.15m-2.70m SAND BROWN,CG,SOFT	1917m	North
GW102741	0.00m-7.00m SAND	1919m	East
GW072958		1920m	East
GW110910	0.00m-0.30m ROADBASE,GREY 0.30m-1.00m SAND SILTY WITH GRAVEL,GREY,BROWN 1.00m-3.00m SAND BROWN 3.00m-4.50m SAND WITH SHELLS GREY 4.50m-6.00m SAND WITH GRAVELS BLACK.	1921m	South
GW024377	0.00m-4.57m Sand Water Supply	1925m	East
GW100825	0.00m-7.01m UNCONSOLIDATED ALL SANDS	1927m	East
GW114563	0.00m-0.08m ASPHALT 0.08m-0.21m CONCRETE 0.21m-0.31m SAND LIGHT BROWN, SOFT 0.31m-0.99m SILTY SAND,DARK BROWN MG SOFT 0.99m-1.23m SANDY CLAY BROWN SOFT FG 1.23m-1.31m SANDY CLAY BROWN SOFT FG 1.31m-1.95m SAND LIGHT BROWN SOFT 1.95m-2.52m CLAYEY SAND,DARK BROWN SOFT 2.52m-2.80m CLAY DARK BROWN SOFT 2.80m-3.34m CLAYEY SAND, DADRK BROWN SOFT 3.34m-3.54m CLAY, DARK BROWN SOFT 3.54m-3.90m CLAY, DARK BROWN SOFT	1928m	North
GW110427	0.00m-0.10m GRASS 0.10m-1.00m SAND,YELLOW ORANGE,M/GRAINED 1.00m-2.00m SAND GREY BROWN,M/GRAINED,DRY 2.00m-3.00m SAND AS ABOVE ,WET 3.00m-4.00m SAND AS ABOVE ,WET 4.00m-5.00m SAND LIGHT BROWN,M/GRAINED,SATURATED 5.00m-6.00m SAND AS ABOVE ,SATURATED 6.00m-7.00m SAND AS ABOVE	1929m	East
GW110428	0.00m-0.10m BITUMEN 0.10m-0.50m SAND,GREY/BROWN,M/GRAINED,DRY 0.50m-2.00m SAND,YELLOW/ORANGE,M/GRAINED 2.00m-3.00m SAND,L/BROWN, M/GRAINED,DAMP 3.00m-3.80m SAND AS ABOVE ,WET 3.80m-4.00m SAND AS ABOVE ,SATURATED	1937m	East
GW110906	0.00m-1.00m ROADBASE GREY 1.00m-2.80m SAND GREY 2.80m-5.80m SAND BROWN	1938m	South
GW072479	0.00m-5.80m UNCONSOLIDATED SANDS	1943m	East


Groundwater No	Drillers Log	Distance	Direction
GW110430	0.00m-0.10m BITUMEN 0.10m-1.00m SAND, ORANGE/BROWN,FINE M/GRAINED 1.00m-2.00m SAND,WHITE/GREY,WELL SORTED F/M/GRAINED 2.00m-3.00m SAND,BROWN/GREY,WET,M/GRAINED 3.00m-3.80m SAND,AS ABOVE 3.80m-4.00m SAND AS ABOVE ,SATURATED	1944m	East
GW110429	0.00m-0.10m BITUMEN 0.10m-1.00m SAND,GREY/BROWN,FINE,M/GRAINED 1.00m-2.00m SAND AS ABOVE 2.00m-3.00m SAND L/BROWN,M/GRAINED,WET,M/DENSE 3.00m-3.80m SAND AS ABOVE 3.80m-4.00m SAND AS ABOVE ,SATURATED	1946m	East
GW101445	0.00m-6.00m SAND	1950m	East
GW110431	0.00m-0.10m BITUMEN 0.10m-1.00m SAND,GREY BROWN 1.00m-2.00m SAND,GREY BROWN,M/GRAINED,DRY 2.00m-3.00m SAND,L/BROWN,DAMP,WELL SORTED 3.00m-4.00m SAND AS ABOVE,WET 4.00m-4.80m SAND,L/BROWN,WET,M/GRAINED 4.80m-5.00m SAND AS ABOVE	1952m	East
GW110911	0.00m-0.30m ROADBASE GREY 0.30m-2.20m SAND SILTY WITH GRAVEL GREY 2.20m-3.50m SAND WITH SHELLS GREY 3.50m-6.00m SAND WITH SHELLS DARK GREY/BLACK	1954m	South
GW104570	0.00m-6.50m SAND	1955m	East
GW072897	0.00m-5.80m Unconsolidated Sand	1956m	East
GW104031	0.00m-0.10m GRASS 0.10m-2.00m SAND,MEDIUM BROWN 2.00m-3.00m SAND,LIGHT MED. BROWN 3.00m-4.00m SAND:L IGHT BROWN 4.00m-5.00m AS ABOVE 5.00m-6.00m AS ABOVE,SATURED 6.00m-7.00m AS ABOVE	1965m	East
GW104032	0.00m-0.10m GRASS 0.10m-2.00m FILL,SAND,LIGHT ORANGE 2.00m-5.00m SAND,MEDIUM BROWN 5.00m-7.00m SAND,LIGHT BROWN,MED. GRAINED	1965m	East
GW104033	0.00m-2.00m FILL,SAND,DARK BROWN,YELLOW 2.00m-4.00m SAND,MEDIUM BROWN,SATURED	1965m	East
GW104034	0.00m-2.00m FILL,SAND,GREY,DARK ORANGEY BROWN 2.00m-4.00m SAND,MEDIUM BROWN,NO ODOUR 4.00m-5.00m AS ABOVE,DENSE SAND 5.00m-7.00m SAND,LIGHT BROWN	1965m	East
GW104035	0.00m-2.00m FILL,SAND MEDIUM DARK BROWN,GREYISH 2.00m-3.00m SAND,LIGHT BROWN,WET 3.00m-7.00m SAND AS ABOVE,SATURED,GARK BROWN	1965m	East
GW104036	0.00m-1.00m fill 1.00m-2.00m peat 2.00m-7.00m sand	1965m	East
GW104037	0.00m-0.10m GRASS 0.10m-4.00m SAND,MEDIUM GRAINED	1965m	East
GW104038	0.00m-0.10m GRASS 0.10m-4.00m SAND:LIGHT BROWN	1965m	East
GW023164	0.00m-3.65m Sand Water Supply	1969m	South East
GW110414	0.00m-0.10m GRASS 0.10m-1.00m SAND,ORANGE,BROWN,M/GRAINED,DRY 1.00m-2.00m SAND, AS ABOVE 2.00m-3.00m SAND,LIGHT BROWN,M/GRAINED,WELL SORTED 3.00m-4.00m SAND AS ABOVE,SATURATED	1971m	East
GW024694	0.00m-3.04m Sand Water Supply	1976m	East
GW013514	0.00m-9.14m Sand Water Supply	1978m	North East
GW103708	0.00m-6.00m SAND	1985m	East

Groundwater No	Drillers Log	Distance	Direction
GW017720	0.00m-0.76m Topsoil 0.76m-1.06m Sand White 1.06m-1.37m Sand Peaty Water Supply 1.37m-3.65m Sand Water Supply 3.65m-7.92m Sand Light Brown Water Supply 7.92m-8.07m Peat 8.07m-17.06m Sand Dirty Water Supply 17.06m-17.37m Peat 17.37m-18.89m Clay Grey 18.89m-20.42m Sand Grey Fossils:shell Fragments Water Supply 20.42m-20.43m Clay Grey	1991m	South East
GW100674	0.00m-5.49m SAND	1995m	East

 $\label{logDataSource:NSWDepartment} Drill \ Log \ Data \ Source: \ NSW \ Department \ of \ Primary \ Industries - Office \ of \ Water \ / \ Water \ Administration \ Ministerial \ Corp \ Creative \ Commons \ 3.0 \ @ \ Commonwealth \ of \ Australia \ http://creative \ commons.org/licenses/by/3.0/au/deed.en$

Geology 1:100,000

Geology

146-154 O'Riordan Street, Mascot, NSW 2020

Geological Units

What are the Geological Units onsite?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Qhd	Medium to fine-grained marine sand with podsols				Quaternary		Sydney	1:100,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
mf/Qhs							Sydney	1:100,000
Qhd	Medium to fine-grained marine sand with podsols				Quaternary		Sydney	1:100,000
Qhs	Peat, sandy peat, and mud.				Quaternary		Sydney	1:100,000
water							Sydney	1:100,000

Geological Structures

What are the Geological Structures onsite?

Feature	Name	Description	Map Sheet	Dataset
No features				1:100,000

What are the Geological Structures within the dataset buffer?

Feature	Name	Description	Map Sheet	Dataset
No features				1:100,000

Geological Data Source : NSW Department of Industry, Resources & Energy

© State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

146-154 O'Riordan Street, Mascot, NSW 2020

Naturally Occurring Asbestos Potential

Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Mining Subsidence District Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

Soil Landscapes

Soils

146-154 O'Riordan Street, Mascot, NSW 2020

Soil Landscapes

What are the onsite Soil Landscapes?

Soil Code	Name	Group	Process	Map Sheet	Scale
AEtg	TUGGERAH		AEOLIAN	Sydney	1:100,000

What are the Soil Landscapes within the dataset buffer?

Soil Code	Name	Group	Process	Map Sheet	Scale
AEtg	TUGGERAH		AEOLIAN	Sydney	1:100,000
DTxx	DISTURBED TERRAIN		DISTURBED TERRAIN	Sydney	1:100,000

Soils Landscapes Data Source: NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

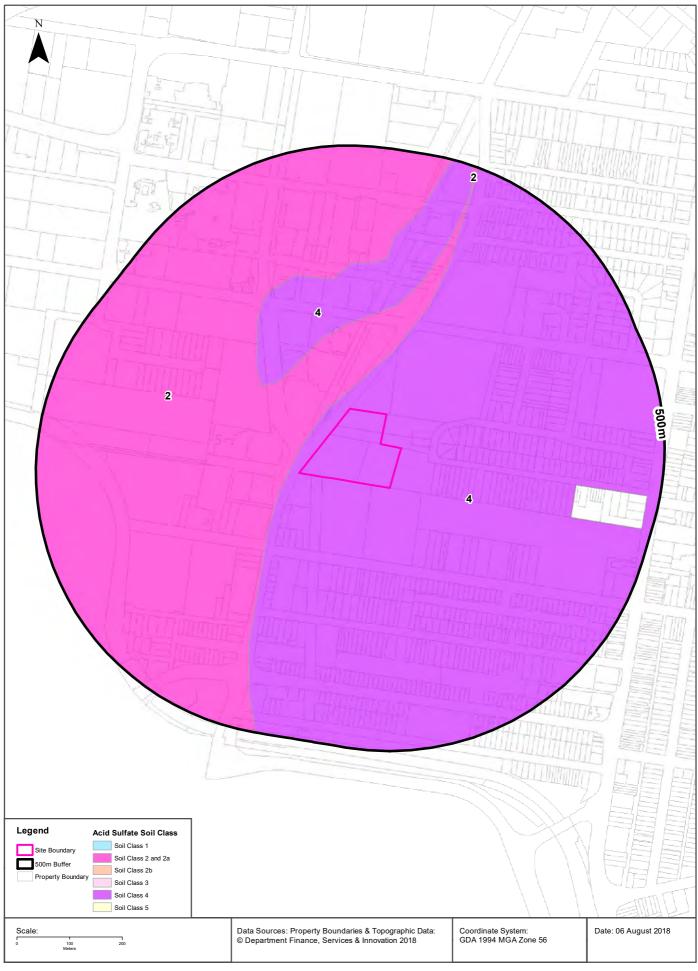
Atlas of Australian Soils

Soils

146-154 O'Riordan Street, Mascot, NSW 2020

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance
Cb27	Podosol	Coastal sand plains and dunes, lagoons, and swampy areas: chief soils are leached sands (Uc2.3 and Uc2.2). Associated are dunes of siliceous sands (Uc1.2) and/or calcareous sands (Uc1.1) fringing the coastline; and swampy areas of (Uf6) soils and (Uc1.2) soils with peaty surfaces. Unit Cb27 has similarities with units Cb28 and Ca6.	Om

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

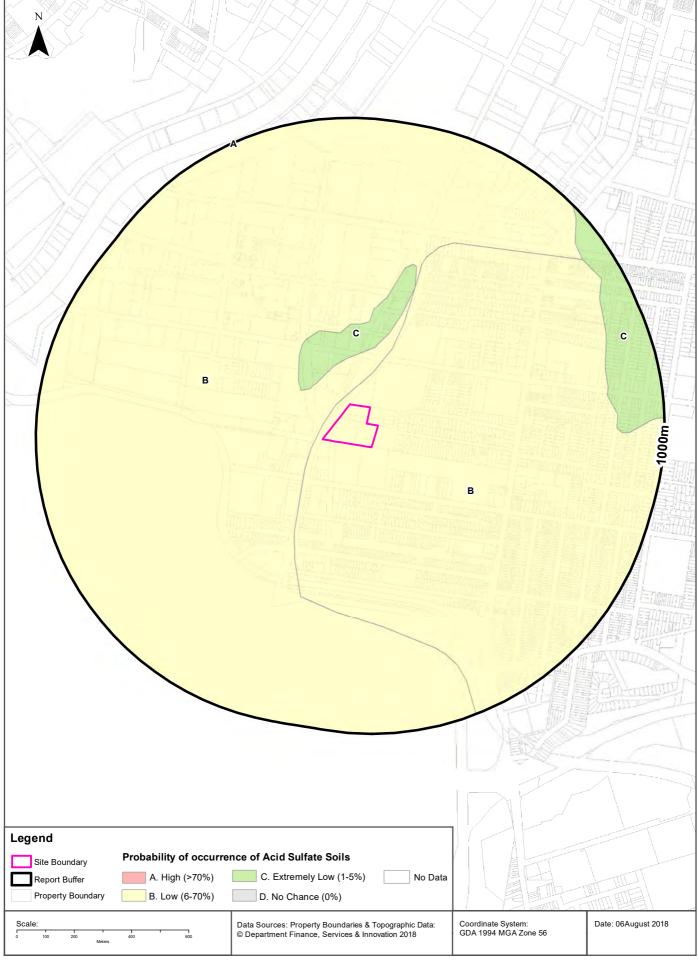
Acid Sulfate Soils

146-154 O'Riordan Street, Mascot, NSW 2020

Standard Local Environmental Plan Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	LEP
4	Works more than 2 metres below natural ground surface present an environmental risk; Works by which the watertable is likely to be lowered more than 2 metres below natural ground surface, present an environmental risk	Botany Bay Local Environmental Plan 2013


If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	LEP	Distance	Direction
N/A				

Acid Sulfate Data Source Accessed 07/10/2016: NSW Crown Copyright - Planning and Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

146-154 O'Riordan Street, Mascot, NSW 2020

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance
В	Low Probability of occurrence. 6-70% chance of occurrence.	0m
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	136m
Α	High Probability of occurrence. >70% chance of occurrence.	996m

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

146-154 O'Riordan Street, Mascot, NSW 2020

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A	N/A	N/A

Dryland Salinity Data Source: National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Dryland Salinity Potential of Western Sydney

Dryland Salinity Potential of Western Sydney within the dataset buffer?

Feature Id	Classification	Description	Distance	Direction
N/A	Outside Data Coverage			

Dryland Salinity Potential of Western Sydney Data Source : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining Subsidence Districts

146-154 O'Riordan Street, Mascot, NSW 2020

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Environmental Zoning

146-154 O'Riordan Street, Mascot, NSW 2020

State Environmental Planning Policy Protected Areas

Are there any State Environmental Planning Policy Protected Areas onsite or within the dataset buffer?

Dataset	Onsite	Within Site Buffer	Distance
SEPP14 - Coastal Wetlands	No	No	N/A
SEPP26 - Littoral Rainforests	No	No	N/A
SEPP71 - Coastal Protection Zone	No	No	N/A

SEPP Protected Areas Data Source: NSW Department of Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

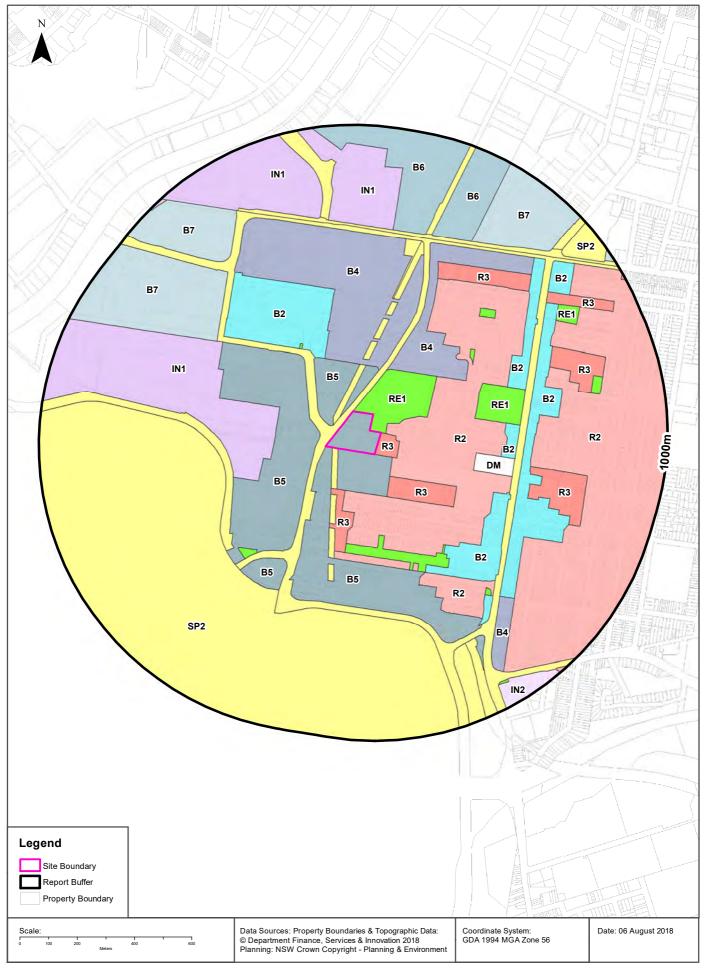
State Environmental Planning Policy Major Developments (2005)

State Environmental Planning Policy Major Developments within the dataset buffer:

Map Id	Feature	Effective Date	Distance	Direction
N/A	No records within buffer			

SEPP Major Development Data Source: NSW Department of Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

State Environmental Planning Policy Strategic Land Use Areas


State Environmental Planning Policy Strategic Land Use Areas onsite or within the dataset buffer:

Strategic Land Use	SEPPNo	Effective Date	Amendment	Amendment Year	Distance	Direction
No records within buffer						

SEPP Strategic Land Use Data Source: NSW Department of Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

LEP Planning Zones

Local Environmental Plan

146-154 O'Riordan Street, Mascot, NSW 2020

Land Zoning

What Local Environmental Plan Land Zones exist within the dataset buffer?

Zone	Description	Purpose	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
B5	Business Development		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		0m	Onsite
R3	Medium Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		0m	East
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		0m	North East
SP2	Infrastructure	Classified Road	Botany Bay Local Environmental Plan 2013	09/10/2015	09/10/2015	19/02/2016	Amendment No 4	0m	South East
SP2	Infrastructure	Sewerage	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		0m	South West
R2	Low Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		16m	East
B5	Business Development		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		20m	North
SP2	Infrastructure	Sewerage	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		23m	North
B5	Business Development		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		24m	North West
B5	Business Development		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		32m	West
R3	Medium Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		93m	South East
R3	Medium Density Residential	<null></null>	Botany Bay Local Environmental Plan 2013	09/10/2015	09/10/2015	19/02/2016		141m	South
B4	Mixed Use		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		155m	North
B4	Mixed Use		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		160m	North East
SP2	Infrastructure	Sewerage	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		162m	South
IN1	General Industrial		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		178m	West
SP2	Infrastructure	Sewerage	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		186m	North
B2	Local Centre		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		209m	North West
SP2	Infrastructure	Sewerage	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		262m	North
SP2	Infrastructure	Sewerage	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		278m	South
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		281m	North West
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		282m	South
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		330m	East
SP2	Infrastructure	Railway	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		334m	West
DM	Deferred Matter		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		339m	East
SP2	Infrastructure	Sewerage	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		350m	North
R2	Low Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		355m	South
SP2	Infrastructure	Airport	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		361m	South West

Zone	Description	Purpose	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		388m	North East
B2	Local Centre		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		400m	South East
R2	Low Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		402m	South East
SP2	Infrastructure	Sewerage	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		403m	South
SP2	Infrastructure	Sewerage	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		411m	North
SP2	Infrastructure	Electricity Substation	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		411m	North
B5	Business Development		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		420m	South West
B2	Local Centre		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		425m	East
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		432m	South West
R2	Low Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		448m	South East
B2	Local Centre		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		469m	North East
B2	Local Centre		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		500m	East
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		503m	North East
B7	Business Park		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		523m	North West
R3	Medium Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		525m	North East
R2	Low Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		530m	East
R3	Medium Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		534m	East
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		605m	South East
B2	Local Centre		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	10/02/2017		622m	South East
R3	Medium Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		630m	East
SP2	Infrastructure	Classified Road	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	16/12/2016		636m	North East
B6	Enterprise Corridor		Sydney Local Environmental Plan 2012	12/06/2015	12/06/2015	16/12/2016	Amendment No 17	647m	North
IN1	General Industrial		Sydney Local Environmental Plan 2012	12/06/2015	12/06/2015	16/12/2016	Amendment No 17	647m	North
SP2	Infrastructure	Classified Road	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	16/12/2016		656m	North East
B6	Enterprise Corridor		Sydney Local Environmental Plan 2012	12/06/2015	12/06/2015	16/12/2016	Amendment No 17	657m	North East
B4	Mixed Use		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		659m	South East
SP2	Infrastructure		Sydney Local Environmental Plan 2012	12/06/2015	12/06/2015	16/12/2016	Amendment No 17	674m	North
B7	Business Park		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		687m	North West
B7	Business Park		Sydney Local Environmental Plan 2012	12/06/2015	12/06/2015	16/12/2016	Amendment No 17	694m	North East
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		716m	North East
R3	Medium Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		719m	North East
B5	Business Development		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		730m	South East
SP2	Infrastructure	Railway	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		730m	South East
SP2	Infrastructure	Airport	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		732m	South East

Zone	Description	Purpose	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
B2	Local Centre		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		744m	North East
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		744m	East
SP2	Infrastructure	Classified Road	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	16/12/2016		851m	North East
SP2	Infrastructure	Educational Establishment	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	16/12/2016		863m	North East
RE1	Public Recreation		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		906m	South East
IN2	Light Industrial		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		910m	South East
B7	Business Park		Sydney Local Environmental Plan 2012	12/06/2015	12/06/2015	16/12/2016	Amendment No 17	969m	North East
R2	Low Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		979m	South East
IN1	General Industrial		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		983m	North West
R3	Medium Density Residential		Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	19/02/2016		984m	North East

Local Environment Plan Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Local Environmental Plan

146-154 O'Riordan Street, Mascot, NSW 2020

Minimum Subdivision Lot Size

What are the onsite Local Environmental Plan Minimum Subdivision Lot Sizes?

Symbol	Minimum Lot Size	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Percentage of Site Area
No Data							

Maximum Height of Building

What are the onsite Local Environmental Plan Maximum Height of Buildings?

Symbol	Maximum Height of Building	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Percentage of Site Area
18	22.00 m	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015		99.9

Floor Space Ratio

What are the onsite Local Environmental Plan Floor Space Ratios?

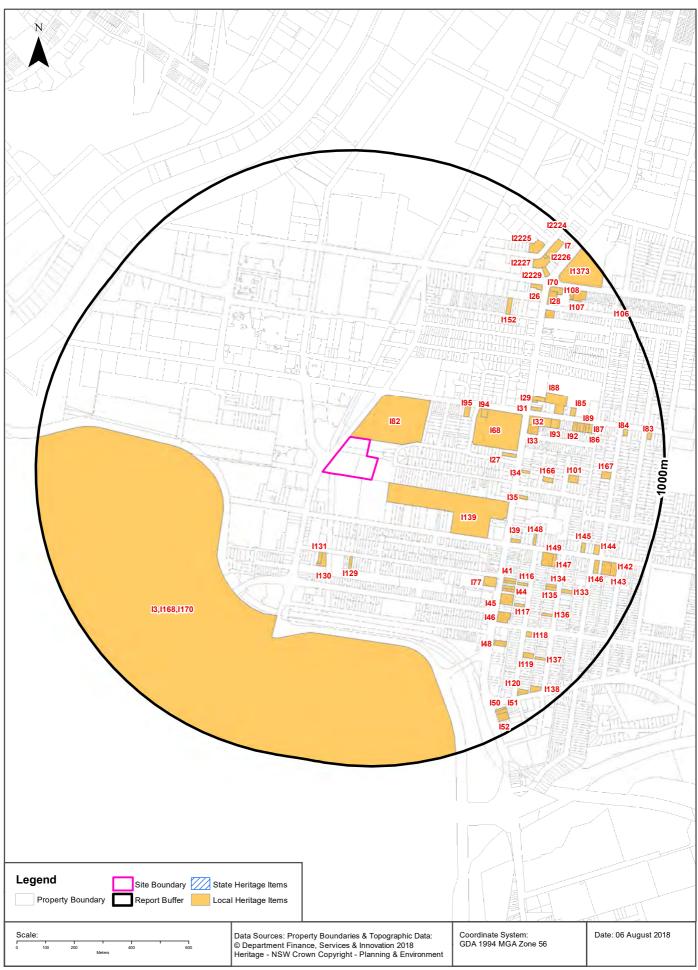
Symbol	Floor Space Ratio	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Percentage of Site Area
84	3.00	LEP	21/06/2013	21/06/2013	09/10/2015		99.9

Land Application

What are the onsite Local Environmental Plan Land Applications?

Application Type	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Percentage of Site Area
Included	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	21/06/2013		100

Land Reservation Acquisition


What are the onsite Local Environmental Plan Land Reservation Acquisitions?

Reservation	LEP	Published Date	Commenced Date	Currency Date	Amendment	Comments	Percentage of Site Area
No Data							

Local Environment Plan Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Heritage Items

Heritage

146-154 O'Riordan Street, Mascot, NSW 2020

State Heritage Items

What are the State Heritage Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Local Heritage Items

What are the Local Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	LEP or Act	Published Date	Commenced Date	Currency Date	Distance	Direction
182	Mascot Park	Item - Landscape	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	0m	North East
I139	Mascot Public School Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	61m	South East
l129	House group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	276m	South
I130	Mature Ficus	Item - Landscape	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	278m	South
l131	House - "Daktari"	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	278m	South
168	Memorial Park	Item - Landscape	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	332m	East
195	M.B.W.S. Pumping Station	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	332m	North East
I3,I168,I 170	Commonwealth Water Pumping Station and Sewerage Pumping Station	Item - General	State	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	359m	South West
194	Botany Family Day Care	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	386m	East
127	Mature Ficus	Item - Landscape	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	432m	East
134	Mature Hoop Pine	Item - Landscape	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	501m	East
135	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	503m	East
177	Former Tennyson Hotel	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	518m	South East
139	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	526m	South East

Map Id	Name	Classification	Significance	LEP or Act	Published Date	Commenced Date	Currency Date	Distance	Direction
133	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	527m	East
132	Coronation Hall	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	537m	East
I31	Former National Bank of Australasia	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	559m	East
130	Electricity Substation No.147	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	571m	East
I41	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	574m	South East
129	House Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	575m	East
142	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	578m	South East
I166	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	579m	East
143	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	587m	South East
144	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	591m	South East
l148	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	600m	South East
145	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	601m	South East
193	Fire Station	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	609m	East
188	Uniting Church and Rectory	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	613m	East
I116	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	621m	South East
146	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	637m	South East
l152	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	646m	North East
l149	Terrace Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	648m	South East
l117	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	657m	South East
l101	House Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	667m	East
192	House - "Highhurstwood"	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	683m	East
185	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	684m	East
l147	House - "Beverley"	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	684m	South East
191	House - "Orara"	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	697m	East

Map Id	Name	Classification	Significance	LEP or Act	Published Date	Commenced Date	Currency Date	Distance	Direction
148	Single Storey Terrace Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	703m	South East
190	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	707m	East
l134	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	708m	South East
I135	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	711m	South East
189	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	719m	East
187	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	727m	East
186	Shop	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	738m	East
128	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	744m	North East
I136	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	752m	South East
I118	Corner Store	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	758m	South East
l133	House Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	764m	South East
l145	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	764m	East
126	Former Bank Building	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	772m	North East
128	Commercial Building Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	778m	North East
l167	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	780m	East
I119	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	802m	South East
l144	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	810m	East
170	New Market Hotel	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	814m	North East
12227	Former H. G. Whittle & Sons Factory	Item - General	Local	Sydney Local Environmental Plan 2012	22/01/2016	22/01/2016	06/05/2016	825m	North East
I146	House Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	827m	South East
12229	Former White Way Service Station	Item - General	Local	Sydney Local Environmental Plan 2012	22/01/2016	22/01/2016	06/05/2016	833m	North East
l137	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	840m	South East
I108	Terrace Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	850m	North East
I143	Terrace Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	854m	South East

Map Id	Name	Classification	Significance	LEP or Act	Published Date	Commenced Date	Currency Date	Distance	Direction
12225	Former Sil-Ora Dental Products Factory	Item - General	Local	Sydney Local Environmental Plan 2012	22/01/2016	22/01/2016	06/05/2016	855m	North East
184	Shop	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	856m	East
l107	Terrace Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	858m	North East
I1373	Gardeners Road Public School	Item - General	Local	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	06/05/2016	863m	North East
12226	Electricity Substation No. 375	Item - General	Local	Sydney Local Environmental Plan 2012	22/01/2016	22/01/2016	06/05/2016	878m	North East
l142	House Group	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	884m	South East
17	Former warehouse 'Boltons Trading Co' (15-25 Birmingham Street)	Item - General	Local	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	06/05/2016	888m	North East
I120	House - "Verandale"	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	890m	South East
I138	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	907m	South East
150	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	912m	South East
l51	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	918m	South East
152	Beckenham Memorial Church	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	930m	South East
183	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	938m	East
I106	House	Item - General	Local	Botany Bay Local Environmental Plan 2013	21/06/2013	21/06/2013	09/10/2015	989m	North East
12224	Former Walter Barr Pty Ltd Factory	Item - General	Local	Sydney Local Environmental Plan 2012	22/01/2016	22/01/2016	06/05/2016	997m	North East

Heritage Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Natural Hazards

146-154 O'Riordan Street, Mascot, NSW 2020

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
No records within buffer		

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Native Vegetation & RAMSAR Wetlands

146-154 O'Riordan Street, Mascot, NSW 2020

Native Vegetation

What native vegetation exists within the dataset buffer?

Map ID	Map Unit Name	Threatened Ecological Community NSW	Threatened Ecological Community EPBC Act	Understorey	Disturbance	Disturbance Index	Dominant Species	Dist	Direction
Urban_E/N	Urban_E/N: Urban Exotic/Native			00: Not assessed	00: Not assessed	0: Not assessed	Urban Exotic/Native	0m	Onsite
Weed_Ex	Weed_Ex: Weeds and Exotics			00: Not assessed	00: Not assessed	0: Not assessed	Exotic Species >90%cover	724m	South East

Native Vegetation of the Sydney Metropolitan Area: NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

RAMSAR Wetlands

What RAMSAR Wetland areas exist within the dataset buffer?

Map Id	RAMSAR Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

RAMSAR Wetlands Data Source: © Commonwealth of Australia - Department of Environment

146-154 O'Riordan Street, Mascot, NSW 2020

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
N/A	No records within buffer				

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

146-154 O'Riordan Street, Mascot, NSW 2020

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
N/A	No records within buffer				

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

146-154 O'Riordan Street, Mascot, NSW 2020

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Crinia tinnula	Wallum Froglet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardea ibis	Cattle Egret	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ardenna carneipes	Flesh-footed Shearwater	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Ardenna pacificus	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Arenaria interpres	Ruddy Turnstone	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris alba	Sanderling	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris bairdii	Baird's Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Calidris canutus	Red Knot	Not Listed	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris melanotos	Pectoral Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Calidris ruficollis	Red-necked Stint	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris tenuirostris	Great Knot	Vulnerable	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Calyptorhynchus lathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Charadrius leschenaultii	Greater Sand- plover	Vulnerable	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Charadrius mongolus	Lesser Sand- plover	Vulnerable	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Charadrius veredus	Oriental Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Chlidonias leucopterus	White-winged Black Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Dasyornis brachypterus	Eastern Bristlebird	Endangered	Category 2	Endangered	
Animalia	Aves	Diomedea exulans	Wandering Albatross	Endangered	Not Sensitive	Endangered	JAMBA
Animalia	Aves	Diomedea gibsoni	Gibson's Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Egretta sacra	Eastern Reef Egret	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Endangered Population, Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Erythrotriorchis radiatus	Red Goshawk	Critically Endangered	Category 2	Vulnerable	
Animalia	Aves	Esacus magnirostris	Beach Stone- curlew	Critically Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Fregata ariel	Lesser Frigatebird	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Gelochelidon nilotica	Gull-billed Tern	Not Listed	Not Sensitive	Not Listed	САМВА
Animalia	Aves	Haematopus fuliginosus	Sooty Oystercatcher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus longirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Limicola falcinellus	Broad-billed Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa limosa	Black-tailed Godwit	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Macronectes giganteus	Southern Giant Petrel	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Macronectes halli	Northern Giant- Petrel	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Merops ornatus	Rainbow Bee- eater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Neochmia ruficauda	Star Finch	Presumed Extinct	Not Sensitive	Endangered	
Animalia	Aves	Neophema chrysogaster	Orange-bellied Parrot	Critically Endangered	Category 3	Critically Endangered	
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius minutus	Little Curlew	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica phoenicea	Flame Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pezoporus wallicus wallicus	Eastern Ground Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Phaethon lepturus	White-tailed Tropicbird	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Polytelis swainsonii	Superb Parrot	Vulnerable	Category 3	Vulnerable	
Animalia	Aves	Procelsterna cerulea	Grey Ternlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus regina	Rose-crowned Fruit-Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stercorarius parasiticus	Arctic Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Stercorarius pomarinus	Pomarine Jaeger	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sternula albifrons	Little Tern	Endangered	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Sula dactylatra	Masked Booby	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Thalassarche cauta	Shy Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thalassarche chrysostoma	Grey-headed Albatross	Not Listed	Not Sensitive	Endangered	
Animalia	Aves	Thalassarche melanophris	Black-browed Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Tringa brevipes	Grey-tailed Tattler	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa glareola	Wood Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa incana	Wandering Tattler	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tryngites subruficollis	Buff-breasted Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Xenus cinereus	Terek Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Mammalia	Aepyprymnus rufescens	Rufous Bettong	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus forsteri	New Zealand Fur- seal	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Mammalia	Arctocephalus pusillus doriferus	Australian Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Dasyurus viverrinus	Eastern Quoll	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Dugong dugon	Dugong	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Eubalaena australis	Southern Right Whale	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Megaptera novaeangliae	Humpback Whale	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Miniopterus australis	Little Bentwing- bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus schreibersii oceanensis	Eastern Bentwing-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Mormopterus norfolkensis	Eastern Freetail- bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Perameles nasuta	Long-nosed Bandicoot	Endangered Population	Not Sensitive	Not Listed	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Dermochelys coriacea	Leatherback Turtle	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Acacia bynoeana	Bynoe's Wattle	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia gordonii		Endangered	Not Sensitive	Endangered	
Plantae	Flora	Acacia prominens	Gosford Wattle	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Acacia pubescens	Downy Wattle	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia terminalis subsp. terminalis	Sunshine Wattle	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Amperea xiphoclada var. pedicellata		Presumed Extinct	Not Sensitive	Extinct	
Plantae	Flora	Caladenia tessellata	Thick Lip Spider Orchid	Endangered	Category 2	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Dichanthium setosum	Bluegrass	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Diuris arenaria	Sand Doubletail	Endangered	Category 2	Not Listed	
Plantae	Flora	Doryanthes palmeri	Giant Spear Lily	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus camfieldii	Camfield's Stringybark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus fracta	Broken Back Ironbark	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus leucoxylon subsp. pruinosa	Yellow Gum	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus pulverulenta	Silver-leafed Gum	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Hibbertia puberula		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Macadamia integrifolia	Macadamia Nut	Not Listed	Not Sensitive	Vulnerable	
Plantae	Flora	Maundia triglochinoides		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Melaleuca deanei	Deane's Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Persoonia hirsuta	Hairy Geebung	Endangered	Category 3	Endangered	
Plantae	Flora	Pimelea curviflora subsp. curviflora		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Prostanthera marifolia	Seaforth Mintbush	Critically Endangered	Category 3	Critically Endangered	
Plantae	Flora	Senecio spathulatus	Coast Groundsel	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Senna acclinis	Rainforest Cassia	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tetratheca glandulosa		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Tetratheca juncea	Black-eyed Susan	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Thesium australe	Austral Toadflax	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Wilsonia backhousei	Narrow-leafed Wilsonia	Vulnerable	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species. NSW BioNet: © State of NSW and Office of Environment and Heritage

Data obtained 06/08/2018

USE OF REPORT – APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report. The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - (i) content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available (Third Party Content Suppliers);
 - j) content which is derived from content described in paragraph (i);
 - (b) Lotsearch does not take any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**);
 - (d) Lotsearch has not undertaken any physical inspection of the property;
 - (e) Lotsearch does not warrant that all land uses or features whether past or current are identified in the Report;
 - (f) the Report does not include any information relating to the actual state or condition of the Property;
 - (g) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of a Property for any particular purpose;
 - (h) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (i) the End User should undertake its own inspection s of the Property to satisfy itself that there are no defects or failures.
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 5. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 6. To the extent permitted by law and subject to paragraph 7, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these terms other than as expressly set out in these terms are excluded.
- 7. Subject to paragraph 8, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 8. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 9. Subject to paragraph 7, neither Lotsearch nor the End User is liable to the other for any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to these terms.
- 10. These terms are subject to New South Wales law.

Appendix C

Certificates of Titles

ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 943 842) ABN 82 147 943 842

18/36 Osborne Road, Telephone: +612 9977 6713 Manly NSW 2095 Mobile: 0412 169 809

Email: _search@alsearchers.com.au

06th August 2018

LOTSEARCH PTY LTD Level 3, 68 Alfred Street, MILSONS POINT, NSW 2061

Attention: Howard Waldron,

RE: 146-154 O'Riordan Street,

Mascot

Job No. LS003932 EP

Note 1:	Lot 15	DP 1232496	(page 1)
Note 2:	Lot 14	DP 1232496	(page 5)
Note 3:	Lot 13	DP 1232496	(page 7)
Note 4:	Lot A	DP 402876	(page 9)

Note 1:

Current Search

Folio Identifier 15/1232496 (title attached)
DP 1232496 (plan attached)
Dated 02nd August 2018
Registered Proprietor:

JKN PARK PTY LTD

Title Tree Lot 15 DP 11934

Folio Identifier 15/1232496

Folio Identifier 1/85597

Certificate of Title Volume 12181 Folio 96

Certificate of Title Volume 5565 Folio 36

PA35597

Conveyance Book 1917 No 776

New Trustee Book 1917 No 79

New Trustee Book 1582 No 924

Conveyance Book 151 No 697

Subject land within **Part Portion 136 Parish Botany** Granted to John Roby Hatfield dated 7th April 1838

Summary of proprietor(s) **Lot 15 DP 1232496**

Year Proprietor(s)

	(Lot 15 DP 1232496)
2018 – todate	JKN Park Pty Ltd
	(Lot 1 DP 85597)
2013 – 2018	JKN Park Pty Ltd
2003 – 2013	Stead Denton
1994 - 2003	Balfour Grange Pty Limited
(1989 - 2018)	(various leases shown on Historical Folio 1/85597)
1988 – 1994	Tohaha Pty Limited
	(Lot 1 DP 85597 – CTVol 12181 Fol 96)
1987 – 1988	Tohaha Pty Limited
1980 - 1987	State Superannuation Board
1973 – 1980	CDL Developments (No.1) Pty Limited
1973 – 1973	J.E.L Developments (Australia) Pty Limited
	(Part Portion 136 Parish Botany – Area 2 Roods 30 ¼ Perches – CT
	Vol 5565 Fol 36)
1972 – 1973	J.E.L Developments (Australia) Pty Limited
(1968 – 1972)	(lease to Dowel Industries (NSW) Pty Limited)
1950 – 1972	Westcott Hazell Engineering & Steel Limited
1946 – 1950	Norge Investments Pty Limited
1946 – 1946	Peder Martin Andersen, mechanical engineer
	(Part Portion 136 Parish Botany – Area 2 Roods 30 ¼ Perches – Conv
	Bk 1917 No 776)
1942 – 1946	Peder Martin Andersen, mechanical engineer
	(Part Portion 136 Parish Botany – Area 2 Roods 30 ¼ Perches – New
	Trustee Bk 1917 No 79)
1942 – 1942	William James Lodge, carter / trustee
	Charles Henry Lodge, retired Gardner / trustee
	John Lodge, estate

Cont.

Cont.

	(Part Portion 136 Parish Botany – Area 2 Roods 30 ¼ Perches – New Trustee Bk 1582 No 924)			
1929 – 1942	Sarah Lodge, widow / administrix			
	William James Lodge / Trustee			
	John Lodge, estate			
1907 – 1929	Sarah Lodge, widow / executrix			
	Emma Lodge, executrix			
	John Lodge, estate			
1897 - 1907	William James Lodge, executor			
	John Lodge, estate			
1879 – 1897	Charlotte Lodge, executrix			
	John Lodge, estate			
	(Part Portion 136 Parish Botany – Conv Bk 151 No 697)			
1875 - 1879	John Lodge, restaurant keeper			

Note 2:

Current Search

Folio Identifier 14/1232496 (title attached) DP 1232496 (plan attached) Dated 02nd August 2018 Registered Proprietor: JKN PARK PTY LTD

Title Tree Lot 14 DP 1232496

Folio Identifier 14/1232496

Folio Identifier A/364217

Certificate of Title Volume 15474 Folio 100

Certificate of Title Volume 6084 Folio 26

Certificate of Title Volume 5826 Folio 128

PA36370

Subject land within **Part Portion 136 Parish Botany** Granted to John Roby Hatfield dated 7th April 1838

Summary of proprietor(s) **Lot 14 DP 1232496**

Year Proprietor(s)

	(Lot 14 DP 1232496)		
2018 – todate	JKN Park Pty Ltd		
(2018 – todate)	(various current leases shown on Folio Identifier 14/1232496)		
	(Lot A DP 364217)		
2013 - 2018	JKN Park Pty Ltd		
2013 - 2013	Dexus Funds Management Limited		
2002 - 2013	Perpetual Trustee Company Limited		
2002 - 2002	Paladin Australia Limited		
1997 - 2002	Trust Company of Australia Limited		
1991 – 1997	Fai Life Insurance Society Limited		
1989 – 1991	Fai Properties Pty Limited		
(1989 - 2018)	(various leases shown on Historical Folio A/364217)		
	(Lot A DP364217 – CTVol 15474 Fol 100)		
1987 – 1989	Fai Properties Pty Limited		
(1987 – 1989)	(various leases shown on CTVol 15474 Fol 100)		
	(Part Portion 136 Parish Botany – Area 1 Rood 30 ¼ Perches – CT		
	Vol 6084 Fol 26)		
1982 – 1987	Lexane Pty Limited		
1950 – 1982	Gearin O'Riordan Limited		
1950 – 1950	Norge Investments Pty Limited		
	(Part Portion 136, Parish Botany – Area 1 Acre 1 Rood 20 Perches –		
	CTVol 5826 Fol 128)		
1949 – 1950	Norge Investments Pty Limited		
1948 – 1949	The Council of the Municipality of Mascot		
	(Part Portion 136, Parish Botany – Area 1 Acre 1 Rood 20 Perches)		
Prior – 1948	Sarah Emily Forster		

Note 3:

Current Search

Folio Identifier 13/1232496 (title attached) DP 1232496 (plan attached) Dated 02nd August 2018 Registered Proprietor: JKN PARK PTY LTD

Title Tree Lot 13 DP 1232496

Folio Identifier 13/1232496

Folio Identifier A/320192

Certificate of Title Volume 15474 Folio 99

Certificate of Title Volume 4142 Folio 133

Certificate of Title Volume 1383 Folio 199

Subject land within **Part Portion 136 Parish Botany** Granted to John Roby Hatfield dated 7th April 1838

Summary of proprietor(s) **Lot 13 DP 1232496**

Year Proprietor(s)

	(Lot 13 DP 1232496)
2018 – todate	JKN Park Pty Ltd
(2018 – todate)	(various current leases shown on Folio Identifier 13/1232496)
	(Lot A DP 320192)
2013 – 2018	JKN Park Pty Ltd
2013 - 2013	Dexus Funds Management Limited
2002 - 2013	Perpetual Trustee Company Limited
2002 - 2002	Paladin Australia Limited
1997 - 2002	Trust Company of Australia Limited
1991 – 1997	Fai Life Insurance Society Limited
1989 – 1991	Fai Properties Pty Limited
(1989 - 2018)	(various leases shown on Historical Folio A/364217)
	(Lot A DP320192 – CTVol 15474 Fol 99)
1987 – 1989	Fai Properties Pty Limited
(1987 - 1989)	(various leases shown on CTVol 15474 Fol 99)
	(Part Portion 136, Parish Botany – Area 1 Acre 1 Rood 13 ¼ Perches
	- CT Vol 4142 Fol 133)
1982 – 1987	Lexane Pty Limited
1967 – 1982	Gearin O'Riordan Pty Limited
1928 – 1967	Gearin-O'Riordan Limited
	(Part Portion 136, Parish Botany – Area 4 Acres 2 Rood 8 Perches –
	CT Vol 1383 Fol 199)
1922 – 1928	M.Gearin and Sons Limited
1901 - 1922	Michael Gearin, fat extractor

Note 4:

Current Search

Folio Identifier A/402876 (title attached) DP 402876 (plan attached) Dated 02nd August 2018 Registered Proprietor: JKN PARK PTY LTD

Title Tree Lot A DP 402876

Folio Identifier A/402876

Certificate of Title Volume 15474 Folio 101

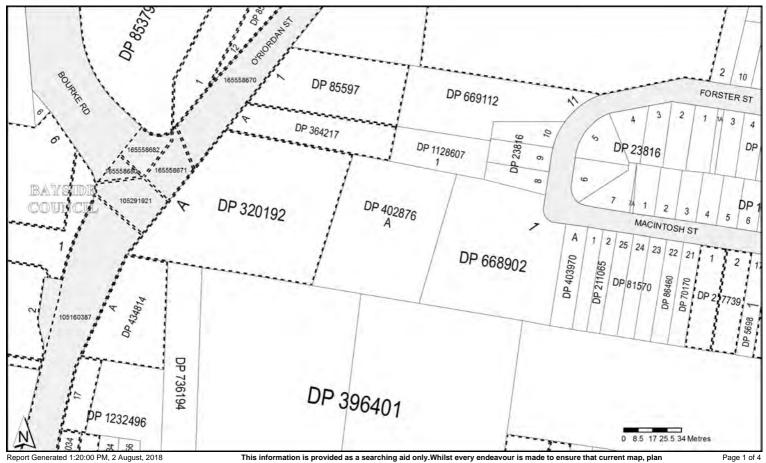
Certificate of Title Volume 7457Folio 156

Certificate of Title Volume 5565 Folio 144

Certificate of Title Volume 5297 Folio 24

Certificate of Title Volume 1383 Folio 199

Subject land within **Part Portion 136 Parish Botany** Granted to John Roby Hatfield dated 7th April 1838


Summary of proprietor(s) **Lot A DP 402876**

Year Proprietor(s)

	(Lot A DP 402876)
2015 – todate	JKN Park Pty Ltd
2013 – 2015	Dexus Funds Management Limited
2013 – 2013	Perpetual Trustee Company Limited
(2008 – todate)	(various current leases shown on Folio Identifier A/402876)
2002 - 2013	Paladin Australia Limited
2002 - 2002	Trust Company of Australia Limited
1997 - 2002	Fai Life Insurance Society Limited
1991 – 1997	Fai Properties Pty Limited
(1991 – todate)	(various leases shown on Historical Folio A/402876)
	(Lot A DP402876 – CTVol 15474 Fol 101)
1987 – 1991	Fai Properties Pty Limited
(1987 – 1989)	(various leases shown on CTVol 15474 Fol 101)
	(Part Portion 136 Parish Botany – Area 1 Acre 1 Rood 0 Perches –
	CT Vol 7457 Fol 156)
1982 – 1987	Lexane Pty Limited
1967 – 1982	Gearin-O'Riordan Pty Limited
1958 – 1967	Gearin-O'Riordan Limited
	(Part Portion 136 Parish Botany – Area 2 Acres 2 Rood 19 Perches –
	CT Vol 5564 Fol 144)
1946 – 1958	W.F.Campbell Pty Limited
	(Part Portion 136, Parish Botany – Area 2 Acres 2 Rood 33 ¾ Perches
	- CT Vol 5297 Fol 24)
1942 – 1946	M.Gearin and Sons Limited
	(Part Portion 136, Parish Botany – Area 4 Acres 2 Rood 8 Perches –
	CT Vol 1383 Fol 199)
1922 – 1942	M.Gearin and Sons Limited
1901 – 1922	Michael Gearin, fat extractor

Locality : MASCOT Parish: BOTANY LGA: BAYSIDE County: CUMBERLAND Ref: NOUSER

Report Generated 1:20:00 PM, 2 August, 2018 Copyright © Crown in right of New South Wales, 2017

This information is provided as a searching aid only. Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Locality: MASCOT

Parish: BOTANY

Ref: NOUSER

LGA: BAYSIDE **County**: CUMBERLAND

DP15034 .ot(s): 5				
₋ot(s): 5		Status	Surv/Comp	Purpose
			•	-
📮 Di				
	P1015636	REGISTERED	SURVEY	EASEMENT
P85597				
.ot(s): 1	P1232496	REGISTERED	SURVEY	POADS ACT 1002
اط <u>ھے</u> P217739	F1232490	REGISTERED	SURVET	ROADS ACT, 1993
ot(s): 1				
.ot(3). 1	A102251 - LOT 1 DP2	217739		
ot(s): 2				
	A150394 - LOT 2 DP2	217739		
P270981				
ot(s): 1				
	P270981	REGISTERED	SURVEY	COMMUNITY SUBDIVISION PLAN
	P1236518	REGISTERED	SURVEY	EASEMENT
ot(s): 1, 2, 6		LUCTORIONI	OLIDVEY.	OLIDDIN/IOLONI
	P1213409	HISTORICAL	SURVEY	SUBDIVISION
ot(s): 1, 6	P878949	HISTORICAL	SURVEY	CONSOLIDATION
	1 010343	THOTORIOAL	CORVET	CONSOLIDATION
ot(s): 1, 2	P804703	HISTORICAL	SURVEY	SUBDIVISION
ot(s): 6	. 50 11 00	OT OT COME		000011
	P270981	HISTORICAL	SURVEY	COMMUNITY PLAN
P320192				
ot(s): A				
🖳 DI	P1232496	REGISTERED	SURVEY	ROADS ACT, 1993
P364217				
ot(s): A	D4000400	DECICTEDED	OLIDVEY.	DOADS ACT 4000
	P1232496	REGISTERED	SURVEY	ROADS ACT, 1993
)P434814 ot(s): A				
	P1232496	REGISTERED	SURVEY	ROADS ACT, 1993
P668903				
ot(s): 1				
i 🖳 DI	P930759	HISTORICAL	COMPILATION	UNRESEARCHED
P800299				
ot(s): 1	D.1000707	DECICTEDED	0115)(5)(E A O E M E M E
	P1038735	REGISTERED	SURVEY	EASEMENT
_	P1064903	REGISTERED	SURVEY	LEASE
P853792				
ot(s): 12	P1038735	REGISTERED	SURVEY	EASEMENT
P1075216	1 1000700	REGIOTERED	CORVET	E/IOEIVIEIVI
ot(s): 16				
	A90714 - LOT 16 DP1	075216		
P1232496				
ot(s): 10				
	P15034	HISTORICAL	SURVEY	UNRESEARCHED
ot(s): 17	OT 47 IN DD4000400	IO DEOLUDED FOR DOAD	DUDDOCEO OFF ANTOEOGO	
	JT 17 IN DP1232496	19 KEMNIKEN FOK KOAD F	PURPOSES - SEE AM785926	
): 105160387, 105291 X-SUR 60/39 DP4459	921, 165558670, 165558671 30	1, 165558680, 165558682	
	2 2 1 2 2 1 2 2 2 1 1 1 0 0			
	D10538	HISTORICAL	SURVEY	UNRESEARCHED
P79342	1 10000			
6P79342 <u>Q</u> DI		HISTORICAL	SURVET	REDEFINITION
SP79342 Q DI Q DI	P1101875	HISTORICAL	SURVEY	REDEFINITION
SP79342		HISTORICAL	SURVEY	UNRESEARCHED

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: MASCOT **Parish**: BOTANY

LGA: BAYSIDE County: CUMBERLAND

Status Surv/Comp Purpose

Road

Polygon Id(s): 105160387

EX-SUR 36/04 DP983203
EX-SUR 91/26 DP123465
Polygon Id(s): 105160387, 105291921
EX-SUR 86/47 DP117137

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL ACTIVITY PRIOR TO SEPTEMBER 2002** you must refer to the RGs Charting and Reference Maps.

Ref: NOUSER

Locality: MASCOT

Parish: BOTANY

Ref: NOUSER

LGA : BAYSIDE County : CUMBERLAND

Plan	Surv/Comp	Purpose
DP5698	COMPILATION	UNRESEARCHED
DP14642	SURVEY	UNRESEARCHED
DP15034	SURVEY	UNRESEARCHED
DP15118	SURVEY	UNRESEARCHED
DP15190	SURVEY	UNRESEARCHED
DP23141	SURVEY	UNRESEARCHED
DP23816	SURVEY	UNRESEARCHED
DP70170	SURVEY	UNRESEARCHED
DP81570	SURVEY	UNRESEARCHED
DP85597	SURVEY	UNRESEARCHED
DP86460	SURVEY	UNRESEARCHED
DP93716	COMPILATION	DEPARTMENTAL
DP211065	SURVEY	SUBDIVISION
DP217739	SURVEY	SUBDIVISION
DP320192	COMPILATION	UNRESEARCHED
DP323956	COMPILATION	UNRESEARCHED
DP364217	COMPILATION	UNRESEARCHED
DP396401	SURVEY	UNRESEARCHED
DP402876	SURVEY	UNRESEARCHED
DP403970	SURVEY	UNRESEARCHED
DP434814	COMPILATION	UNRESEARCHED
DP668902	COMPILATION	DEPARTMENTAL
DP668903	COMPILATION	DEPARTMENTAL
DP669112	COMPILATION	DEPARTMENTAL
DP736194	SURVEY	RESUMPTION OR ACQUISITION
DP792885	SURVEY	SUBDIVISION
DP800299	SURVEY	SUBDIVISION
DP813088	SURVEY	CONSOLIDATION
DP853792	SURVEY	SUBDIVISION
DP1075216	COMPILATION	LIMITED FOLIO CREATION
DP1128607	COMPILATION	DEPARTMENTAL
DP1232496	SURVEY	ROADS ACT, 1993
SP79342	COMPILATION	STRATA PLAN
SP88674	COMPILATION	STRATA PLAN

Req:R018819 /Doc:CT 12181-096 CT /Rev:21-Dec-2010 /Sts:OK.SC /Pgs:ALL -Aug-2018 13:16 /Prt:02 Ref:advlegs /Src:P

PROPERTY ACT, 1900

NEW SOUTH WALES

(Page 1) Vol.

Appln No. 35597

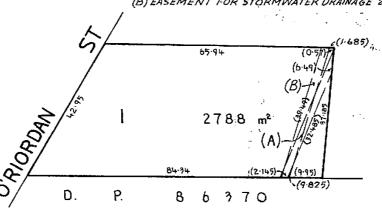
Prior Title Vol.5565 Fol.36

12181

Edition issued 31-7-1973

N109443

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.


PLAN SHOWING LOCATION OF LAND

LENGTHS ARE IN METRES

SEE AUTO FOLIO

(B) EASEMENT FOR STORMWATER DRAINAGE 2 WIDE - R732850

NIO9443 ω_{JJ}

1:800 REDUCTION RATIO

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 1 in Deposited Plan 85597 in the Municipality of Mascot Parish of Botany and County of Cumberland being part of Portion 136 granted to John Roby Hatfield on 7-4-1838.

FIRST SCHEDULE

PTY. LIMITED.

SECOND SCHEDULE

- GRY 1. Reservations and conditions, if any, contained in the Crown Grant above referred to.
 - Drainage creats Tay notification in Government Gazette No
 - 4972 Discharged N246569

 - Mortgage No. M745987 1972 Discharged N246570

1973. Withdrawn N78319

Registrar General

WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE

The proposate for 1 by Leaves and Leaves 1 by The Leaves 1 by					FIRST SCHEDULE (continued) ·					_
The projection of the A-1-by interface and the A-1-10. The projection of the A-1-by interface and the A-1-10. The projection of the A-1-by interface and the A-1-10. The projection of the A-1-by interface and the A-1-by			:	II.	NATURE	RUMENT	DATE	ENTERED	Signature of Registrar General	
Figure 50 junted by Transfer without, registered 10-130. SECONS SCHEDULE (continued to the continued to the	Ç	Chi. Deserterment	±8 (No.1) 24	v. Timitod	TO DESCRIPTION OF THE PROPERTY	Π		-00 6 4033	Janbotson	
The state of the s	6) - () - (_		E E 1080	P	\$ / F
SECOND SCHEDULE (continued) SECOND SCHEDULE	٠٠١٥.	Tohaha Pty Lim	ited by Trans	sfer W746001	. Registered 16-2-1987.			200		Src:
National Note National Note National Natio	1									P
SECONO SCHEDULE (confined) SE	818								í	12
SECONO SCHEDULE (confined) Second Schedul	31									- /W 350 -
SECOND SCHEDULE (confined) Second Schedule (conficed) Second Schedule (confined) Second Schedul	۱.					: : :				
SECOND SCHEDULE (confined) SE	٥٨									٠. ٧
Sections inclosed to the control of	•									43
Native Milester Date D										
		NATURE	INSTRUMENT	DATE	ENTERED Re	re of Jeneral	3	ANCELLATION	•	
		Mortgage	1246572	3-5-1973	to Industrial Acceptance Corporation timited	}	charged	P390791	Justin	
Hortgage 1659414 30.11.1979 to V.C.P. Numiners Pry Haisted 175971 High 39	-	Mortgage	—H255594—	8-5-1973	to W.C.T. Nominees Pty. Limited 62	}	scharged	N658413	James Carre	
Property		- Mortgage	N658414	30.11.1975	77 to W.C.T. Wominees Pty. Limited	> Dis	scharged	N759057	Jump	14
Withdrawn Page Pa		Mertpope	N759038	7.3.1974	to Solon Pty, Limited	Dis	charged	P590790	- June Gant	N. 1
Packet Pakipp	*	Mortgage	P390792		to A.C.C. (Advances) Limited	Serv Dis	charged	Q11828	Solle.	
Note		Caveat	1541721			, Wi	thdrawn	P833705	James	
Nortgage 011809 Wardis Protect Prote	ı	bease	-1986139		Alexandria to					0 1848 P
Norteges Otto Norteges Otto					1516 f expiry 31-5-1982.	Exp	ired	18-11-1983	•	Q2850311 Pb. 13
Careal Works of R132850 Secret for Schruete Land with a Careal Secret Land with drawn B181373 Secret Land with a Careal Land with an Option of Renewal. Expires 31-5-1987. Transfer to Mayne Nickless-Limited, together with an Option of Renewal. Expires 31-5-1987. Registered 18-11-1983 With 6002 Mortgage to Equity, Nortgage Rund N.V. Registered 16-2-1987. With 6002 Mortgage to Equity, Nortgage to Transfer of Hortgage to Entremised Registered 13-1987. Registered 5.10.1988 With 6002 Mortgage to Equity Works and the Carea Registered 11-1988. With 6001 With 6001 Mortgage to Transfer of Hortgage to T	7	'i '	011829			Yit H	Beharged	R64785		026253 18:
Transfer R132850 — Essenat Get Sternwater Orainage effecting the fact of Transfer of the land within described shown so burdened in 31.3-1980. 4	7	'	4Z65V71		by First Chicago Australia Limited	i,M	thdrawn	B781373	Charge and the same	T / 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
1777022please to Mayne Nickless Limited, together with an Option of Renewal. Expires 31-5-1987. Registered 18-11-1983 Registered 18-11-1983 With 6002 Mortgage. Fund N.V. Registered 16-2-1987. With 6002 Mortgage to Equity. Mortgage. Fund N.V. Registered 16-2-1987. With 6002 Mortgage to Equity. Mortgage. Fund N.V. Registered 16-2-1987. With 6002 Mortgage to Equity. Mortgage. Fund N.V. Registered 16-2-1987. Registered 18-11-1983 Registered 18-11-1983 Registered 18-11-1987 Registered 5.10.1988 Registered 5.10.1988 Registered 5.10.1988 Registered 5.10.1988 Registered 18-11-1983 Registered 5.10.1988 Registered 18-11-1083 Registered 5.10.1988 Registered 5.10.1988 Registered 18-11-1083 Registered 18	(s	Transfer	R132850	1	ent for stomuster Draingap affecting the part					D 08/2/2 7
T770270-Lease to Mayne Nickless-Limited, together with an Option of Renewal. Expires 31-5-1987. Registered 18-11-1983 W746002-Mortgage to Equity. Mortgage Rund N.V. Registered 16-2-1987. W746002-Mortgage to Equity. Mortgage Fund N.V. Registered 16-2-1987. W746002-Mortgage to Mortgage Fund N.V. Registered 16-2-1987. W746002-Mortgage Fund N.V. Registered 16-2-1987. W746002-Mortgage F	əbpd	>			land within described wherm so burdened in					
Registered 18-11-1983 W746002 Mortgage to Equity, Mortgage Frans Ref of Hortgage to E.M.F. Hortgage is Pered 5.10.1988 Registered 18-11-1983 Registered 18-11-1983 Registered 18-11-1983 Registered 18-11-1983 Registered 18-11-1983 Registered 5.10.1988 N746001 Registered 18-11-1983 Registered 18-11-1987 Registered 18-11-1983 Registered 18-11-1983 Registered 18-11-1987 Register	of 2	<u> </u>		kless Limite	es 31-5-1987.	G.			-	
Note the second of the second	7 ə6:			983	<u> </u>	5				3
HORAL 5.10.1988 188361 Hampers Works to THENDER OF THE REGISTRAR GENERAL ARE CANCELLED Y883019173 X 8321872 X)d)	W746002-Morte	age to Equit	N. Mortgage	Wastmonts and wastmonts &					ぎに
WITH GOOD MANAGED 160 SOLT HONGER TO THE NUMBER TO THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED 1985 SO TAMBER AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED 1985 SO TAMBER AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED 1985 SO TAMBER AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED 1985 SO TAMBER AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED 1985 SO TAMBER AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED 1985 SO TAMBER AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED 1985 SO TAMBER AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED 1985 SO TAMBER AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED		Registend	5.10.1988							
	*	1 4	1 6002, mlones	OTE, ENTRIE	SOLINGWERE WONDERS TO DIL UMINET. REGISTERO IN 3. 1989 RIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL A		LLED	788	30781782	232 18 12 1 B 32

Req:R018818 /Doc:CT 15474-099 CT/Rev:24-May-2017 /Sts:SC.OK /Pgs:ALL /Prt:02-Aug-2018 13:16

Ref:advlegs /Src:P

O

 φ

S

PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

Fo

NEW SOUTH WALES

First Title Old System

Prior Title Vol.4142 Fol.133

voi 15474

1987

I certify that the person named in the First Schedule is the registered proprietor of an estate in fee simple (or such other estate or interest as is set out below) in the land described subject to the recordings appearing in the Second Schedule and to the provisions of the Real Property Act, 1900.

Registrar General.

LAND REFERRED TO

Lot A in DP320192 at Mascot in the Municipality of Botany Parish of Botany County of Cumberland.

DP320192 Title Diagram:

Registered 9.1.1987

FIRST SCHEDULE

BURNS PHILE: -(CANBERRA)-LIMITED-by-Transfers-W678083 and W678084

FAI PROPERTIES PTY. LIMITED by Transfer W724441. Registered 9.3.1987.

SECOND SCHEDULE

1. Reservations and conditions in the Crown Grant.

2) 2. C562969° Easement for stormwater channel affecting the part of the land above described shown so burdened in DP187190.

 R^{WZ} 3. F326017ho Right of way appurtenant to the land above described affecting the land shown in the plan annexed to F326017.

Corporation Limited. Mortgage to Custem Credit W724440.

Caveat by Profit Freight Systems Pty. Limited as regards part being premises known as T963020-Unit 5, 154 166 O'Riordan Street, tagether with car parking spaces numbered 97 99 & 108 145 inclusive and lessee's truck and ing area of approx 121.42m W678080.

- 6.—1988130—Gaveat-by-Burns Philp-Tru Company-Limited.

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

Vol	TVIII.	
FIRST SCHEDULE (continued)		
REGISTERED PROPRIETOR		Registrar General
a nes 1996		
CANCELLED		
· · · · · · · · · · · · · · · · · · ·		
AUTO FOLIO		
SEE AUTO FOLIO		
CECOND COMEDINE (continued)		<u>L</u>
SECOND SCHEDULE (continued) PARTICULARS	Registrar General	CANCELLATION
1678080 Lease to Profile Freight Systems Ptv. Limited of Unit 5, 154-166-0'Riordan Street, Mascot together	Registrar Gene	CARCLELLI
with Car Parking Spaces numbered 97-99 and 108-115 inclusive and Lessee's Truck Standing Area of approximately 121.42 square metres together with and Research Rights. Expires. 30:11.1988.	 	
With an Option of Renewal for 5 years. Registered 9.1.1987. W678081f Lease to Pandair Freight Limited of Unit 6, 154-166 O'Riordan Street, Mascot together with a Car		Y581201
Parking Spaces numbered 75-87 and 125-130 inclusive and the Lessee's Truck Standing Area of approximately 153.6 square metres together with and Reserving Rights. Expires: 20.10.1993.		
With an Option of Renewal for 5 years. Registered 9.1.1987.		
W678080 Lease to Co-Load Incorporated Pty. Limited of Unit 7, 154-166 O'Riordan Street, Mascot, togstherwith Car Parking Spaces numbered 55-74 inclusive and 116-124 inclusive and Lessee's Truck Standing	. 1	
Area of approximately 201.6 square metres together with and Reserving Rights. Expires: 31.8.1993. With an Option of Renewal for 5 years. Registered 9.1.1987.	(6)	
N676086/Lease to NippopulExpress (Australia) Pty. Limited of Unit 1, 154-166 O'Riordan Street, Mascot together with Car Parking Spaces numbered 17-46 inclusive and Lessee's Truck Standing Area of		
approximately 1945.20 square metres together with and Reserving Rights. Expires: 31.3.1990. With an Option of Renewal for 5 years. Registered 9.1.1987.		
With at the direction of Research for 5 years. Registerer 9.1.1907. 875087 Lease to Mayne Nickless Limited of Units 2, 154 156 O'Riordan Street, Mascet tegether with and Reserving Rights. Expires 31.7.1982 With an Option of Renewal for 4 years. Registered 9.1.1997.		Expired
1878088 Lease to East West Cargo Pty. Lymited of Unit 3, 154-166-0!Riordan Street, Mascot together with and 		2-2-1988
Reserving Rights. Expires: 31946/1989. With an Option of Renewal for 4 years. Registered 9.1.1987. 1676089 Lease to Pacific-Austral Pty. Limited of Unit-4, 154-166-0 Riordan Street, Mascot together with		X929105
Car Parking Spaces numbered 94-96 and 100-107 inclusive and Lessee's Truck Standing Area approximate 121.45 square metres together with and Reserving Rights: Opines: 30.6.1988. With an Option of	4	
Renewal for 5 years. Registered 9.1.1997.		Y581201
X341681/Lease to Mayne Nickless Limited of premises known as Unit 2, 154-156 O'Riordan Street, Mascot Expires 31-7-1991 Option of renewal 4 years	weekle.	
Registered 2-2-1988	V	
X932362/Lease to Nippon Express (Australia) Pty. Limited of premises being Unit 3, 154-166 O'Riordan Street, Mascot, together with carspaces numbered 13-16, 47-		
54 and 91-93 inclusive. Expires 31-3-1990. Option of renewal for 5 years. Begistered 14-12-1988		
X341681/Lease. Y78038 Transfer of Lease. Lessée now Tradeair International Freight Forwarding Services Pty. Limited. Registered 6-1-1989.		
/581201 (Lease to Rainers Customs and Transport Services Pty. Ltd. of premises being Units 4 & 5, 154-166 O'Riordan Street, Mascot, together with carspaces Nos. 94-115 inclusive & 2 Lessee's truckstanding areas. Expires 28-2-1994.		
Registerao 11-9-1989 📉		
W678085 Lease to Sydney County Council of premises being substation No5937 with Right of Way and easement for electricity purposes as shown in plan with W678085. Expires 31/12/2035		
NOTATIONS AND UNREGISTERED DEALINGS	COURT TO	l
The state of the s	<u></u>	
12 1028 T		
The state of the s		
34.1651 172.744 173.73.73.73.73.73.73.73.73.73.73.73.73.7		

Req:R018814 /Doc:CT 15474-100 CT /Rev:24-May-2017 /Sts:SC.OK /Pgs:ALL /Prt:02 -Aug-2018 13:16 Ref:advlegs /Src:P

CATE OF TITLE PERTY ACT, 1900

NEW SOUTH WALES

First Title Old System

Prior Title Vol.6084 Fol.26

15474 Fol 100

SULTION ISSUED.

5 1 1987

I certify that the person named in the First Schedule is the registered proprietor of an estate in fee simple (or such other estate or interest as is set out below) in the land described subject to the recordings appearing in the Second Schedule and to the provisions of the Real Property Act, 1900.

Registrar General.

LAND REFERRED TO

Lot A in DP364217 at Mascot in the Municipality of Botany Parish of Botany County of Cumberland.

Title Diagram: DP364217

FIRST SCHEDULE

LEXANE PTY.LIMITED

7159136

COMPANY (CANBERRA) LIMITED by Transfers W678083 and W678084

Registered 9.1.1987

FAI PROPERTIES PTY. LIMITED by Transfer W724441. Registered 9.3.1987.

SECOND SCHEDULE

Land excludes minerals and is subject to reservations and conditions in favour of the Crown see Crown Grant.

2. T696975 - Mortgage to Custom Credit Collaboration Limited - W724440.

T963020 - Gaveat-by-Profit-Freight-Systems-Pty. Limited-as-regards-part-being-premises-known-as-— Unit 5, 154-166 O'Riordan Street, tenther with car parking spaces numbered 97-99 & 108-115 inclusive and lessee's true and and ing area of approx. 121-42m². W678080.

-4. T988130 - Gaveat - by Burns - Philp - Trust mpany - Limited W678079.

ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF

NOTE: I

THE REGISTRAR GENERAL ARE CANCELLED

PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

(Page 1) Vol.

	·	. ғы.1.0.0	
FIRST SCHEDU	JLE (continued)		
REGISTERED PROPRI	ETOR		Registrar Gene
	SANCERE	i jî	
	so a prod to the design the de-	. t u :	
•	SEC SUPER MAN AND		
	SEE AUTO FOLIC		
•	·		
SECOND SCHED	ULE (continued)		
PARTICULARS		Registrar General	CANCELLATIO
-W678080 Lease to Profit Freight Systems Pty. Limited of Unit 5, 154-16		- Registrar deneral	CANCELLATIO
with Car Parking Spaces numbered 97-99 and 108-115 and lusive of approximately 121.42 square metres together with and Reserv			
With an Option of Renewal for 5 years. Registered 9.1.1907. - W678081 lease to Pandair Freight Limited of Unit 6, 154-166 O'Riordan			Y581201
Parking Spaces numbered 75-87 and 125-130 inclusive and the Le approximately 153.6 square metres together with and Reserving	essee's Truck Standing Area of	100 Lor	24
With an Option of Renewal for 5 years. Registered 9.1.1987.			Ú
 W678082 Lease to Co-Load Incorporated Pty. Limited of Unit 7, 154-166 with Car Parking Spaces numbered 55-74 inclusive and 116,124 in 	inclusive and Lessee's Truck Standing	•	
Area of approximately 201.6 square metres together with and Re- With an Option of Renewal for 5 years. Registered 9.1.1987.			
W678086f2ease to Nippon Express (Australia) Pty. Limited of Unit 1, 15 together with Car Parking Spaces numbered 17-46 inclusive and	4-166 O'Riordan Street, Mascot		
approximately 1945.20 square metres together with and Reserving With an Option of Renewal for 5 years. Registered 9.1.1987.	g Rights. Expires: 31.3.1990.		
W676087 Lease to Mayne Mickless Limited of Unit 2, 151-166 O'Riordan S Reserving Pignes - Expires: 31 7 1987 With an Ontion of Rene	treet, Mascot together with and		Expired
Wo/ddd Lease to East-West Cargo Pty //Emilted of Unit 3, 154-166 O'Rio	ndan-Street; Mascot-together-with-and-		2-2-1988
Reserving-Rights.—Expires: 373351989.—With-an-Option-of-Ren W678089 Lease to Pacific Austral Pty. Limited of Unit 4, 154-156 O'Rion	rdan Street. Mascot together with		χ929105
Car Parking Spaces numbered 94-96 and 100-107-inclusive and Le	ssee's Truck Standing Area	<u> </u>	
approximately 121.45 square metres together With and Reserving	-Rig hts Expires: -30.6.1988With	+ _	
an Option of Renewal for 5 years. Registered 9.1.1987. V678085 Mease to the Sydney County Council of process being Sybstatio	on No 5937 together with Right of		Y581201
an Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of promises being Substatio Way and Easement for Electricity Purposes as shown in Plan wit	on No 5937 together with Right of	en .	Y581201
an Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of promises being Substation Way and Easement for Electricity Purpose Schown in Plan with Registered 9.1.1987. X341681/ Lease to Mayne Nickless Limited of premises known	on No.5937 together with Right of Reg Coch W578085. Expires: 31.12.2035. Reg Coch was Wnit 2, 154-156	en 🌑	Y581201
an Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of profess being Substatio Way and Easement for Electricity Purpose Systems in Plan wit Registered 9.1.1987.	on No.5937 together with Right of Reg Coch W578085. Expires: 31.12.2035. Reg Coch was Wnit 2, 154-156	en 🍪	Y581201
An Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of promises being Substation Way and Easement for Electricity Purpose Technom in Plan with Registered 9.1.1987. X341681/ Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opting Registered 2-2-1988 X932362/Lease to Nippon Express (Australia) Pty. Limited	on No.5937 together with Right of the W578085. Expires: 31.12.2035. Reg Command as **Unit 2, 154-156 **Lion of renewal 4 years of premises being Unit 3,	en 🏐	Y581201
W678085/Lease to The Sydney County Council of professional Substation Way and Easement for Electricity Purpose Schown in Plan with Registered 9.1.1987. X341681/ Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opt Registered 2-2-1988 -X932362/Lease to Nippon Express (Australia) Pty. Limited 154-166 O'Riordan Street, Mascot, together with constant of the Sydney	on No.5937 together with Right of Reg Con No.5937 together with Right of Reg Con as Unit 2, 154-156 ion of renewal 4 years of premises being Unit 3, Carspaces numbered 13-16, 47-	en 💮	Y581201
An Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of profess being Substation Way and Easement for Electricity Purpose Technom in Plan with Registered 9.1.1987. X341681/ Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opting Registered 2-2-1988 -X932362/ Lease to Nippon Express (Australia) Pty. Limited 154-166 O'Riordan Street, Mascot, together with constant of the Street of St	on No.5937 together with Right of the W576085. Expires: 31.12.2035. Reg Command as **Unit 2, 154-156**:ion of renewal 4 years of premises being Unit 3, carspaces numbered 13-16, 47-on of renewal for 5 years.	en O	Y581201
W678085/Lease to The Sydney County Council of professional Substation Way and Easement for Electricity Purpose Schown in Plan with Registered 9.1.1987. X341681/ Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opt Registered 2-2-1988 -X932362/Lease to Nippon Express (Australia) Pty. Limited 154-166 O'Riordan Street, Mascot, together with constant of the Sydney	on No.5937 together with Right of the W578085. Expires: 31.12.2035. Reg Command as **Unit 2, 154-156 **Lion of renewal 4 years of premises being Unit 3, carspaces numbered 13-16, 47-on of renewal for 5 years.	en 🍪	Y581201
An Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of profess being Substation Way and Easement for Electricity Purposes. Shown in Plan with Registered 9.1.1987. X341681/Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opting Registered 2-2-1988. X932362/Lease to Nippon Express (Australia) Pty. Limited 154-166 O'Riordan Street, Mascot, together with constant of the second of the second street of	on No.5937 together with Right of the W578085. Expires: 31.12.2035. Reg Con as Unit 2, 154-156 and of renewal 4 years of premises being Unit 3, carspaces numbered 13-16, 47-on of renewal for 5 years. deair International Freight 1989.	en O	Y581201
An Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of process being Substation Way and Easement for Electricity Purpose Schown in Plan with Registered 9.1.1987. X341681/Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opting Registered 2-2-1988 X932362/Lease to Nippon Express (Australia) Pty. Limited 154-166 O'Riordan Street, Mascot, together with constant of the Sydney Street 14-12-1988 X341681/Lease. Y78038 Transfer of Lease. Lessee now Trade Forwarding Services Pty Limited. Registered 6-1- Y581201/Lease to Rainers Customs and Transport Services In Units 4 & 5, 154-166 O'Riordan Street, Mascot, together with constant of the Sydney Street Struckstanding areas	on No.5937 together with Right of the W578085. Expires: 31.12.2035. Reg Con as Unit 2, 154-156 and of renewal 4 years of premises being Unit 3, carspaces numbered 13-16, 47-on of renewal for 5 years. deair International Freight 1989.	en O	Y581201
An Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of profess being Substation Way and Easement for Electricity Purposes. Shown in Plan with Registered 9.1.1987. X341681/Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opting Registered 2-2-1988. X932362/Lease to Nippon Express (Australia) Pty. Limited 154-166 O'Riordan Street, Mascot, together with constant of the second of the second street of	on No.5937 together with Right of the W576085. Expires: 31.12.2035. Reg Command and Unit 2, 154-156. From of renewal 4 years of premises being Unit 3, carspaces numbered 13-16, 47-00 of renewal for 5 years. Reair International Freight 1989. Pty. Ltd. of premises being ogether with carspaces Nos. Expires 28-2-1994.	en O	Y581201
A Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of process being Substation Way and Fascment for Electricity Purposes. Shown in Plan with Registered 9.1.1987. X341681 Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opting Registered 2-2-1988. X932362 Lease to Nippon Express (Australia) Pty. Limited 154-166 O'Riordan Street, Mascot, together with constant of Street and 91-93 inclusive. Expires 31-3-1990. Opting Registered 14-12-1988. X341681 Lease. Y78038 Transfer of Lease. Lessee now Trade Forwarding Services Pty. Limited. Registered 6-1-1988. Y581201 Lease to Rainers Customs and Transport Services I Units 4 & 5, 154-166 O'Riordan Street, Mascot, together with constant of the Street and Street a	on No.5937 together with Right of the W576085. Expires: 31.12.2035. Reg Command and Unit 2, 154-156. From of renewal 4 years of premises being Unit 3, carspaces numbered 13-16, 47-00 of renewal for 5 years. Reair International Freight 1989. Pty. Ltd. of premises being ogether with carspaces Nos. Expires 28-2-1994.	en O	Y581201
A Option of Renewal for 5 years. Registered 9.1.1987. W678085 Lease to The Sydney County Council of process being Substation Way and Easement for Electricity Purposed Technom in Plan with Registered 9.1.1987. X341681 Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opting Registered 2-2-1988 X932362 Lease to Nippon Express (Australia) Pty. Limited 154-166 O'Riordan Street, Mascot, together with constant of Street and 91-93 inclusive. Expires 31-3-1990. Opting Registered 14-12-1988 X341681 Lease. Y78038 Transfer of Lease. Lessee now Trade Forwarding Services Pty Limited. Registered 6-1-19581201 Lease to Rainers Customs and Transport Services Units 4 & 5, 154-166 GRRiordan Street, Mascot, together with constant of the Street and Street	on No.5937 together with Right of the W576085. Expires: 31.12.2035. Reg Common as **Unit 2, 154-156.** Ion of renewal 4 years of premises being Unit 3, carspaces numbered 13-16, 47-on of renewal for 5 years. deair International Freight 1989. Pty. Ltd. of premises being ogether with carspaces Nos. s. Expires 28-2-1994.	en O	Y581201
A Option of Renewal for 5 years. Registered 9.1.1987. W678085/Lease to The Sydney County Council of process being Substation Way and Fascment for Electricity Purposes. Shown in Plan with Registered 9.1.1987. X341681/ Lease to Mayne Nickless Limited of premises known o'Riordan Street, Mascot Expires 31-7-1991 Opting Registered 2-2-1988. X932362/ Lease to Nippon Express (Australia) Pty. Limited 154-166 O'Riordan Street, Mascot, together with constant of the street of the second street o	on No.5937 together with Right of the W576085. Expires: 31.12.2035. Reg Common as **Unit 2, 154-156.** Ion of renewal 4 years of premises being Unit 3, carspaces numbered 13-16, 47-on of renewal for 5 years. deair International Freight 1989. Pty. Ltd. of premises being ogether with carspaces Nos. s. Expires 28-2-1994.	en O	Y581201

Req:R018814 /Doc:CT 15474-100 CT /Rev:24-May-2017 /Sts:SC.OK /Pgs:ALL /Prt:02-Aug-2018 13:16

Req:R018815 /Doc:CT 15474-101 CT /Rev:21-Dec-2010 /Sts:OK.SC /Pgs:ALL /Prt:02-Aug-2018 13:16

Ref:advlegs /Src:P

4 S

(Page 1) Vol

PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

NEW SOUTH WALES

First Title Old System

Prior Title Vol.7457 Fol.156

15474 Fol 101

(30000

5 1987

I certify that the person named in the First Schedule is the registered proprietor of an estate in fee simple (or such other estate or interest as is set out below) in the land described subject to the recordings appearing in the Second Schedule and to the provisions of the Real Property Act, 1900.

Registrar General.

LAND REFERRED TO

Lot A in DP402876 at Mascot in the Municipality of Botany Parish of Botany County of Cumberland.

DP402876 Title Diagram:

FIRST SCHEDULE

-(CANBERRA)-LIMITED-by-Transfers-W678083-and-W678084

FAI PROPERTIES PTY. LIMITED by Transfer W724441. Registered 9.3.1987.

SECOND SCHEDULE

Reservations and conditions in the Crown Grant.

2. C562969 ho Easement for stormwater channel affecting the part of the land above described shown so

Juruened III prio/190.

3. T696975 — Mortgage to Custom Gred Custom Cred Corporation Limited. W724440.

4. T963020 Caveat by Profit Freight Systems Pty. Limited as regards part being premises known as Unit 5, 154-166 O'Riordan Street tagether with car parking spaces numbered 97-99 & 108-115 inclusive and lessee's the standing area of approx. 121.42m². W678080.

5. T988130 — Caveat by Burns Philippustee Company Limited W678079.

ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED NOTE

(Page 2 of 2 pages)

82 'O'1

REGISTERED PROPRIETOR FIRST SCHEDULE (continued)

Registrar General

1021861

9016Z6X

2-2-1988

1021861

CANCELLATION

Registrar General

CYNCELLED

SEE WIND LOTTE

SECOND SCHEDULE (continued)

approximately 153.6 square metres together with and Reserving Rights. Expires: 20.10.1993. Motor Lease to Profit freight Systems Pty. Limited of Whit. 5, 154-166 O'Riondan Street, Mascot Logether with a lessewing Edings.—Shanding Area of approximately 121-42 square metres logether with and Reserving Rights.—Expires: 30,11,1988.—With an Obtion of Remewal for 5 years. Registered 9:1,1987.

Motor of Remewal for 5 years. Registered 9:1,1987.

Mascot together with a Car Pances to Interest, Mascot together with a Car Pancelly Interest and Interest and Interest Standing Area of Panching Spaces numbered 75-87 and 125-130 inclusive and the Lessewis Standing Area of Panching Spaces numbered 75-87 and 125-130 inclusive and the Lessewis Standing Area of Panching Spaces numbered 75-87 and 125-130 inclusive and the Lessewish Standing Area of Reserving Spaces numbered 75-87 and 125-130 inclusive and the Lessewish Standing Area of Panching Spaces numbered 75-87 and 125-130 inclusive and the Lessewish Standing Area of Panching Spaces numbered 75-87 and 125-130 inclusive and the Lessewish Standing Area of Panching Spaces numbered 75-87 and 125-130 inclusive and 135-130 inclusive and 135-130

PARTICULARS

With Car Parking Spaces numbered 55-74 inclusive and 116-124 inclusive and Lessee's Truck Standing with Car Parking Spaces numbered 55-74 inclusive and 116-124 inclusive and Lessee's Truck Standing Spaces numbered 55-74 inclusive and 116-124 inclusive and Lessee's Truck Standing Spaces numbered 55-74 inclusive and Inclusive and Lessee's Truck Standing Spaces numbered 55-74 inclusive and Lessee's Truck Spaces numbered 55-74 inclusive and Lessee's Numbered 55-74 inclusive and Lessee's Numbered 55-74 inclusive and Lessee's Numbered

Acception of Repress (Australia) Pty. Limited of Unit 1, 154-166 0'Riordan Street, Mascot Mo78086'Lease to Nippon Express (Australia) Pty. Limited of Unit 1, 154-166 0'Riordan Street, Mascot Experts to Nippon Express (Australia) Pty. Limited of Unit 1, 154-166 0'Riordan Street, Mascot Together with Car Parking Spaces numbered 17-46 inclusive and Lessee's Truck Standing Area-of Experts and Lessee's Truck Standing Area-of Together with Car Parking Spaces numbered 17-46 inclusive and Lessee's Truck Standing Area-of Together with Car Parking Spaces numbered 17-46 inclusive and Lessee's Truck Standing Area-of

approximately 1945.20 square metres together with and Reserving Rights. Expires: 31.3.1990.

with an Optimes of Renewal for 5 years. Registered 9.1,3987.

With an Optimes Renewal for 5 years. Registered 9.1,3987.

With an Optimes Renewal for 5 years. Registered 9.1,3987.

Wover to Renewal for 4 years.

Reserving Rights. Expires: 31.7-1907. With an Option of Renewal for 4 years. Registered 9.1,1987.

Wover to East West Carpo Pty 27 years.

Wover to East Renewal Pty 27 years.

Wover to East Renewal Pty 1 with an Option of Renewal for 4 years. Registered 9.1,1987.

Wover to East Renewal Pty 1 with an Option of Renewal for 4 years. Registered 9.1,1987.

Wover to East Renewal Pty 1 with an Option of Renewal for 4 years. Registered 9.1,1987.

Wover to East Renewal Pty 1 with an Option of Renewal For 4 years.

Wover to Renewal Pty 1 with an Option of Renewal For 4 years.

Wover to Renewal Pty 1 with an Option of Renewal For 4 years.

Wover to Renewal Pty 1 with an Option of Renewal Pty 1 with an Option of Renewal Pty 1 with an Option of Renewal Renewal Pty 1 with an Option of Renewal Pty 1 with an Option

in the bareasites. Registered 9-1-1987. approximately 121.45 square metres together with and Reserving Rigins: Expires: 30.6.1988.

X341681/ Lease to Mayne Wickless Limited of premises known as Unit 2, 154-156 0'Riordan Street, Mascot Expires 31-7-1991 Option of renewal 4 years Registered 2-2-1988

. X932362\Lease to Nippon Express (Australia) Pty. Limited of premises being Unit 3, 154=166 0'Riordan Street, Mascot, together with carspaces numbered 13-16, 47-54 and 91-93 inclusive: Expires 31-3-1990. Option of renewal for 5 years. Registered 14-12-1988

MEX341681 Rease. V78038 Transfer of Lease. Lessee now Tradeair International Freight Forwarding Services Pty Limited. Registered 6-1-1989.

Units 4 & 5, 154-166 O'Riordan Streat, Mascot, together with carspaces Nos-94-115 inclusive & 2 Lessee's truckstanding areas. Expires 28-2-1994. Y5812014 Lease to Rainers Customs and Transport Services Pty. Ltd. of premises being

6861-6-11 headts-1698-

729105

NOTATIONS AND UNREGISTERED DEALINGS

Req:R018815 /Doc:CT 15474-101 CT /Rev:21-Dec-2010 /Sts:OK.SC /Pgs:ALL /Prt:02-Aug-2018 13:16 Ref: advlegs /Src: PICE BUTHER SEAL OF THE REGISTRAR GENERAL ARE SALVED BY THE SEAL OF THE REGISTRAR GENERAL ARE CALLED BY THE SEAL OF THE REGISTRAR GENERAL ARE CALLED BY THE SEAL OF THE

Req:R019850 /Doc:DL 8733196 /Rev:09-Jul-2002 /Sts:NO.OK /Pgs:ALL /Prt:02 -2018 14:50 /Seq:1 of Ref:advlegs /Src:P TRANSFER Form: - • 01T Licence: 98M111 New South Wales Edition: 0011 **Real Property Act 1900** PRIVACY NOTE: this information is legally required and will become part or the NEW SOUTH WALES DUTY STAMP DUTY Office of State Revenue use only 0000966482-001 92-05-2002 SECTION 54(3) DUTY TORRENS TITLE If appropriate, specify the part transferred FOR TITLE REFERENCES SEE ANNEXURE A LODGED BY CODES Delivery Name, Address or DX and Telephone Box ALLENS ARTHUR ROBINSON **74S** DX 105, SYDNEY 9230 4000 Reference (optional): (Sheriff) 204683098:STMS TRANSFEROR Trust Company of Australia Limited (ACN 005 027 749) (D) CONSIDERATION The transferor acknowledges receipt of the consideration of \$\) the land specified above transfers to the transferee an estate in fee simple, as responsible entity **ESTATE** of the Paladin Industrial Trust an estate in fee simple SHARE TRANSFERRED 2. (G) Encumbrances (if applicable): TRANSFEREE (H) Paladin Australia Limited (ACN 060 920 783) (I) TENANCY: 1/3/2002 DATE I certify that the transferor, with whom I am personally acquainted or as to Certified correct for the purposes of the Real Property Act 1900 by the transferor. whose identity I am otherwise satisfied, signed this transfer in my presence. Signature of transferor: Signature of witness: Name of witness: Address of witness: FOR EXECUTION SEE ANNEXURE A Certified correct for the purposes of the Real I certify that the transferee, with whom I am personally acquainted or as to Property Act 1900 by the transferee. whose identity I am otherwise satisfied, signed this transfer in my presence. Signature of transferee: Signature of witness: Name of witness: Address of witness: If signed on the transferee's behalf by a solicitor, licensed conveyancer or barrister, insert the signatory's full name and capacity below: Page 1 of A set of notes on this form (01T-2) is available number additional from Land and Property Information NSW. pages sequentially ALL HANDWRITING MUST BE IN BLOCK CAPITALS.

Req:R019850 /Doc:DL 8733196 /Rev:09-Jul-2002 /Sts:NO.OK /Pgs:ALL /Prt:02-Aug-2018 14:50 /Seq:2 of 3 Ref:advlegs /Src:P

Transfer Annexure

Allens Arthur Robinso

THIS IS ANNEXURE "A" TO THE TRANSFER BY TRUST COMPANY OF AUSTRALIA LIMITED (ACN 005 027 749) ("TRANSFEROR") TO PALADIN AUSTRALIA LIMITED (ACN 060 920 783) ("TRANSFEREE") DATED IMPRCH 2002

TORRENS TITLE	Folio Identifiers 5/579721, 32/589097, 10/617845, 1/SP57439; A/402876, A/320192, A/364217, 84/30451, 492/856777, 5/607248, 200/714834, 100/1004156, 221/868300, 11/261439, 7210/635244, 5/219182, 1/619853, 2/855721, 12/617010, 61/790579, 21/846396, 33/3082, 432/862103, 1/SP43960, 2/737117, 3/737117, 5/796129; 41/775473, 102/874888, 181/545640, 20/237731, 431/862103 and
	101/874888

EXECUTION BY TRANSFEROR

Signed for Trust Company of Australia

Limited by its attorney under power of attorney registered book 474 No 670 the presence of:

Witness Signature

Alison Ford

Attorney Signature

MICHAEL JOHN BROTTON

Print Name Poutshe Asset Manager

(Australia) Limited

83 clavence &

EXECUTION BY TRANSFEREE

Signed for Paladin Australia Limited by its attorney under power of attorney registered book4265No 434 in the presence of:

Witness Signature

Attorney Signature

PAUL KEEN

Asset Management Print Name Print Name (Australia) Limited

83 Clavence Street 21

19.11.2001

Req:R019850 /Doc:DL 8733196 /Rev:09-Jul-2002 /Sts:NO.OK /Pgs:ALL /Prt:02-Aug-2018 14:50 /Seq:3 of 3 Ref:advlegs /Src:P

Our Ref: PVC: 022120

Solicitors

Level 17 167 Macquarie Street PO Box 2631 Sydney NSW 2001 Australia DX 109 Sydney Tel 61 2 9293 3800 Fax 61 2 9293 3838 bartier@bartier.com.au ABN: 81 089 478 702

3 July 2002

The Director Land & Property Information NSW Queens Square SYDNEY NSW 2000

Dear Director

ENERGY AUSTRALIA'S SUBLEASE OF SUBSTATION PREMISES NO. 6355 AT 3 MONIER SQUARE VILLAWOOD CAVEAT 7995557 - CAVEATORS CONSENT

We act for Energy Australia and on its behalf lodged Caveat 7995557 to protect Energy Australia's interest under an agreement to the grant of a sublease.

We are instructed by Energy Australia to consent on its behalf to the registration of Transfers affecting the subject property as follows:

- Transfer from Trust Company of Australia Limited to Paladin Australia Limited and;
- Transfer from Paladin Australia Limited to Perpetual Trustee Company Limited.

This consent shall not affect the right for the caveat to remain recorded on title nor does it affect the rights claimed under the caveat.

Yours faithfully **BARTIER PERRY**

Peter Cahill Associate

Direct Line 9293 3872 pcahill@bartier.com.au

Enc

Copy to: Warwick Weekley

CR803

	Form: 01TWC Relcase: 41		TRANS without monetary New South Real Property	y considerat Wates Act 1900	AH887572Y
	by this form for	the establis		eal Property Act Regist	eneral to collect the information required ter. Section 96B RP Act requires that
	STAMP DUTY		nte Revenue use only		PARRAMATY. 10/07/2013 0900 CLASLON A110787 DUTIZE CN 4136143 2FPL ID 7/96 POWMENT TYPE C SAXXXXXXXX
(A)	TORRENS TITLE	A/320192	, A/364217 and A/402876		# \$************************************
(B)	LODGED BY	Document Collection Box 74S	Name, Address or DX, Telephone, Allens DX 105 Sydney (02) 9230 4000	Li7n183024W	CHANGZ/REFUND /\$####################################
(C)	TRANSFEROR (Reference: MJSB:120355472		
(0)		Perpetua	l Trustee Company Limite	ed (ABN 42 000 00	1 007)
(D) (E) (F)	ESTATE		to Proper Instruction us s the above land transfers to the tran		eement dated 1 March 2002 n fee simple
(G)		Encumbranc	es (if applicable):		
(n)	TRANSFEREE	DEXUS FO	unds Management Limited (ABN 24 060 920 7	83)
(1)		TENANCY:			
	DATE 27.	JUNE :	2013		•
(T)	attorney signed the	his dealing in /].	vitness and that the transferor's my presence.	1900 by the transfer	the purposes of the Real Property Act or's attorney who signed this dealing or of attorney specified.
(J)	[See note* below	rr	Eruk E A		
(3)	•			Signature of attorney	y:
(3)	51	ness:		Attorney's name: Signing on behalf of Power of attorney-B	y: NEW SOUTH WALES DUTY 10-07-2013 0007179633-0 001111 \$4046) \$ \$********50.00
(3)	Signature of with	ness:		Attorney's name: Signing on behalf of Power of attorney-B	NEW SOUTH WALES DUTY 10-07-2013 0007179633±0 ∞6€CTION 54846)
(J)	Signature of with Name of witness Address of witness I certify that I an attorney signed to [See note* below	ness: sss: an eligible whis dealing in v].	witness and that the transferee's my presence.	Attorney's name: Signing on behalf of Power of attorney-B -A Certified correct for 1900 by the transfer	NEW SOUTH WALES DUTY 10-07-2013 0007179633±0 ∞6€CTION 54846)
(3)	Signature of with Name of witness Address of witness I certify that I an attorney signed to [See note* below	ness: sss: n an eligible this dealing in the	witness and that the transferee's	Attorney's name: Signing on behalf of Power of attorney-B -A Certified correct for 1900 by the transfer	NEW SOUTH WALES DUTY 10-07-2013
ری	Signature of with Name of witness Address of witness I certify that I an attorney signed to [See note* below	ness: an eligible of this dealing in the state of the st	witness and that the transferee's my presence.	Attorney's name: Signing on behalf of Power of attorney-BN Certified correct for 1900 by the transfer pursuant to the power of attorney attorney's name: Signing on behalf of Power of attorney-E	NEW SOUTH WALES DUTY 10-07-2013

Req:R019851 /Doc:DL AH887572 /Rev:25-Jul-2013 /Sts:NO.OK /Pgs:ALL /Prt:02-Aug-2018 14:50 /Seq:2 of 3 Ref:advlegs /Src:P

This is Annexure 'A' to the Transfer of Land Folio Identifiers A/320192, A/364217 and A/402876 between Perpetual Trustee Company Limited (ABN 42 000 001 007) and DEXUS Funds Management Limited (ABN 24 060 920 783)

EXECUTION BY THE TRANSFEROR

Signed for Perpetual Trustee Company

Limited by its duly authorised attorneys under power of attorney dated 31 March 2009 registered Book 4565 No. 619

I certify that I am an eligible witness and the transferor's attorneys signed this dealing in my presence:

Mark Callaghan

Certified correct for the purposes of the Real Property Act 1900 by the transferor's attorneys who signed this dealing pursuant to the power of attorney specified

Witness Signature

Attorney Sighadu

Senior Client Service Officer

Print Name

Angel Place 123 Pitt St Sydney NSW 2000

Address of Witness

Print Name

Attorney Signa

Eugene Tee

Senior Manager

Emma Kallinyn Tetley

Print Name

Req:R019851 /Doc:DL AH887572 /Rev:25-Jul-2013 /Sts:NO.OK /Pgs:ALL /Prt:02-Aug-2018 14:50 /Seq:3 of 3 Ref:advlegs /Src:P

EXECUTION BY THE TRANSFEREE

Signed Sealed and Delivered for DEXUS Funds Management Limited by its attorneys under registered power of attorney Book 4647 No. 646 dated 11 April 2013 in the presence of:

Witness Signature

Katarina Robinson

Print Name

Level 25, Australia Square 264 George Street

Print Addressydney NSW 2000

Attorney Signature SCOTT DOMINIC MAHONY

Print Name

Attorney Signature

BENJAMIN PAUL KEEN

Print Name

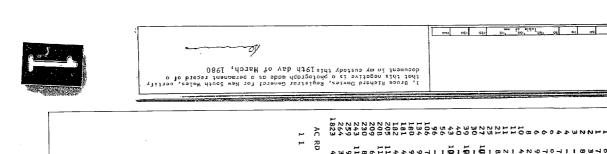
		AH920077 /Rev:12-Aug-2013 /Sts:NO.OK	/Pgs:ALL /Prt:02-Aug-2018 13:39 /Seq:1 of 1
Ker:ad	lvlegs /Src:P Form: 01T Release: 6:1	TRANSI New South Wa	I I WAI WYT TWWYY ALLW TWILD CHALL WALLE WALLE CAMET I WAARA I LA I HAAL
		Real Property Act Section 31B of the Real Property Act 1900 (RP Act) auth the establishment and maintenance of the Real	norises the Rec AUQ20077F
		the establishment and maintenance of the Real ade available to any person for search upon payment of	of a fee, if any. (NSW)
	STAMP DUTY	Office of State Revenue use only	Client No. 1411509 379
			Asst details
	74555114 7171 7		113
(A)	TORRENS TITLE	1/85597	
(B)	LODGED BY	Document Name, Address or DX, Telephone, and	d Customer Account Number if any CODES
		Collection Blackstone Waterhouse Law	
		Box DX 132 SYDNEY (02) 92 79 0288	
, 		() -	ITW
OFFICE	OF STATE REVENUE	Reference: MF: LC: PS: 13406	
	480004	Stead Denton 1 603/7 Rockwall Crescent, Potts Po	int NEW 2011
((b))	CONSIDERATION	The transferor acknowledges receipt of the consideration	on of \$ 7,700,000.00 and as regards
(E) (F)	ESTATE SHARE	the abovementioned land transfers to the transferee	an estate in fee simple
(-)	TRANSFERRED	100%	
(G)		Encumbrances (if applicable):	
(H)	TRANSFEREE	JKN Park Pty Ltd (ACN 163 582 189)	
(1)		TENANCY:	
	DATE		
(J)	I certify I am an e signed this dealing [See note* below]	g in my presence.	Certified correct for the purposes of the Real Property Act 1900 by the transferor.
	Signature of witne	ess:	Signature of transferor:
			lack
	Name of witness: Address of witnes	s: lan williams 105 Young Se Radton 201	Sa
		105 Young Se Radten 201	6 .
			Certified correct for the purposes of the Real Property Act 1900 on behalf of the transferee by the person whose signature appears below.
			Signature:
			Signatory's name: Signatory's capacity: Mark Fitzpatrick solicitor
(K)	The transfere	e's solicito/ certifies that the eNOS data	relevant to this dealing has been submitted and stored under
	eNOS ID No. 4:		k Signature:
		uires that you must have known the signatory for mor	re than 12 months or have sighted identifying documentation.
	ALL HANDWRITING M	TUST BE IN BLOCK CAPITALS Page 1 of 1	1303

	97- 0 1T		RANSFER Il Property Act, 1900		U 105363 C
٠.	42	\$5 ⁻ 06	0¢ 50081555¢\02		
(A)	LAND TRANSFERRED Show no more than 20 Reference if appropriate, specify the share	es to litie.	entifier 1/8559	7	
(B)	LODGED BY	L.T.O. Box 41 J	DX 113 SYDNEY	and Telephone STEPHEN JAQUES aracters): KMJMALL 0097	r-859
(C)	TRANSFEROR	TOHAHA PT		.000090542)	
(D)					
\ - /	and as regards the land sp		the transferee an es	state in fee simple	
(E)		ecified above transfers to	the transferee an es	state in fee simple	
(E) (F)	and as regards the land sp	ENCUMBRANCES 1. BALFOUR GRAN	the transferee an es	state in fee simple	
(E)	and as regards the land spending subject to the following TRANSFEREE We certify this dealing con	ENCUMBRANCES 1. BALFOUR GRANT TENANCY:	the transferee an ex	2 3	
(E) (F) (G)	and as regards the land sp subject to the following TRANSFEREE	ENCUMBRANCES 1. BALFOUR GRANT TENANCY:	the transferee an estimated the Real DATE	3	
(E) (F) (G)	and as regards the land sp subject to the following TRANSFEREE We certify this dealing con Property Act, 1900 Signed in my presence by known to me THE COMMON SEAL of T	BALFOUR GRANT TENANCY: Tenancy: Tenancy: Tenancy: The transferor who is per OHAHA PTY LTD is)	the transferee an estimated the Real DATE	(ACN 058 457 855) 1 JVLY 1994	
(E) (F) (G)	and as regards the land specific subject to the following TRANSFEREE We certify this dealing comproperty Act, 1900 Signed in my presence by known to me THE COMMON SEAL of T Signature chereunto affixed by	BALFOUR GRANT TENANCY: TENANCY: THE transferor who is per OHAHA PTY LTD is) Of Witness authority of the	the transferee an estimated the Real DATE	(ACN 058 457 855) 1 JVLY 1994	
(E) (F) (G)	and as regards the land sp subject to the following TRANSFEREE We certify this dealing con Property Act, 1900 Signed in my presence by known to me THE COMMON SEAL of T	BALFOUR GRANT TENANCY: TENANCY: THE transferor who is per OHAHA PTY LTD is Witness authority of the PLOCK LETTERS) e of:	the transferee an estimated the Real DATE Sonally Secretary Secretary	(ACN 058 457 855) I JVLY 1994 tor W. L.	
(E) (F) (G)	and as regards the land specific subject to the following TRANSFEREE We certify this dealing confroperty Act, 1900 Signed in my presence by known to me THE COMMON SEAL of Thereunto affixed by Name of Witness (Red Board in the presence)	BALFOUR GRANT TENANCY: TENANCY: TENANCY: THE TENANCY:	the transferee an estimated the Real DATE Sonally Secretary Secretary	(ACN 058 457 855) 1 JULY 1994 tor Hi	
(E) (F) (G)	we certify this dealing corproperty Act, 1900 Signed in my presence by known to me THE COMMON SEAL of Thereunto affixed by Name of Witness (Board in the presence by Address of Minness of Witness of Minness of Witness of Minness of Witness of Minness of Witness of	BALFOUR GRANT TENANCY: TENANCY: TENANCY: THE TRANSFER OF TH	the transferee an estimated the Real DATE Sonally Secretary Secretary	(ACN 058 457 855) I TVLY 1994 tor Lay Wax tary Signature of Transferor	

H, C. MARTYN & SONS (AUST.) PTY. LTD. PH: (02) 699 2499

INSTRUCTIONS FOR FILLING OUT THIS FORM ARE AVAILABLE FROM THE LAND TITLES OFFICE

:advlegs	STAMP DUTY						975986 E	
	3	TRANSFER REAL PROPERTY ACT, 19	90C	T	\$	of	R/	
	Torrens Title Reference	if Part Only, Delete V	Vhole and Give	Details		Location		
ESCRIPTION			IOLE					
F LAND ote (a)	FOLIO IDENTIFIERS: A/364217 A/402876 A/320192				MASO	COT		
290891 1504 RANSFEROR (b)	FAI PROPERTIES PTY LIMIT	ED (A.C.N. 000 099 9:	ハ)Leve	1 1, 21 (Chandos St	reet, S	Leonards.	
STATE 2 lote (c)	(the abovenamed TRANSFEROR) hereby act and transfers an estate in fee simple in the land above described to the TRANSFE		ation of \$6,90	00,000.00)			
RANSFEREE lote (d)	FAI LIFE INSURANCE SOCIE Macquarie Street, Sydney		IMITED (A.C.N. 000 558 734) Level 12, 185				OFFICE USE ONLY	
ENANCY lote (e)	as joint tonants/tonants in commen							
RIOR NCUMBRANCES lote (f)	subject to the following PRIOR ENCUMBRA 2 DATE We hereby certify this dealing to be correct for the common seal of FAI PROP	or the purposes of the Real Properto is personally known to me	0		COM PROP PTY. L	AMON FAI PERTIES LIMITED 00 099 921)	
lote (g)	Name of Witness (BLOCK LETTERS) of its Board of Directors i Address and occupation of Witness of: Signed in my presence by the transferee who Signature of Witness Name of Witness (BLOCK LETTERS)	n the presence	ecretary	·	ector Sign	nature of Transfer	G.N. Farland	
O BE COMPLETED IY LODGING PARTY lotes (h) nd (i)	D) P Ref: 46 0 (7NF/90167	K FARLAND PENDER SOLICITORS K 492 SYDNEY PH: 233 7400 BOX 790P	СТ	OTHER	Herewith. In L.T.O. with Produced by			
OFFICE USE ONLY	Delivery Box Number Checked Passed REGI Signed Extra Fee	1 0 0CT 1991	Secondary Directions					

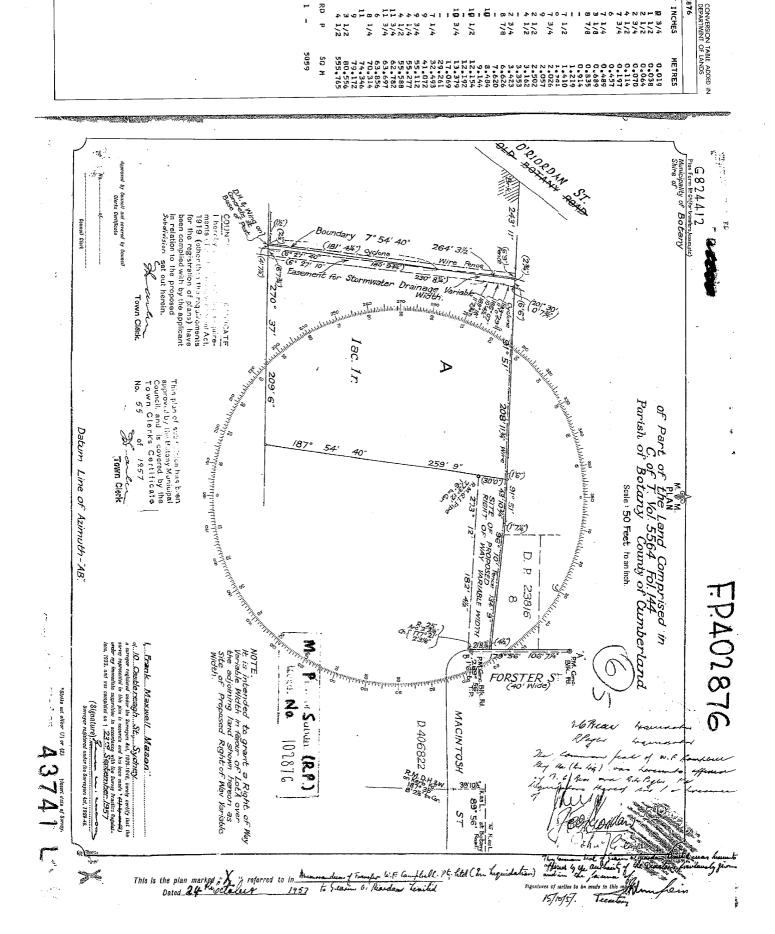

Req:R019271 /Doc:DL Z975986 /Rev:18-Jun-2010 /Sts:OK.OK /Pgs:ALL /Prt:02-Aug-2018 14:04 /Se Ref:advlegs /Src:P

THIS PAGE COMPRISES THE ANNEXURE REFERRED TO IN THE TRANSFER HETWEEN FAI PROPERTIES PTY LIMITED AS TRANSFEROR AND FAI LIFE INSURANCE SOCIETY LIMITED AS TRANSFEROR OF THE LAND COMPRISED IN POLIO IDENTIFIERS A/364217, A/402876 AND A/320192 AT MASCOT.

W678081	LEASE
W678082 W678 <i>085</i> W678086	Lease Lease Lease
X341681	LEASE
X932362	LEASE
Z655139	LEASE

Juld Sundan

DP 402876

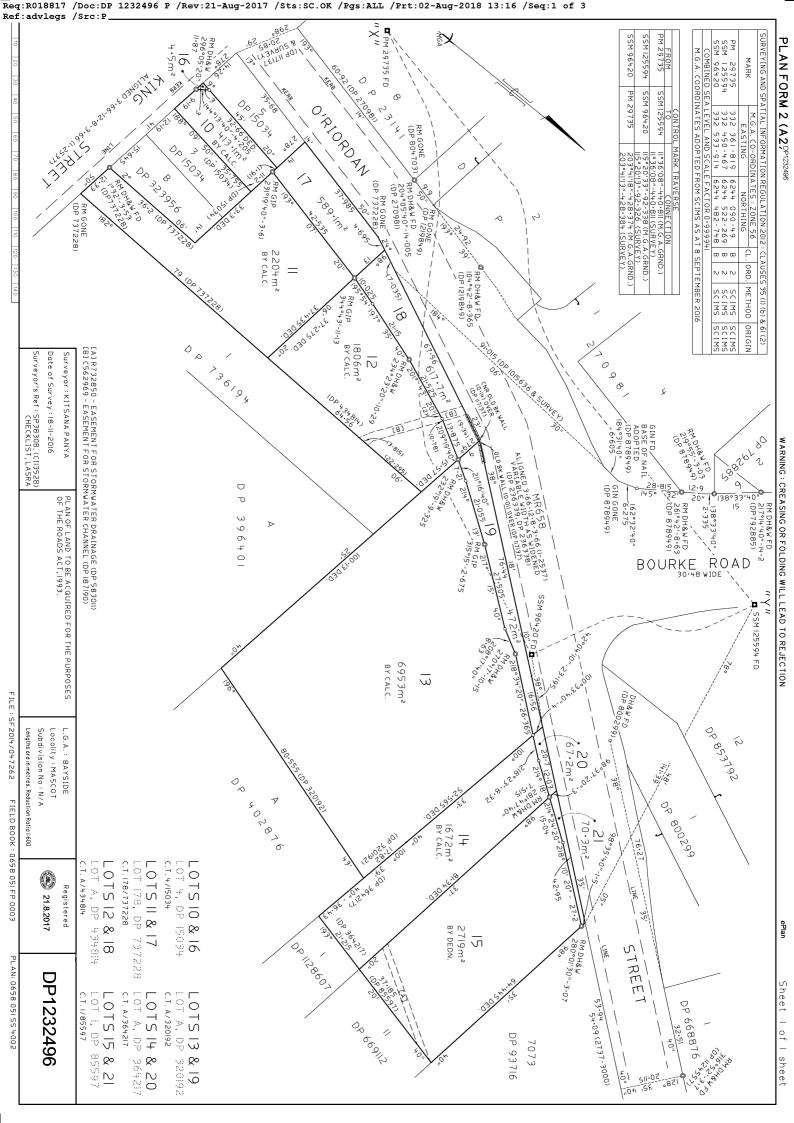

FEET INCHES

3/4 1/2 1/2 1/2 3/4

1/4

3/4 1/2

1/2



3/1/2

3/4

1/2

1/4

Req:R018817 /Doc:DP 1232496 P /Rev:21-Aug-2017 /Sts:SC.OK /Pgs:ALL /Prt:02-Aug-2018 13:16 /Seq:2 of 3 Ref:advlegs /Src:P UFIZ3Z490

PLAN FORM 6 (2012)

WARNING: Creasing or folding will lead to rejection

ePlan

DEPOSITED PLAN AD	MINISTRATION SHEET Sheet 1 of 2 sheets
Registered: Office Use Only	Office Use Only
Trogiotorou.	DP1232496
Title System: TORRENS	DI 1232430
Purpose: ACQUISITION (ROADS ACT,1993)	
PLAN OF LAND TO BE ACQUIRED THE	LGA: BAYSIDE
PURPOSES OF THE ROADS ACT, 1993.	Locality: MASCOT
	Parish: BOTANY
	County: CUMBERLAND
Crown Lands NSW/Western Lands Office Approval	Survey Certificate
i,(Authorised Officer) in approving this plan certify that all necessary approvals in regard to the	I, KITSANA PANYAof ROADS AND MARITIME SERVICES
allocation of the land shown herein have been given.	of ROADS AND MARITIME SERVICESa surveyor registered under the Surveying and Spatial Information Act
Signature:	2002, certify that:
Date:	*(a)-The land shown in the plan was surveyed in accordance with the Surveying and Spatial Information Regulation 2012, is accurate
File Number:	and the survey was completed on
	*(b) The part of the land shown in the plan (*being/*excluding
Cultidition Codificate	LOTS 16 TO 21 INCLUSIVE AND CONNECTIONS) was surveyed in accordance with the Surveying and Spatial Information
Subdivision Contificate	Regulation 2012, is accurate and the survey was completed
*Authorised Person/*General Manager/*Accredited Certifier, certify that	on,18-11-2016 the part not surveyed was compiled in accordance with that Regulation.
the provisions of s.109J of the Environmental Planning and Assessment Act 1979 have been satisfied in relation to the proposed	*(c) The land shown in this plan was compiled in accordance with the
subdivision, new road or reserve set out herein.	Surveying and Spatial Information Regulation 2012. Signature:
Signature:	Surveyor ID: 8590
Accreditation number:	Datum Line: "X" – "Y"
Date of endorsement:	Type: *Urban
Subdivision Certificate number:	The terrain is *Level-Undulating
File number:	*Chiles (heaveh if innerlianh)
adiation the section of the section	*Strike through if inapplicable. *Specify the land actually surveyed or specify any land shown in the plan that
*Strike through if inapplicable.	is not the subject of the survey.
Statements of intention to dedicate public roads, public reserves and	Plans used in the preparation of survey.
drainage reserves.	DP 15034 DP 737228 DP 434814 DP 320192
LOTS 16 TO 21 INCLUSIVE ARE REQUIRED FOR ROAD AND	DP 364217 DP 85597 DP 878949 DP 117137
AFTER CONSTRUCTION WILL BE DEDICATED AS PUBLIC ROAD	DP 800299 DP 1124557 DP 792885 DP 270981
UNDER SECTION 10 OF THE ROADS ACT, 1993.	
	If space is insufficient continue on PLAN FORM 6A
Signatures, Seals and Section 88B Statements should appear on PLAN FORM 6A	Surveyor's Reference: SP3830B (Cl1352B)CHECKLIST LASRA
FILE: SF2014/047262 FIELD BOOK	: 0658 051 FP 0003 PLAN : 0658 051 SS 4002

Req:R018817 /Doc:DP 1232496 P /Rev:21-Aug-2017 /Sts:SC.OK /Pgs:ALL /Prt:02-Aug-2018 13:16 /Seq:3 of 3 Ref:advlegs /Src:P UFIZ3Z490

PLAN FORM 6A (2012)

WARNING: Creasing or folding will lead to rejection

ePlan

DEPOSITED PLAN ADMINISTRATION SHEET

Sheet 2 of 2 sheets

Registered:

Office Use Only 21.8.2017

Office Use Only

DP1232496

PLAN OF PROPOSED EASEMENT TO DRAIN WATER TO BE ACQUIRED WITHIN LOT 101 DP1214543 FOR THE PURPOSES OF THE ROADS ACT, 1993.

Subdivision Certificate number:

Date of Endorsement:

This sheet is for the provision of the following information as required:

- A schedule of lots and addresses See 60(c) SSI Regulation 2012
- Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act 1919
- Signatures and seals- see 195D Conveyancing Act 1919
- Any information which cannot fit in the appropriate panel of sheet
 1 of the administration sheets.

LOTS 10 & 16 - 279 KING ST, MASCOT

LOTS 11 & 17 - 176 O'RIORDAN ST, MASCOT

LOTS 12 & 18 - 166 O'RIORDAN ST, MASCOT

LOTS 13 & 19 - 154 O'RIORDAN ST, MASCOT

LOTS 14 & 20 - 154 O'RIORDAN ST, MASCOT

LOTS 15 & 21 - 146 O'RIORDAN ST, MASCOT

APPROVED:

A/PRINCIPAL SURVEYOR

ROADS AND MARITIME SERVICES

If space is insufficient use additional annexure sheet

Surveyor's Reference: SP3830B (CI1352B) CHECKLIST LASRA

FILE: SF2014/047262 FIELD BOOK: 0658 051 FP 0003

PLAN: 0658 051 SS 4002

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE 2/8/2018 1:16PM

FOLIO: 1/85597

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 12181 FOL 96

Recorded	Number	Type of Instrument	C.T. Issue
21/8/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
8/9/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
24/11/1989 24/11/1989		SURRENDER OF LEASE LEASE	EDITION 1
1/6/1992 1/6/1992		DISCHARGE OF MORTGAGE MORTGAGE	EDITION 2
1/7/1994 1/7/1994 1/7/1994	U405363	DISCHARGE OF MORTGAGE TRANSFER CAVEAT	EDITION 3
29/8/1994	U561862	MORTGAGE	EDITION 4
6/9/1995 6/9/1995	0512591 0512592	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 5
8/3/2001 8/3/2001	7461728 7461729	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 6
7/1/2003 7/1/2003 7/1/2003	9271286 9271287 9271288	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 7
21/5/2013	AH740861	CAVEAT	
1/8/2013 1/8/2013	AH920076 AH920077	DISCHARGE OF MORTGAGE TRANSFER	EDITION 8
12/11/2014	AJ11259	MORTGAGE	EDITION 9
21/8/2017	DP1232496	DEPOSITED PLAN	
23/8/2017	AM642879	REQUEST	
1/2/2018	AN78865	DISCHARGE OF MORTGAGE	
		END OF P	AGE 1 - CONTINUED OVER

PRINTED ON 2/8/2018 advlegs

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE -----2/8/2018 1:16PM

FOLIO: 1/85597 PAGE 2

Recorded Number Type of Instrument C.T. Issue

1/2/2018 AN78868 TRANSFER FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

PRINTED ON 2/8/2018

Obtained from NSW LRS on 02 August 2018 01:16 PM AEST

© Office of the Registrar-General 2018

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE -----2/8/2018 1:16PM

FOLIO: A/320192

advlegs

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 15474 FOL 99

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
5/10/1989		CONVERTED TO COMPUTER FOLIC	FOLIO CREATED CT NOT ISSUED
16/5/1991	Z655139	LEASE	EDITION 1
10/10/1991	Z975986	TRANSFER	EDITION 2
8/11/1991	E48207	LEASE	EDITION 3
15/11/1991	E63730	LEASE	EDITION 4
25/2/1993 25/2/1993 25/2/1993	I145063	SURRENDER OF LEASE LEASE SURRENDER OF LEASE	
	I145064	LEASE	EDITION 5
13/8/1993	I563479	LEASE	EDITION 6
2/5/1994 2/5/1994	U225139 U225140	REQUEST LEASE	EDITION 7
20/1/1995 20/1/1995	U957154 U957155	SURRENDER OF LEASE LEASE	EDITION 8
17/2/1995	027537	LEASE	EDITION 9
17/11/1995	0697513	LEASE	EDITION 10
27/2/1996	0941951	LEASE	EDITION 11
2/5/1996	2125425	TRANSFER OF LEASE	
6/6/1996 6/6/1996	2213640 2213641	LEASE LEASE	EDITION 12
2/7/1997 2/7/1997	3197512 3197513	LEASE TRANSFER	EDITION 13
		END OF	PAGE 1 - CONTINUED OVER
			0 /0 /0010

PRINTED ON 2/8/2018

SEARCH DATE -----2/8/2018 1:16PM

FOLIO:	A/320192	PAGE	2

Recorded	Number	Type of Instrument	C.T. Issue
3/7/1997	3201253	CAVEAT	
28/7/1997 28/7/1997	3271323 3271324	WITHDRAWAL OF CAVEAT MORTGAGE	EDITION 14
24/9/1998	5288996	LEASE	EDITION 15
24/8/1999 24/8/1999	6122654 6122655	LEASE LEASE	EDITION 16
24/1/2000	6508813	LEASE	EDITION 17
1/2/2000 1/2/2000	6525755 6525756	SURRENDER OF LEASE LEASE	EDITION 18
12/10/2000 12/10/2000	7145794 7145795	LEASE LEASE	EDITION 19
20/3/2002	8444881	VARIATION OF LEASE	EDITION 20
4/7/2002 4/7/2002 4/7/2002	8733194 8733196 8733197	DISCHARGE OF MORTGAGE TRANSFER TRANSFER	EDITION 21
20/12/2002	8981154	MORTGAGE	EDITION 22
22/1/2003	9309004	DEPARTMENTAL DEALING	
23/6/2003	9717763	SUB-LEASE	
25/6/2003	9728140	LEASE	
6/8/2003	9854712	LEASE	
7/4/2004	AA556944	MORTGAGE	
26/5/2005	AB501500	LEASE	
7/7/2005	AB604278	LEASE	
5/1/2006 5/1/2006	AC24424 AC24337	DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE	

END OF PAGE 2 - CONTINUED OVER

advlegs PRINTED ON 2/8/2018

.----

FOLIO: A/320192 PAG			PAGE 3
Recorded	Number	Type of Instrument	C.T. Issue

Recorded	Number	Type of Instrument	C.T. Issue
8/6/2006	AC363888	LEASE	
26/7/2006	AC481583	LEASE	
2/8/2006	AC498407	LEASE	
8/2/2007	AC920611	LEASE	
21/6/2007	AD194290	LEASE	
13/12/2007	AD627210	LEASE	
25/7/2008	AE107169	LEASE	
26/11/2008	AE348707	LEASE	
27/2/2009	AE526315	LEASE	
26/3/2009	AE574982	LEASE	
7/5/2009	AE656106	LEASE	
4/8/2009	AE875182	VARIATION OF LEASE	
9/12/2010	AF931112	LEASE	
9/2/2011	AG47623	LEASE	
2/6/2011	AG271627	VARIATION OF LEASE	
7/6/2011	AG282228	LEASE	
21/2/2012 21/2/2012	AG820508 AG820509	SURRENDER OF LEASE LEASE	
14/5/2012	AG975938	LEASE	
26/2/2013	AH575909	DEPARTMENTAL DEALING	
22/7/2013	АН887572	TRANSFER WITHOUT MONETARY CONSIDERATION	
22/7/2013	АН887573	TRANSFER	EDITION 23

END OF PAGE 3 - CONTINUED OVER

advlegs PRINTED ON 2/8/2018

SEARCH DATE

2/8/2018 1:16PM

FOLIO: A/320192			PAGE 4
Recorded	Number	Type of Instrument	C.T. Issue
13/6/2014	AI657914	VARIATION OF LEASE	
7/7/2014	AI717404	CAVEAT	
3/3/2015	AJ200522	VARIATION OF LEASE	
10/9/2015 10/9/2015 10/9/2015	AJ802919 AJ802920 AJ802921	WITHDRAWAL OF CAVEAT TRANSFER MORTGAGE	EDITION 24
12/1/2017 12/1/2017 12/1/2017		LEASE LEASE LEASE	EDITION 25
23/5/2017	AM412643	DEPARTMENTAL DEALING	
21/8/2017	DP1232496	DEPOSITED PLAN	
23/8/2017	AM642879	REQUEST	
1/2/2018 1/2/2018	AN78867 AN78868	DISCHARGE OF MORTGAGE TRANSFER	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

PRINTED ON 2/8/2018

Obtained from NSW LRS on 02 August 2018 01:16 PM AEST

© Office of the Registrar-General 2018

SEARCH DATE -----2/8/2018 1:16PM

FOLIO: A/364217

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 15474 FOL 100

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
5/10/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
16/5/1991	Z655139	LEASE	EDITION 1
10/10/1991	Z975986	TRANSFER	EDITION 2
8/11/1991	E48207	LEASE	EDITION 3
15/11/1991	E63730	LEASE	EDITION 4
25/2/1993 25/2/1993 25/2/1993 25/2/1993	I145061 I145062 I145063 I145064	SURRENDER OF LEASE LEASE SURRENDER OF LEASE LEASE	EDITION 5
13/8/1993		LEASE	EDITION 5
			FDILION 0
2/5/1994 2/5/1994	U225139 U225140	REQUEST LEASE	EDITION 7
20/1/1995 20/1/1995	U957154 U957155	SURRENDER OF LEASE LEASE	EDITION 8
17/2/1995	027537	LEASE	EDITION 9
17/11/1995	0697513	LEASE	EDITION 10
27/2/1996	0941951	LEASE	EDITION 11
2/5/1996	2125425	TRANSFER OF LEASE	
6/6/1996 6/6/1996		LEASE LEASE	EDITION 12
2/7/1997 2/7/1997	3197512 3197513	LEASE TRANSFER	EDITION 13
		END OF E	PAGE 1 - CONTINUED OVER
11			ON 2/0/2010

PRINTED ON 2/8/2018

SEARCH DATE

FOLIO: A/364217

2/8/2018 1:16PM

PAGE 2

2	1 AGL		004217	
	C.T. Issue	Type of Instrument	Number	Recorded
		CAVEAT	3201253	3/7/1997
	EDITION 14	WITHDRAWAL OF CAVEAT MORTGAGE	3271323 3271324	28/7/1997 28/7/1997
	EDITION 15	LEASE	5288996	24/9/1998
	EDITION 16	LEASE LEASE	6122654 6122655	24/8/1999 24/8/1999
	EDITION 17	LEASE	6508813	24/1/2000
	EDITION 18	SURRENDER OF LEASE LEASE	6525755 6525756	1/2/2000 1/2/2000
	EDITION 19	LEASE LEASE	7145794 7145795	12/10/2000 12/10/2000
	EDITION 20	VARIATION OF LEASE	8444881	20/3/2002
	EDITION 21	DISCHARGE OF MORTGAGE TRANSFER TRANSFER	8733194 8733196 8733197	
	EDITION 22	MORTGAGE	8981154	20/12/2002
		DEPARTMENTAL DEALING	9309004	22/1/2003
		SUB-LEASE	9717763	23/6/2003
		LEASE	9728140	25/6/2003
		LEASE	9854712	6/8/2003
		MORTGAGE	AA556944	7/4/2004
		LEASE	AB501500	26/5/2005
		LEASE	AB604278	7/7/2005
		DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE	AC24424 AC24337	5/1/2006 5/1/2006
IED (D OF PACE 2 - CONTINU	Ε'N		

END OF PAGE 2 - CONTINUED OVER

advlegs PRINTED ON 2/8/2018

SEARCH DATE

2/8/2018 1:16PM

PRINTED ON 2/8/2018

FOLIO: A/3	64217	PAGE 3
Recorded	Number	Type of Instrument C.T. Issue
8/6/2006	AC363888	LEASE
26/7/2006	AC481583	LEASE
2/8/2006	AC498407	LEASE
8/2/2007	AC920611	LEASE
21/6/2007	AD194290	LEASE
13/12/2007	AD627210	LEASE
25/7/2008	AE107169	LEASE
26/11/2008	AE348707	LEASE
27/2/2009	AE526315	LEASE
26/3/2009	AE574982	LEASE
7/5/2009	AE656106	LEASE
4/8/2009	AE875182	VARIATION OF LEASE
9/12/2010	AF931112	LEASE
9/2/2011	AG47623	LEASE
2/6/2011	AG271627	VARIATION OF LEASE
7/6/2011	AG282228	LEASE
21/2/2012 21/2/2012	AG820508 AG820509	SURRENDER OF LEASE LEASE
14/5/2012	AG975938	LEASE
26/2/2013	AH575909	DEPARTMENTAL DEALING
22/7/2013	AH887572	TRANSFER WITHOUT MONETARY
22/7/2013	АН887573	CONSIDERATION TRANSFER EDITION 23
		END OF PAGE 3 - CONTINUED OVER

advlegs

Page 3 of 4

FOLIO: A/364217 PAGE			PAGE 4
Recorded	Number	Type of Instrument	C.T. Issue
13/6/2014	AI657914	VARIATION OF LEASE	
7/7/2014	AI717404	CAVEAT	
3/3/2015	AJ200522	VARIATION OF LEASE	
10/9/2015 10/9/2015 10/9/2015	AJ802919 AJ802920 AJ802921	WITHDRAWAL OF CAVEAT TRANSFER MORTGAGE	EDITION 24
12/1/2017 12/1/2017 12/1/2017	AM21175 AM21176 AM21177	LEASE LEASE LEASE	EDITION 25
28/2/2017	AK971352 AK971502 AK971571	LEASE SUB-LEASE MORTGAGE OF LEASE CHANGE OF NAME DEPARTMENTAL DEALING	
9/3/2017	AM218115	DEPARTMENTAL DEALING	
23/5/2017	AM412643	DEPARTMENTAL DEALING	
21/8/2017	DP1232496	DEPOSITED PLAN	
23/8/2017	AM642879	REQUEST	
1/2/2018 1/2/2018	AN78866 AN78868	DISCHARGE OF MORTGAGE TRANSFER	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

PRINTED ON 2/8/2018

Obtained from NSW LRS on 02 August 2018 01:16 PM AEST

© Office of the Registrar-General 2018

SEARCH DATE 2/8/2018 1:16PM

PRINTED ON 2/8/2018

FOLIO: A/402876

advlegs

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 15474 FOL 101

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
5/10/1989		CONVERTED TO COMPUTER FOLIC	FOLIO CREATED CT NOT ISSUED
16/5/1991	Z655139	LEASE	EDITION 1
10/10/1991	Z975986	TRANSFER	EDITION 2
8/11/1991	E48207	LEASE	EDITION 3
15/11/1991	E63730	LEASE	EDITION 4
25/2/1993 25/2/1993 25/2/1993	I145063	SURRENDER OF LEASE LEASE SURRENDER OF LEASE	
	I145064	LEASE	EDITION 5
13/8/1993	I563479	LEASE	EDITION 6
2/5/1994 2/5/1994	U225139 U225140	REQUEST LEASE	EDITION 7
20/1/1995 20/1/1995	U957154 U957155	SURRENDER OF LEASE LEASE	EDITION 8
17/2/1995	027537	LEASE	EDITION 9
17/11/1995	0697513	LEASE	EDITION 10
27/2/1996	0941951	LEASE	EDITION 11
2/5/1996	2125425	TRANSFER OF LEASE	
6/6/1996 6/6/1996	2213640 2213641	LEASE LEASE	EDITION 12
2/7/1997 2/7/1997	3197512 3197513	LEASE TRANSFER	EDITION 13
		END OF	PAGE 1 - CONTINUED OVER
			0 /0 /0010

Page 1 of 4

SEARCH DATE

2/8/2018 1:16PM

FOLIO: A/402876 PAGE			PAGE 2
Recorded	Number	Type of Instrument	C.T. Issue
3/7/1997	3201253	CAVEAT	
28/7/1997 28/7/1997	3271323 3271324	WITHDRAWAL OF CAVEAT MORTGAGE	EDITION 14
24/9/1998	5288996	LEASE	EDITION 15
24/8/1999 24/8/1999	6122654 6122655	LEASE LEASE	EDITION 16
24/1/2000	6508813	LEASE	EDITION 17
1/2/2000 1/2/2000	6525755 6525756	SURRENDER OF LEASE LEASE	EDITION 18
12/10/2000 12/10/2000	7145794 7145795	LEASE LEASE	EDITION 19
20/3/2002	8444881	VARIATION OF LEASE	EDITION 20
4/7/2002 4/7/2002 4/7/2002	8733194 8733196 8733197	DISCHARGE OF MORTGAGE TRANSFER TRANSFER	EDITION 21
20/12/2002	8981154	MORTGAGE	EDITION 22
22/1/2003	9309004	DEPARTMENTAL DEALING	
23/1/2003	9310245	LEASE	
16/4/2003	9535503	LEASE	
23/6/2003	9717763	SUB-LEASE	
25/6/2003	9728140	LEASE	
6/8/2003	9854712	LEASE	
7/4/2004	AA556944	MORTGAGE	
26/5/2005	AB501500	LEASE	
7/7/2005	AB604278	LEASE	
		END O	F PAGE 2 - CONTINUED OVE
11		DD TMIII	ED ON 2/0/2010

PRINTED ON 2/8/2018 advlegs

PRINTED ON 2/8/2018

FOLIO: A/402876		PAGE 3
Recorded	Number	Type of Instrument C.T. Issue
5/1/2006 5/1/2006	AC24424 AC24337	DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE
8/6/2006	AC363888	LEASE
26/7/2006	AC481583	LEASE
2/8/2006	AC498407	LEASE
8/2/2007	AC920611	LEASE
21/6/2007	AD194290	LEASE
13/12/2007	AD627210	LEASE
25/7/2008	AE107169	LEASE
26/11/2008	AE348707	LEASE
27/2/2009	AE526315	LEASE
26/3/2009	AE574982	LEASE
7/5/2009	AE656106	LEASE
4/8/2009	AE875182	VARIATION OF LEASE
9/12/2010	AF931112	LEASE
9/2/2011	AG47623	LEASE
2/6/2011	AG271627	VARIATION OF LEASE
7/6/2011	AG282228	LEASE
21/2/2012 21/2/2012	AG820508 AG820509	SURRENDER OF LEASE LEASE
14/5/2012	AG975938	LEASE
26/2/2013	AH575909	DEPARTMENTAL DEALING
22/7/2013	AH887572	TRANSFER WITHOUT MONETARY
		END OF PAGE 3 - CONTINUED OVER

advlegs

Page 3 of 4

FOLIO: A/402876			PAGE	4
Recorded	Number	Type of Instrument	C.T. Issue	
22/7/2013	АН887573	CONSIDERATION TRANSFER	EDITION 23	
13/6/2014	AI657914	VARIATION OF LEASE		
7/7/2014	AI717404	CAVEAT		
3/3/2015	AJ200522	VARIATION OF LEASE		
	AJ802919 AJ802920 AJ802921	WITHDRAWAL OF CAVEAT TRANSFER MORTGAGE	EDITION 24	
12/1/2017 12/1/2017 12/1/2017	AM21175 AM21176 AM21177	LEASE LEASE LEASE	EDITION 25	

*** END OF SEARCH ***

advlegs

PRINTED ON 2/8/2018

Obtained from NSW LRS on 02 August 2018 01:16 PM AEST

© Office of the Registrar-General 2018

1/0/-				
/1/ .~~	5 74 5 56 FM A	ew South Wales	34.18216 NU	Бекя:— £ е.
Nontala	APPLICATION BRING	G LANDS UNDE	R THE PROVISIONS OF	Assurance : :
This form may be modifie to sail; the case of a least hold title.		L PROPERTY . FEE SIMPLE.	AC1, 1900.	Certificate / :
SAR-CE	Caurion.—Application of DNE by virue to relate doct to reading of DNE by winter of reading of DNE by winter of the up by	of the provisions of the Crimer procedure under the Act, and	es Act, 1990, the penalties of perjury are attached that the utmost care is therefore necessary in framing statement herein.	Advertising ()
CICTOR	(or reading of 5	Rani Property Act, 1900, that ir misdescription will, notwiths id. And any person who fraud	t any applicant procuring a Cartificate through any tanding the issue of such Cartificate, remain liable ulculy procures, assists in fundulently procuring, or diguity of a misdemeanour, and liable to a ponaity by Certificate thereby procured is rendered void as	Office Copy Plan 5
	is prity to the fraudulent procurement of an not exceeding 5508, or imprisonment not to between all matters are the second	ny Certificate of Title, is declare exceeding three years; and ar	ed guilty of a misdemeanour, and name to a ponarry g Certificate thereby produced is rendered wold as	Total \ 14 :0:1
W. C. T. L. W			····	3/ spiger
SOUTH Services state Christian an surpame (or names) in fu	PEDER MARTIN ANDERSEN	of Rosebery	in the State of New So	uth Wales, Mechanic
with residence and occupa- tion. "I am" or if the declaratio	With Titles	I am	seized for an Estate in fee simple o	of ALL THAT PIECE or
is" (as the case may the flets give description of the property in tall. If the land is shown on a plan lodged with the application is fully described in a med, it will be sufficient to libert a reference to the urea, town, parish, and	"Cumberland containing an ar "part of J.R. Hatfield's gra "Conveyance dated the fourth and made between William Ja	nt of sixty f day of Augus mes Lodge and	Tive acres and being the st one thousand nine hu Charles Henry Lodge (e land described in ndred and forty two both therein descri 776 Book 1917 subj
Univerthe Registrat-General has previously dispersed with a plap of survey, an	The other control of the state	Additional minister land of the same of the said	r gran	Dock & April 1
has previously dispensed with a plan of survey, an accurate plan, prepared and certified by a surveyor specially licensed under the Act, must accompany the application. If there is any rights of	r			
way or other rights or cas- ments affecting the premis-	f;•			
the particulars should be stated. If the space for description be insulident, it may be,	W.	N	01.	/ , 9 /.
completed by annoxure	(A ^m)	Uni	mow and full	man non
dentified as part of the declaration, by memora- dum signed by the declar- and attesting officer. The full improved value	which land (including all improvements) is of	the value of *	sixty five acres	originally granted
State whether "the whole or "part."	rand no more, and is		, under the hand of the Governor of t	,
on plan, if any, or if not, number of acros graphed,	7 day of	April	1838	
Name of Grantec.	And Infurther declare, that I werely believe	there does not exist a	ny lease or agreement for lease of the s	aid land, for any term exceeding
if there be any Least, ad the words "except as follows" and insert	a tenancy for one year, or from year to year,			4
particulars thereof.				
•				
	Also, that there does not exist any mortgage	e, lien, writ of execution	on, charge or encumbrance, will or set	tlement, or any deed or writing,
	contract, or dealing (other than such lease or	e, lien, writ of execution tenancy as aforesaid),	on, charge or encumbrance, will or set giving any right, claim, or interest in	tlement, or any deed or writing, or to the said land, or any part
	contract, or dealing (other than such lease or	e, lien, writ of execution tenancy as aforesaid),	on, charge or encumbrance, will or set giving any right, claim, or interest in	tlement, or any deed or writing, or to the said land, or any part
If there be any meripes ling, etc., add the words "except on tildoes" at lacert particulars thereof.	contract, or dealing (other than such lease or it. myself at thereof, to any other person than myself !	e, lien, writ of execution exactly,	on, charge or encumbrance, will or set giving any right, claim, or interest in	tlement, or any deed or writing, or to the said land, or any part
If there is any unrived lies, etc., add his words a secret is fall of the control	contract, or dealing (other than such lease or in myself to any other person than myself to an	tenancy as aforesaid),	giving any right, claim, or interest in	or to the said land, or any part
If there be any marged lies, etc., add the words are learners particulars thereof. Insert "unoccupied," or "in the occupation of," adding names and address the adding the control of the	contract, or dealing (ather than such lease or it. myself that thereof, to any other person than myself that there is no person that there is no person that there is no person than the the there is no person than the the the the there is no person the	tenancy as aforesaid),	giving any right, claim, or interest in	or to the said land, or any part
If there be any moriged lien, etc., add the words "except as follows" at insert particulars thereof. Insert "unoccupied," or "in the occupied of or additional to follow the following	eontract, or dealing (ather than such lease or the thereof, to any other person than myself at thereof, to any other person than myself at thereof, to any other person than myself at the said and is now to interest therein, and that the said land is now to said land	tenancy as aforesaid),	giving any right, claim, or interest in	or to the said land, or any part
If there be any merigage lies, etc., add the words "except on tellows" at heart particular thereof. In the occupation of," adding a mark and address and address of tennols in tell. The meritance is not under some local tellows a careful and applicant is not under some local tellows the compation, the has a carefacter or monage in occupation, the name should be attack to extend the the name of the companion of the careful and t	contract, or dealing (ather than such lease or it, at thereof, to any other person than myself is thereof, to any other person than myself is a such lease or it. I should be such that there is no person of the such land is now of the such land is	tenancy as aforesaid),	giving any right, claim, or interest in	or to the said land, or any part
If there be any moriging llen, etc., add the words "except as follows" at least "unoccupied," of "in the occupiation of the state of th	contract, or dealing (ather than such lease or it, at thereof, to any other person than myself is at thereof, to any other person than myself is an at the such that there is no person than myself interest therein, and that the said land is now of the such that	tenancy as aforesaid), a in possession or occu	giving any right, claim, or interest in part the part of the said land or any part the myself	or to the said land, or any part
If there he any morigagillon, etc., add the words "except as fallows" at Insert "unoccupied," or "in the occupation of." adding names and address of tomats in full. State also nature of tomate if not under some lease to the state also nature of tomate in the state of tomate in the state of tomate in the state of th	contract, or dealing (ather than such lease or it, at thereof, to any other person than myself is at thereof, to any other person than myself is an at the such that there is no person than myself interest therein, and that the said land is now of the such that	tenancy as aforesaid), a in possession or occu	giving any right, claim, or interest in part the part of the said land or any part the myself	ereof adversely to my Estate or
If there he any marigag like, etc., add the words "except as fallows" at least "unoccupied," or "in the eccupation of." adding hames and address of tongother former state also makes and eddress of tongother former to the compation of the compation of the has a cartester or manage in occupation, the name as within the nature of the compation. When the applicant is in in actual occupation, the name and markets or manage within the nature of the companion. When the nature of the companion of the companion within the nature of the companion of the State whether on North, South, East,	contract, or dealing (other than such lease or the thereof, to any other person than myself that thereof, to any other person than myself the said land is now of the there is no person than the said land is now of the said	t lands are as follows a: State whether	giving any right, claim, or interest in part of the said land or any part the myself	ere of adversely to my Estate or
If there be any marigag llen, etc., add the words "except as follows" at Insert "unoccupied," or "in the occupation of," adding names and address of tenents in full. State also nature of tenents in full state also nature of tenents in full state also nature of tenents in our under some loose before mentioned. It is not under some loose before mentioned. It has a caretaker or managin occupation, the name anch caretaker or managin occupation, the nature of the occupancy. Here insert names a residence of adjacent owners and occupier on all aldes. State whether on North, South, East, or West.	contract, or dealing (ather than such lease or the thereof, to any other person than myself at thereof, to any other person than myself and thereof, to any other person than myself and the said fand is now the said fand	t lands are as follows a: State whether	giving any right, claim, or interest in pation of the said land or any part the myself	ere of adversely to my Estate or
If there be any moriging lian, etc., add the words "except as follows" at Insert particulars thereof. Insert "unoccupied," or "the peripathic of," and the peripathic of," adding harms and address of commuts in full. Nationals outsire of community in the consultant of the commutation of the community of the community of the community of the community of the community. In a case described or manage should be stated, topeth with the nature of the compancy. Here insert names a residence of adjacent owners and complete or of all sides. State whether on North, South, Batt, or West. North	contract, or dealing (ather than such lease or the thereof, to any other person than myself at thereof, to any other person than myself and gradurther declare, that there is no person the following	n in possession or occu r = occupied b	giving any right, claim, or interest in pation of the said land or any part the myself Address Council Chambers, Mas	ereof adversely to my Estate or
If there be any moriging lies, etc., add the words a lesert particulars thereof. In the occupation of adding a more than the occupation of adding a man adding a	estate late S. Lqdge	tenancy as aforesaid), in possession or occu c occupied by tlands are as follows of owner or occupier. Vacant lan	giving any right, claim, or interest in pation of the said land or any part the y myself Council Chambers, Mas dc/- W.S. Forester, 1 Penshurst. Penshurst.	cot. 6 Denison Street, No.10 Thompson
If there be any morigage lies, etc., add the words a fallows" as fallows a fineert "unoccupied," or "in the occupation of." adding americs and address of tomants in full state also nature of tomants in full state of the applicant is in in actual occupation, the name auch cartesker or manage should be stated, together of the state of t	contract, or dealing (other than such lease or that thereof, to any other person than myself at thereof, to any other person than myself and thereof, to any other person than myself and I further declare, that there is no person the Interest therein, and that the said land is now of the Interest therein, and Interest there is no person the Interest the Interes	tenancy as aforesaid), a in possession or occu v= occupied b tlands are as follows a: State whether owner or occupier. Vacant lar Vacant lar	giving any right, claim, or interest in pation of the said land or any part the y myself Address Council Chambers, Mas d c/- W.S. Forester, 1 Penshurst. Penshurst. Ctabbe Straet, Clifton Garde	cot. 6 Denison Street, No.10 Thompson
If there be any marigag lion, etc., add the words "except as follows" at macri partirulars thereof. Insert "unoccupied," or "in the occupation of," adding names and address of beannis in tull. Nate also noture of tenance if not under some losse where the applicant is a nin actual occupation, be has a caretaker or manage in occupation, the name auch sarkaker or manage in occupation, the name occupation of adjacents occupation. State whether on North, South East, or West. North West Scutth	estate late S. Lqdge	tenancy as aforesaid), a in possession or occu v= occupied b tlands are as follows a: State whether owner or occupier. Vacant lar Vacant lar	giving any right, claim, or interest in pation of the said land or any part the y myself Address Council Chambers, Mas d c/- W.S. Forester, 1 Penshurst. Penshurst. Ctabbe Straet, Clifton Garde	cot. 6 Denison Street, No.10 Thompson
If there be any morigage lies, etc., add the words a factory" as fallows" at insert particulars thereof. The the occupation of. "In the occupation of adding americs and address of tomants in full restee the outcome forms loses. When the applicant is in in actual occupation, by has a certaker or manage should be streamed and complete of the particular of the sentence of adjacent occupance of adjacent owners and occupiers on all sides. State whether on North, South East, or West. North West Scuth	contract, or dealing (other than such lease or that thereof, to any other person than myself at thereof, to any other person than myself and thereof, to any other person than myself and I further declare, that there is no person the Interest therein, and that the said land is now of the Interest therein, and Interest there is no person the Interest the Interes	tenancy as aforesaid), a in possession or occu v= occupied b tlands are as follows a: State whether owner or occupier. Vacant lar Vacant lar	giving any right, claim, or interest in pation of the said land or any part the y myself Address Council Chambers, Mas d c/- W.S. Forester, 1 Penshurst. Penshurst. Ctabbe Straet, Clifton Garde	cot. 6 Denison Street, No.10 Thompson
If there be any morigage lies, etc., add the words a factory" as fallows" at insert particulars thereof. The the occupation of. "In the occupation of adding americs and address of tomants in full restee the outcome forms loses. When the applicant is in in actual occupation, by has a certaker or manage should be streamed and complete of the particular of the sentence of adjacent occupance of adjacent owners and occupiers on all sides. State whether on North, South East, or West. North West Scuth	contract, or dealing (other than such lease or that thereof, to any other person than myself at thereof, to any other person than myself and thereof, to any other person than myself and I further declare, that there is no person the Interest therein, and that the said land is now of the Interest therein, and Interest there is no person the Interest the Interes	tenancy as aforesaid), a in possession or occu v= occupied b tlands are as follows a: State whether owner or occupier. Vacant lar Vacant lar	giving any right, claim, or interest in pation of the said land or any part the y myself Council Chambers, Mas dc/- W.S. Forester, 1 Penshurst. Penshurst.	cot. 6 Denison Street, No.10 Thompson
If there be any morigage lies, etc., add the words a factory" as fallows" at insert particulars thereof. The the occupation of. "In the occupation of adding americs and address of tomants in full restee the outcome forms loses. When the applicant is in in actual occupation, by has a certaker or manage should be streamed and complete of the particular of the sentence of adjacent occupance of adjacent owners and occupiers on all sides. State whether on North, South East, or West. North West Scuth	contract, or dealing (other than such lease or that thereof, to any other person than myself at thereof, to any other person than myself and thereof, to any other person than myself and I further declare, that there is no person the Interest therein, and that the said land is now of the Interest therein, and Interest there is no person the Interest the Interes	tenancy as aforesaid), a in possession or occu v= occupied b tlands are as follows a: State whether owner or occupier. Vacant lar Vacant lar	giving any right, claim, or interest in pation of the said land or any part the y myself Address Council Chambers, Mas d c/- W.S. Forester, 1 Penshurst. Penshurst. Ctabbe Straet, Clifton Garde	cot. 6 Denison Street, No.10 Thompson

36 48

Req:R019210 /Doc:PA 035597 PA /Rev:23-Jun-2015 /Sts:0K.SC /Pgs:ALL /Prt:02-Aug-2018 13:58 /Seq:2 of Ref:advlegs /Src:P

And KKfurther declare, that the annexed Schedule, to which my signature is affixed, and which is to be taken as part of this Declaration,

contains a full and correct list o commencing with Conveyance dated 9/2/1872 Savings Bank of New South Wales, to Jares Barnes Registered Number 824 Book 128 in this application, so far as Thave any means of ascertaining the same, distinguishing such as being in my possession or under my control, are herewith ledged and indicating where or with whom, so far as known to make you others thereof are deposited. Also, that there does not exist any fact or circumstance whatever material to the title, which is not hereby fully and fairly disclosed to the utmost extent of my knowledge, information, and belief; and that there is not, to my knowledge and belief, any action or suit pending affecting the said land, nor any person who has or claims any estate, right, title or interest therein, or in any part thereof, otherwise than by virtue and to the extent of some lesse or tenancy hereby fully disclosed P

And make this solemn Declaration, conscientiously believing the same to be true.

DATED at

Sydney

this Seventeenth

day of February,

1944.

(RULE UP ALL BLANKS BEFORE SIGNING.)

Made and subscribed by the abovenamed PEDER MARTIN ANDERSEN 17th day of February19 44 this in the presence of "

Signature of \

(Harrett

To the Registrar-General,-

PEDER MARTIN ANDERSEN

the above declarant, do hereby apply to have the land described in the

above declaration brought under the provisions of the Real Property Act, and request you to issue the Certificate of Title in the name of myself this Deponent

DATED at

Sydney

this Seventeenth

February. day of

1944.

Witness to Signature

gnature of Applicant)

In no case can any alterations, however trifling, be allowed to be made after the application has been once declared, unless all the parties re-sign and re-declare the amm. If it is discovered that any alterations are necessary, the applicant may make a statutory declaration setting out in what manner he desires the application to be altered, which declaration will then (unless the Registrar General/considers that a fresh application ought to be made) be read as one with the application.

(RULE UP ALL BLANKS BEFORE SIGNING.)

SCHEDULE REFERRED TO.*

(TO BE SIGNED BY APPLICANT IMMEDIATELY BELOW THE LAST DOCUMENT SCHEDULED.) To include not only Title Deeds, Probates, Letters of Administration, etc., but also the Surveyor's Plan or Statement in lieu thereof.

* For the particulars which this Schedule must comprise, see concluding part of Declaration, to which particular attention is directed, as any omission or misstatement will reader applicant liable to the penaltics of false Declaration.

No. Date. Nature of Instrument		Registration.	, When and by whom Lodged.
1	Savings Bank of New South Wales to James Barnes	128 824) Documents Nos.
	James Barnes to Herbert S. Gibson	128 825) 1 to 8 inclus-) ive permanent-
	Herbert S. Gibson to John Lodge	151 697) ly deposited) on 5/8/42·for
	ge John Lodge to Herbert S. Gibson	151 693) custody under) Section 64 of
i. '-	e. Neal Collins to John Lodge	869 948) the Conveyanc-) ing Act 1919
	Herbert S. Gibson to Neal Collins	602 770) wide receipt) No. 8707.
الله المستحدث	. Sarah Lodge (widow) (Admix. re Will of Charlotte		314-
of New	Lodge) (Extrix. of John Lodge) to William J. Lodge	1582 924	, 5

Should any transaction affecting the land in this application be entered into or any alterations in the buildings or fences be made subsequent to the date of the application, but prior to the issue of the Certificate of Title, the Registrar General should be informed immediately, and all documents evidencing such transaction should be lodged.

SCHEDULE REFERRED TO-(continued).*

(TO BE SIGNED BY APPLICANT, IS UTFLISED, IMMEDIATELY BELOW THE LAST DOCUMENT SCHEDULED.

ef:advlegs /Src:P					
		See indorsement overleaf.		امر ایم	
The state of the s		لإسرون	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		Y			
***************************************			, v,	1	
	لر- ۷	Action to remain or free for			
- mulholland.	balline	Dock. 16 417 may to telumena to			
7		Doets. 9 to 26 h with			j
			! !		
ansat/an isa		Tuber by I'M . Mondanos.	Farriar de	94.8.0	92
مرتدر دراره عفرته	• '	Leave by J. M. Andread Loaks Loadly (beretical expand)			57
		Mestificate of william genes Lodge (bestified copy and)	ا المحدد في	6 - 6 - 91	EF
5015/547/06		وران وران وران وران وران وران وران وران	N - A - A - A - A - A - A - A - A - A -	-6 4-11-4	10
		Now from the Commissioner of themps Dutinoby A ? White	20000000	51-11-9	61
90960/2007	21100	to in other will of gold dodge of blowled bedge of blowled bedge. It follows	COSTO	CA " EI	ZI
		The state of the s			91
		L'allerin E			
:		MILNER			
		The Shidus un	75	معود م	Ph
		10	ax b ca	1131	
utiwered begboi		Request to sell by Charlotte Ethel Hodges	taeupes	DE/T/4T	217
Lodged herewith		yednest to sell by Elizabeth Erotchie	gednesp		1
Lodged herewith		Request to sell by Charles Henry Lodge	าและแกก		معرور ارسان
		and the state of t	trasmot	SE/4/40	29
Indged herewath		Survey report to H.F. Hardy & A.A. Dushy with des-	Survey	20/6/42	The second
rogCag yeshew rt		Mastract of the Title of the Trastee of the Estate to Lohn Lodge deceased to lend of Old Boteny Road. *	2.7.70.00**	G	/ ا
	1 <u>1</u> 6 <u>1</u> 977		.[1	1
-tsuo 101 24/8/8 40 pes gebau 150 9181401 inionalis 1018101 inionalis 1018101 inionalis 1018101 inionalis	the dony	10			
hammantly for the form of the	1	William J. Lodge (Trustee re seid Will) Charles H. Lodge (Co-Trustee re seid Will)		7E / , /) ~ ~	-
nocuments Nos.I	7 4101	. Care T and the first on notherwill apply . L marifilly	1000	28/7/42	8.
When and by whom Lodged.	Rook, Wo.	Parties.	lo entra M Josephiniso I	Date,	THE

Req:R019210 /Doc:PA 035597 PA /Rev:23-Jun-2015 /Sts:0K.SC /Pgs:ALL /Prt:02-Aug-2018 13:58 /Seq:4 of

Ref:advlegs /Src:P

I certify that the within application is correct for the purposes of the Real Property Act, 1900†.

(RULE UP ALL BLANKS BEFORE SIGNING, EXCEPT SPACE IN SCHEDULE BELOW APPLICANT'S SIGNATURE.)

FEES.

PAYMENT OF THESE MUST ACCOMPANY THE APPLICATION.

	£	8.	d.
Certificate of Title	1	5	0
Office Copy of Plan (when a Plan is furnished)	0	5	0
Proparation of Plan (when a Place is not furnished)	0	7	6
Advertisement	1	10	0
Assurance, ad. in the £ on declared value	**		
Lodgment fee	1	0	.0

Reid 2: 30/4 t.

State to whom all correspondence relating to this Application should be sent, with address, as under, viz.:-

A.E. WHATMORE G.C.M. GEE & CO., Name

Occupation Solicitors,

Post Town 14 Spring Street, Sydney.

T. H. TENNANT, ACTING GOVT. PRINTER.

Reg:R019561 /Doc:PA 036370 PA /Rev:25-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:02-Aug-2018 14:27 /S Ref:advlegs /Src:P

No 36370

APPLICATION FOR CERTIFICATE OF TITLE FOR RESUMED LANDERSON ALL

REAL PROPERTY ACT, 1900 SECTION

FEE 470

p. 177 21 10 251

The Council of the Municipality of Mascot hereby certifies that a Notification of Resumption, a copy of which is set out hereunder, appeared in the Covernment Cazette of the 31st January, 1947 No.18 and the said Council of the Municipality of Mascot hereby applies to the Registrar General for a Certificate of Title for so much of the land described in the said Notification as is not under the provisions of the Real Property Act, 1900, and certifies this application to be correct for the purposes of the said Act.

"LOCAL GOVERNMENT ACT, 1919 - FUBLIC WORKS ACT, 1918

Mascot Municipal Council: Improvement and Embellishment of the Area.

Acquisition of Land.

APPLICATION by The Council of the Municipality of Mescot having been made that the land described in the Schedule hereto be appropriated or resumed for the purpose of the improvement and embellishment of the area, IT IS HEREBY NOTIFIED AND DECLARED by His Excellency the Governor, acting with the advice of the Executive Council, and by the Minister for Public Works, that so much of the said land as is Crown land is hereby appropriated and so much of the said land as is private property is hereby reaumed under Division 1 of Part V of the Public Works Act,1912, for the purpose aforesaid; AND the Minister for Public Works hereby further notifies that the said land is vested in The Council of the Municipality of Mascot.

Dated at Sydney, this 21st day of Jenuary, 1947.

J. NORTHCOTT, Governor.

J.J. CAHILL, Minister for Public Works.

Schedule.

All that piece or parcel of land situate in the Municipality of Mascot, parish of Botany, and county of Cumberland, being part of portion 136; Commencing on the south-eastern side of Old Botany road at the north-western corner of lot A, plan annexed to dealing B646396; and bounded thence on the north-west by that side of that road bearing 30 degrees 8 minutes 67 feet 11 inches to the south-western corner of the land comprised in heal Property Application 35,597; on the north by the southern boundary of that lend and part of the southern boundary of the land comprised in Certificate of Title, volume 5,356, folio 166, respectively, bearing 90 degrees 9 minutes 45 seconds 276 feet 8½ inches and 90 degrees 11 minutes 30 seconds 483 feet 10½ inches to the north-western corner of lot 1, deposited plan 15,190; on the east by the western boundary of that lot bearing 175 degrees 37 minutes 98 feet 2½ inches; on the south by the northern side of Macintosh

14/1

Reg:R019561 /Doc:PA 036370 PA /Rev:25-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:02-Aug-2018 14:27 /Se Ref:advlegs /Src:P

street bearing 269 degrees 39 minutes 26 seconds 99 feet 11½ inches to the north-eastern corner of lot B of the aforesaid plan annexed to dealing B646396; and again on the south by the northern boundary of the said lots B and A, being lines successively bearing 276 degrees 31 minutes 206 feet 11½ inches, 272 degrees 12 minutes 311 feet 4 inches and 272 degrees 6 minutes 185 feet 7 inches to the point of commencement, having an area of 1 acre 1 rood 20 perches or thereabouts, and said to be in the possession of Sarah Emily Forster. (Misc. 46-8, 355)

The Common Seal of the Council) of the Municipality of Mescot) was hereunto affixed on the 29th day of April, 1947, by resolution of Council passed) on the 22nd day of April, 1947.

Sharles & Gray
Mayor:
Mayor:

Town Clerk

Losy of Plan of Survey made by b. D. Johns.

2. 3. 4 Jimal Declin by Lower black head of Lay 8/18487.

3. Contract of Sale Interior Council mun of prancet & Morg.

3. Investments

EXTRA FEIR SESSE

Lantonge 3946140

Cartyrenia of Totale Not 5626 for 128 somed

Recenied Document 3, and undertake one large same

poer 12-13 83 51 seman are does to remain

m. mage 3/a/s.

FOLIO: 13/1232496

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 2/8/2018
 1:16 PM
 1
 2/2/2018

NO CERTIFICATE OF TITLE HAS ISSUED FOR THE CURRENT EDITION OF THIS FOLIO. CONTROL OF THE RIGHT TO DEAL IS HELD BY WESTPAC BANKING CORPORATION.

LAND

LOT 13 IN DEPOSITED PLAN 1232496
AT MASCOT
LOCAL GOVERNMENT AREA BAYSIDE
PARISH OF BOTANY COUNTY OF CUMBERLAND
TITLE DIAGRAM DP1232496

FIRST SCHEDULE

JKN PARK PTY LTD

SECOND SCHEDULE (11 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2 C562969 EASEMENT FOR STORMWATER CHANNEL AFFECTING THE PART OF THE LAND ABOVE DESCRIBED SHOWN SO BURDENED IN DP187190

3 F326017 RIGHT OF WAY APPURTENANT TO THE LAND ABOVE DESCRIBED AFFECTING THE LAND SHOWN IN THE PLAN ANNEXED TO F326017

4 W678085 LEASE TO THE SYDNEY COUNTY COUNCIL OF PREMISES
BEING SUBSTATION NO 5937 TOGETHER WITH RIGHT OF WAY &
EASEMENT FOR ELECTRICITY PURPOSES AS SHOWN IN PLAN
WITH W678085. EXPIRES: 31/12/2035.

AK971351 LEASE OF LEASE W678085 TO BLUE ASSET PARTNER PTY LTD, ERIC ALPHA ASSET CORPORATION 1 PTY LTD, ERIC ALPHA ASSET CORPORATION 2 PTY LTD, ERIC ALPHA ASSET CORPORATION 3 PTY LTD & ERIC ALPHA ASSET CORPORATION 4 PTY LTD EXPIRES: SEE DEALING. CLAUSE

2.3 (b) (ii)

AK971352 LEASE OF LEASE AK971351 TO BLUE OP PARTNER PTY
LTD, ERIC ALPHA OPERATOR CORPORATION 1 PTY LTD,
ERIC ALPHA OPERATOR CORPORATION 2 PTY LTD, ERIC
ALPHA OPERATOR CORPORATION 3 PTY LTD & ERIC ALPHA
OPERATOR CORPORATION 4 PTY LTD EXPIRES: SEE

DEALING. CLAUSE 12.1
AK971502 MORTGAGE OF LEASE AK971351 TO ANZ FIDUCIARY SERVICES PTY LTD

AK971571 CHANGE OF NAME AFFECTING LEASE W678085 LESSEE

END OF PAGE 1 - CONTINUED OVER

advlegs PRINTED ON 2/8/2018

FOLIO: 13/1232496 PAGE 2

SECOND SCHEDULE (11 NOTIFICATIONS) (CONTINUED)

NOW ALPHA DISTRIBUTION MINISTERIAL HOLDING CORPORATION

5 AE574982 LEASE TO TRANSFIELD SERVICES (AUSTRALIA) PTY LIMITED BEING UNIT 4, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 31/12/2013.

AJ200522 VARIATION OF LEASE AE574982 EXPIRY DATE NOW 31/12/2018.

6 AG47623 LEASE TO GEARHOUSE BROADCAST PTY LIMITED BEING UNIT 1. EXPIRES: 19/12/2015. OPTION OF RENEWAL: 5 YEARS.

7 AG820509 LEASE TO DAIWA FOOD CORPORATION PTY LIMITED BEING UNIT 6. EXPIRES: 31/12/2021.

8 AJ802921 MORTGAGE TO WESTPAC BANKING CORPORATION

9 AM21175 LEASE TO SUSHI TRAIN (AUSTRALIA) PTY LTD BEING UNIT 2, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 23/10/2022.

10 AM21176 LEASE TO TOWERS INTERNATIONAL FREIGHT FORWARDERS PTY LTD BEING UNIT 5, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 7/9/2020.

11 AM21177 LEASE TO GLASSONS AUSTRALIA LIMITED BEING UNIT 7, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 7/4/2020.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

advlegs

PRINTED ON 2/8/2018

Obtained from NSW LRS on 02 August 2018 01:16 PM AEST

© Office of the Registrar-General 2018

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.

FOLIO: 14/1232496

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 2/8/2018
 1:16 PM
 1
 2/2/2018

NO CERTIFICATE OF TITLE HAS ISSUED FOR THE CURRENT EDITION OF THIS FOLIO. CONTROL OF THE RIGHT TO DEAL IS HELD BY WESTPAC BANKING CORPORATION.

LAND

LOT 14 IN DEPOSITED PLAN 1232496
AT MASCOT
LOCAL GOVERNMENT AREA BAYSIDE
PARISH OF BOTANY COUNTY OF CUMBERLAND
TITLE DIAGRAM DP1232496

FIRST SCHEDULE

JKN PARK PTY LTD

SECOND SCHEDULE (8 NOTIFICATIONS)

- 1 LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND CONDITIONS IN FAVOUR OF THE CROWN SEE CROWN GRANT(S)
- 2 AE574982 LEASE TO TRANSFIELD SERVICES (AUSTRALIA) PTY LIMITED BEING UNIT 4, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 31/12/2013.

AJ200522 VARIATION OF LEASE AE574982 EXPIRY DATE NOW 31/12/2018.

- 3 AG47623 LEASE TO GEARHOUSE BROADCAST PTY LIMITED BEING UNIT 1. EXPIRES: 19/12/2015. OPTION OF RENEWAL: 5 YEARS.
- 4 AG820509 LEASE TO DAIWA FOOD CORPORATION PTY LIMITED BEING UNIT 6. EXPIRES: 31/12/2021.
- 5 AJ802921 MORTGAGE TO WESTPAC BANKING CORPORATION
- 6 AM21175 LEASE TO SUSHI TRAIN (AUSTRALIA) PTY LTD BEING UNIT
- 2, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 23/10/2022.

 7 AM21176 LEASE TO TOWERS INTERNATIONAL FREIGHT FORWARDERS
 PTY LTD BEING UNIT 5, 154 O'RIORDAN STREET, MASCOT.
 EXPIRES: 7/9/2020
- EXPIRES: 7/9/2020.

 8 AM21177 LEASE TO GLASSONS AUSTRALIA LIMITED BEING UNIT 7, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 7/4/2020.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

advlegs

PRINTED ON 2/8/2018

Obtained from NSW LRS on 02 August 2018 01:16 PM AEST

© Office of the Registrar-General 2018

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.

FOLIO: 15/1232496

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 2/8/2018
 1:16 PM
 1
 2/2/2018

NO CERTIFICATE OF TITLE HAS ISSUED FOR THE CURRENT EDITION OF THIS FOLIO. CONTROL OF THE RIGHT TO DEAL IS HELD BY WESTPAC BANKING CORPORATION.

LAND

LOT 15 IN DEPOSITED PLAN 1232496
AT MASCOT
LOCAL GOVERNMENT AREA BAYSIDE
PARISH OF BOTANY COUNTY OF CUMBERLAND
TITLE DIAGRAM DP1232496

FIRST SCHEDULE

JKN PARK PTY LTD

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 R732850 EASEMENT FOR STORMWATER DRAINAGE AFFECTING THE PART OF THE LAND SHOWN IN DP583011
- 3 AJ11259 MORTGAGE TO WESTPAC BANKING CORPORATION

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

advlegs

PRINTED ON 2/8/2018

Obtained from NSW LRS on 02 August 2018 01:16 PM AEST

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.

FOLIO: A/402876

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 2/8/2018
 1:16 PM
 25
 12/1/2017

LAND

LOT A IN DEPOSITED PLAN 402876
AT MASCOT
LOCAL GOVERNMENT AREA BAYSIDE
PARISH OF BOTANY COUNTY OF CUMBERLAND
TITLE DIAGRAM DP402876

FIRST SCHEDULE

JKN PARK PTY LTD

(T AJ802920)

SECOND SCHEDULE (10 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 C562969 EASEMENT FOR STORMWATER CHANNEL AFFECTING THE PART OF THE LAND ABOVE DESCRIBED SHOWN SO BURDENED IN DP187190
- 3 AE574982 LEASE TO TRANSFIELD SERVICES (AUSTRALIA) PTY LIMITED BEING UNIT 4, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 31/12/2013.
 - AJ200522 VARIATION OF LEASE AE574982 EXPIRY DATE NOW 31/12/2018.
- 4 AG47623 LEASE TO GEARHOUSE BROADCAST PTY LIMITED BEING UNIT 1. EXPIRES: 19/12/2015. OPTION OF RENEWAL: 5 YEARS.
- 5 AG282228 LEASE TO WORKVENTURES LIMITED BEING UNIT 3. EXPIRES: 13/4/2014. OPTION OF RENEWAL: 2 YEARS.
 - AI657914 VARIATION OF LEASE AG282228 EXPIRY DATE NOW 13/10/2015.
- 6 AG820509 LEASE TO DAIWA FOOD CORPORATION PTY LIMITED BEING UNIT 6. EXPIRES: 31/12/2021.
- AJ802921 MORTGAGE TO WESTPAC BANKING CORPORATION
- 8 AM21175 LEASE TO SUSHI TRAIN (AUSTRALIA) PTY LTD BEING UNIT 2, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 23/10/2022.
- 9 AM21176 LEASE TO TOWERS INTERNATIONAL FREIGHT FORWARDERS PTY LTD BEING UNIT 5, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 7/9/2020.
- 10 AM21177 LEASE TO GLASSONS AUSTRALIA LIMITED BEING UNIT 7, 154 O'RIORDAN STREET, MASCOT. EXPIRES: 7/4/2020.

NOTATIONS

END OF PAGE 1 - CONTINUED OVER

advlegs PRINTED ON 2/8/2018

FOLIO: A/402876 PAGE 2

NOTATIONS (CONTINUED)

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

advlegs

PRINTED ON 2/8/2018

Obtained from NSW LRS on 02 August 2018 01:16 PM AEST

- * Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.
- © Office of the Registrar-General 2018

Appendix D

Planning and Zoning Reports

Property Report for 146 O'Riordan Street, Mascot, 2020

Property Details

Address: 146 O'Riordan Street, Mascot, 2020

Lot/Section/Plan no: 1/-/DP85597

Council: BAYSIDE

Council Details

BAYSIDE COUNCIL

Website

Phone Number

Email Address

Council Address

Planning Controls associated with this property

Land Zoning

- B5 - Business Development : (pub. 2013-06-21)

Acid Sulfate Soils

- Class 4 (pub. 2013-06-21)

Contribution Plans (LGA-Based)

- Botany Bay CPs 2016
- Rockdale and Kogarah CP 2006 Ramsgate Commercial Centre
- Rockdale CP 2004 as amended 4 November 2010
- Rockdale CP 2008
- Rockdale CP 2016 Urban Renewal Area

Development Control Plans (LGA-Based)

- Botany Bay DCP 2013 as amended 25 Oct 2016
- Rockdale DCP 2011 -as amended 5 Jun 2015

Floor Space Ratio

- V - 3.00 Ratio : Range [3.00 - 3.49] (pub. 2013-06-21)

Height of Building

- R - 22.0 m : Range [21.0 - 22.9 m] (pub. 2013-06-21)

Key Sites

- Mascot Station Precinct (pub. 2013-06-21)

Land Application LEP

- Included : Botany Bay Local Environmental Plan 2013 (pub. 2013-06-21)

Other spatial data associated with this property

Local Government Area

- Bayside

Suburbs

- Mascot

State Environmental Planning Policies which apply at 146 O'Riordan Street, Mascot, 2020

 $State\ Environmental\ Planning\ Policy\ (Affordable\ Rental\ Housing)\ 2009: (pub.\ 2009-07-31)$

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 : (pub. 2004-06-25)

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: (pub. 2008-12-12)

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 : (pub. 2004-03-31)

State Environmental Planning Policy (Infrastructure) 2007: (pub. 2007-12-21)

 $State\ Environmental\ Planning\ Policy\ (Mining\ , Petroleum\ Production\ and\ Extractive\ Industries)\ 2007: (pub.\ 2007-02-16)$

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007: (pub. 2007-09-28)

State Environmental Planning Policy No 19-Bushland in Urban Areas: (pub. 1986-10-24)

State Environmental Planning Policy No 1-Development Standards: (pub. 1980-10-17)

State Environmental Planning Policy No 21-Caravan Parks: (pub. 1992-04-24)

State Environmental Planning Policy No 30-Intensive Agriculture: (pub. 1989-12-08)

State Environmental Planning Policy No 33-Hazardous and Offensive Development : (pub. 1992-03-13)

State Environmental Planning Policy No 36-Manufactured Home Estates: (pub. 1993-07-16)

State Environmental Planning Policy No 50-Canal Estate Development : (pub. 1997-11-10)

State Environmental Planning Policy No 55-Remediation of Land: (pub. 1998-08-28)

State Environmental Planning Policy No 62-Sustainable Aquaculture : (pub. 2000-08-25) State Environmental Planning Policy No 64-Advertising and Signage : (pub. 2001-03-16)

 $State\ Environmental\ Planning\ Policy\ No\ 65-Design\ Quality\ of\ Residential\ Apartment\ Development\ : (pub.\ 2002-07-26)$

State Environmental Planning Policy No 70-Affordable Housing (Revised Schemes): (pub. 2002-05-01)

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017: Subject Land (pub. 2017-08-25)

Floor Space Ratio

- (1) The objectives of this clause are as follows:
 - (a) to establish standards for the maximum development density and intensity of land use,
 - (b) to ensure that buildings are compatible with the bulk and scale of the existing and desired future character of the locality,
 - (c) to maintain an appropriate visual relationship between new development and the existing character of areas or locations that are not undergoing, and are not likely
 - to undergo, a substantial transformation,
 - (d) to ensure that buildings do not adversely affect the streetscape, skyline or landscape when viewed from adjoining roads and other public places such as parks, and
 - community facilities,
 - (e) to minimise adverse environmental effects on the use or enjoyment of adjoining properties and the public domain,
 - (f) to provide an appropriate correlation between the size of a site and the extent of any development on that site,
 - (g) to facilitate development that contributes to the economic growth of Botany Bay.
- (2) The maximum floor space ratio for a building on any land is not to exceed the floor space ratio shown for the land on the Floor Space Ratio Map.
- (2A) Despite subclause (2), if an area of land in Zone R3 Medium Density Residential or Zone R4 High Density Residential exceeds 2,000 square metres, the floor space ratio of a building on that land may exceed the maximum floor space ratio shown for the land on the Floor Space Ratio Map but must not exceed 1.5:1.
- (2B) Subclause (2A) does not apply to land identified as "Area 1" on the Floor Space Ratio Map.
- (2C) Despite subclause (2), if an area of land identified as "Area 2" on the Floor Space Ratio Map has a site area exceeding 1,900 square metres, the maximum floor space ratio for a building on that land may exceed the maximum floor space ratio shown for the land on the Floor Space Ratio Map by no more than 0.65:1.
- (2D) Despite subclause (2), if a building is permissible under clause 9A of Schedule 1 on land identified as "Area 4" on the Floor Space Ratio Map, the maximum floor space ratio for the building must not exceed 1.5:1.

Height of Building

- (1) The objectives of this clause are as follows:
 - (a) to ensure that the built form of Botany Bay develops in a coordinated and cohesive manner,
 - (b) to ensure that taller buildings are appropriately located,
 - (c) to ensure that building height is consistent with the desired future character of an area,
 - (d) to minimise visual impact, disruption of views, loss of privacy and loss of solar access to existing development,
 - (e) to ensure that buildings do not adversely affect the streetscape, skyline or landscape when viewed from adjoining roads and other public places such as parks, and
 - community facilities.
- (2) The height of a building on any land is not to exceed the maximum height shown for the land on the Height of Buildings Map.
- (2A) Despite subclause (2), if an area of land in Zone R3 Medium Density Residential or Zone R4 High Density Residential exceeds 2,000 square metres, the height of a building on that land may exceed the maximum height shown for the land on the Height of Buildings Map but must not exceed 22 metres.
- (2B) Subclause (2A) does not apply to land identified as "Area 1" on the Height of Buildings Map.
- (2C) Despite subclause (2), if an area of land identified as "Area 2" on the Height of Buildings Map has a site area exceeding 1,900 square metres, the maximum height for a building on that land may exceed the maximum height shown for the land on the Height of Buildings Map by no more than 2 metres.

Land Zoning

Zone B5 Business Development

1 Objectives of zone

To enable a mix of business and warehouse uses, and bulky goods premises that require a large floor area, in locations that are close to, and that support the viability of,

- centres.
- 2 Permitted without consent

Nil

3 Permitted with consent

Bulky goods premises; Centre-based child care facilities; Food and drink premises; Garden centres; Hardware and building supplies; High technology industries; Landscaping material supplies; Neighbourhood shops; Passenger transport facilities; Respite day care centres; Roads; Vehicle sales or hire premises; Warehouse or distribution centres; Any other development not specified in item 2 or 4

4 Prohibited

Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Environmental facilities; Environmental protection works; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Helipads; Highway service centres; Home-based child care; Home businesses; Home occupations; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Port facilities; Recreation facilities (major); Recreation facilities (outdoor); Research stations; Residential accommodation; Resource recovery facilities; Restricted premises; Retail premises; Rural industries; Sewage treatment plants; Sex services premises; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Waste disposal facilities; Water recreation structures; Water recycling facilities; Water supply systems; Wharf or boating facilities; Wholesale supplies

Land Zoning

Zone RE1 Public Recreation

1 Objectives of zone

- To enable land to be used for public open space or recreational purposes.
- To provide a range of recreational settings and activities and compatible land uses.
- To protect and enhance the natural environment for recreational purposes.
- 2 Permitted without consent

Environmental protection works

3 Permitted with consent

Centre-based child care facilities; Community facilities; Emergency services facilities; Environmental facilities; Flood mitigation works; Information and education facilities; Jetties; Kiosks; Markets; Recreation areas; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Respite day care centres; Roads; Signage; Water storage facilities

4 Prohibited

Any development not specified in item $2\,\mathrm{or}\,3$

Property Report for 154 O'Riordan Street, Mascot, 2020

Property Details

Address: 154 O'Riordan Street, Mascot, 2020

Lot/Section/Plan no: A/-/DP320192

Council: BAYSIDE

Council Details

BAYSIDE COUNCIL

Website

Phone Number

Email Address

Council Address

Planning Controls associated with this property

Land Zoning

- B5 - Business Development : (pub. 2013-06-21)

Acid Sulfate Soils

- Class 4 (pub. 2013-06-21)

Contribution Plans (LGA-Based)

- Botany Bay CPs 2016
- Rockdale and Kogarah CP 2006 Ramsgate Commercial Centre
- Rockdale CP 2004 as amended 4 November 2010
- Rockdale CP 2008
- Rockdale CP 2016 Urban Renewal Area

Development Control Plans (LGA-Based)

- Botany Bay DCP 2013 as amended 25 Oct 2016
- Rockdale DCP 2011 -as amended 5 Jun 2015

Floor Space Ratio

- V - 3.00 Ratio : Range [3.00 - 3.49] (pub. 2013-06-21)

Height of Building

- R - 22.0 m : Range [21.0 - 22.9 m] (pub. 2013-06-21)

Key Sites

- Mascot Station Precinct (pub. 2013-06-21)

Land Application LEP

- Included : Botany Bay Local Environmental Plan 2013 (pub. 2013-06-21)

Other spatial data associated with this property

Local Government Area

- Bayside

Suburbs

- Mascot

State Environmental Planning Policies which apply at 154 O'Riordan Street, Mascot, 2020

 $State\ Environmental\ Planning\ Policy\ (Affordable\ Rental\ Housing)\ 2009: (pub.\ 2009-07-31)$

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004: (pub. 2004-06-25)

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: (pub. 2008-12-12)

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 : (pub. 2004-03-31)

State Environmental Planning Policy (Infrastructure) 2007: (pub. 2007-12-21)

 $State\ Environmental\ Planning\ Policy\ (Mining\ , Petroleum\ Production\ and\ Extractive\ Industries)\ 2007: (pub.\ 2007-02-16)$

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007: (pub. 2007-09-28)

State Environmental Planning Policy No 19-Bushland in Urban Areas: (pub. 1986-10-24)

State Environmental Planning Policy No 1-Development Standards: (pub. 1980-10-17)

State Environmental Planning Policy No 21-Caravan Parks: (pub. 1992-04-24)

State Environmental Planning Policy No 30-Intensive Agriculture: (pub. 1989-12-08)

 $State\ Environmental\ Planning\ Policy\ No\ 33-Hazardous\ and\ Offensive\ Development: (pub.\ 1992-03-13)$

State Environmental Planning Policy No 36-Manufactured Home Estates: (pub. 1993-07-16)

State Environmental Planning Policy No 50-Canal Estate Development : (pub. 1997-11-10)

State Environmental Planning Policy No 55-Remediation of Land: (pub. 1998-08-28)

State Environmental Planning Policy No 62-Sustainable Aquaculture : (pub. 2000-08-25)

State Environmental Planning Policy No 64-Advertising and Signage : (pub. 2001-03-16)
State Environmental Planning Policy No 65-Design Quality of Residential Apartment Development : (pub. 2002-07-26)

State Environmental Planning Policy No 70-Affordable Housing (Revised Schemes): (pub. 2002-05-01)

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017: Subject Land (pub. 2017-08-25)

Floor Space Ratio

- (1) The objectives of this clause are as follows:
 - (a) to establish standards for the maximum development density and intensity of land use,
 - (b) to ensure that buildings are compatible with the bulk and scale of the existing and desired future character of the locality,
 - (c) to maintain an appropriate visual relationship between new development and the existing character of areas or locations that are not undergoing, and are not likely
 - to undergo, a substantial transformation,
 - (d) to ensure that buildings do not adversely affect the streetscape, skyline or landscape when viewed from adjoining roads and other public places such as parks, and
 - community facilities,
 - (e) to minimise adverse environmental effects on the use or enjoyment of adjoining properties and the public domain,
 - (f) to provide an appropriate correlation between the size of a site and the extent of any development on that site,
 - (g) to facilitate development that contributes to the economic growth of Botany Bay.
- (2) The maximum floor space ratio for a building on any land is not to exceed the floor space ratio shown for the land on the Floor Space Ratio Map.
- (2A) Despite subclause (2), if an area of land in Zone R3 Medium Density Residential or Zone R4 High Density Residential exceeds 2,000 square metres, the floor space ratio of a building on that land may exceed the maximum floor space ratio shown for the land on the Floor Space Ratio Map but must not exceed 1.5:1.
- (2B) Subclause (2A) does not apply to land identified as "Area 1" on the Floor Space Ratio Map.
- (2C) Despite subclause (2), if an area of land identified as "Area 2" on the Floor Space Ratio Map has a site area exceeding 1,900 square metres, the maximum floor space ratio for a building on that land may exceed the maximum floor space ratio shown for the land on the Floor Space Ratio Map by no more than 0.65:1.
- (2D) Despite subclause (2), if a building is permissible under clause 9A of Schedule 1 on land identified as "Area 4" on the Floor Space Ratio Map, the maximum floor space ratio for the building must not exceed 1.5:1.

Height of Building

- (1) The objectives of this clause are as follows:
 - (a) to ensure that the built form of Botany Bay develops in a coordinated and cohesive manner,
 - (b) to ensure that taller buildings are appropriately located,
 - (c) to ensure that building height is consistent with the desired future character of an area,
 - (d) to minimise visual impact, disruption of views, loss of privacy and loss of solar access to existing development,
 - (e) to ensure that buildings do not adversely affect the streetscape, skyline or landscape when viewed from adjoining roads and other public places such as parks, and
 - community facilities.
- (2) The height of a building on any land is not to exceed the maximum height shown for the land on the Height of Buildings Map.
- (2A) Despite subclause (2), if an area of land in Zone R3 Medium Density Residential or Zone R4 High Density Residential exceeds 2,000 square metres, the height of a building on that land may exceed the maximum height shown for the land on the Height of Buildings Map but must not exceed 22 metres.
- (2B) Subclause (2A) does not apply to land identified as "Area 1" on the Height of Buildings Map.
- (2C) Despite subclause (2), if an area of land identified as "Area 2" on the Height of Buildings Map has a site area exceeding 1,900 square metres, the maximum height for a building on that land may exceed the maximum height shown for the land on the Height of Buildings Map by no more than 2 metres.

Land Zoning

Zone B5 Business Development

- 1 Objectives of zone
 - To enable a mix of business and warehouse uses, and bulky goods premises that require a large floor area, in locations that are close to, and that support the viability of,
- centres.
- 2 Permitted without consent

Nil

3 Permitted with consent

Bulky goods premises; Centre-based child care facilities; Food and drink premises; Garden centres; Hardware and building supplies; High technology industries; Landscaping material supplies; Neighbourhood shops; Passenger transport facilities; Respite day care centres; Roads; Vehicle sales or hire premises; Warehouse or distribution centres; Any other development not specified in item 2 or 4

4 Prohibited

Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Environmental facilities; Environmental protection works; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Helipads; Highway service centres; Home-based child care; Home businesses; Home occupations; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Port facilities; Recreation facilities (major); Recreation facilities (outdoor); Research stations; Residential accommodation; Resource recovery facilities; Restricted premises; Retail premises; Rural industries; Sewage treatment plants; Sex services premises; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Waste disposal facilities; Water recreation structures; Water recycling facilities; Water supply systems; Wharf or boating facilities; Wholesale supplies

Property Report for 154 O'Riordan Street, Mascot, 2020

Property Details

Address: 154 O'Riordan Street, Mascot, 2020

Lot/Section/Plan no: A/-/DP402876

Council: BAYSIDE

Council Details

BAYSIDE COUNCIL

Website

Phone Number

Email Address

Council Address

Planning Controls associated with this property

Land Zoning

- B5 - Business Development : (pub. 2013-06-21)

Acid Sulfate Soils

- Class 4 (pub. 2013-06-21)

Contribution Plans (LGA-Based)

- Botany Bay CPs 2016
- Rockdale and Kogarah CP 2006 Ramsgate Commercial Centre
- Rockdale CP 2004 as amended 4 November 2010
- Rockdale CP 2008
- Rockdale CP 2016 Urban Renewal Area

Development Control Plans (LGA-Based)

- Botany Bay DCP 2013 as amended 25 Oct 2016
- Rockdale DCP 2011 -as amended 5 Jun 2015

Floor Space Ratio

- V - 3.00 Ratio : Range [3.00 - 3.49] (pub. 2013-06-21)

Height of Building

- R - 22.0 m : Range [21.0 - 22.9 m] (pub. 2013-06-21)

Key Sites

- Mascot Station Precinct (pub. 2013-06-21)

Land Application LEP

- Included : Botany Bay Local Environmental Plan 2013 (pub. 2013-06-21)

Other spatial data associated with this property

Local Government Are

- Bayside

Suburbs

- Mascot

State Environmental Planning Policies which apply at 154 O'Riordan Street, Mascot, 2020

 $State\ Environmental\ Planning\ Policy\ (Affordable\ Rental\ Housing)\ 2009: (pub.\ 2009-07-31)$

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 : (pub. 2004-06-25)

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: (pub. 2008-12-12)

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 : (pub. 2004-03-31)

State Environmental Planning Policy (Infrastructure) 2007: (pub. 2007-12-21)

 $State\ Environmental\ Planning\ Policy\ (Mining\ , Petroleum\ Production\ and\ Extractive\ Industries)\ 2007: (pub.\ 2007-02-16)$

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007: (pub. 2007-09-28)

State Environmental Planning Policy No 19-Bushland in Urban Areas: (pub. 1986-10-24)

State Environmental Planning Policy No 1-Development Standards: (pub. 1980-10-17)

State Environmental Planning Policy No 21-Caravan Parks: (pub. 1992-04-24)

 $State\ Environmental\ Planning\ Policy\ No\ 30-Intensive\ Agriculture: (pub.\ 1989-12-08)$

State Environmental Planning Policy No 33-Hazardous and Offensive Development : (pub. 1992-03-13)

State Environmental Planning Policy No 36-Manufactured Home Estates: (pub. 1993-07-16)

State Environmental Planning Policy No 50-Canal Estate Development : (pub. 1997-11-10)

State Environmental Planning Policy No 55-Remediation of Land: (pub. 1998-08-28)

State Environmental Planning Policy No 62-Sustainable Aquaculture : (pub. 2000-08-25)

State Environmental Planning Policy No 64-Advertising and Signage : (pub. 2001-03-16)
State Environmental Planning Policy No 65-Design Quality of Residential Apartment Development : (pub. 2002-07-26)

State Environmental Planning Policy No 70-Affordable Housing (Revised Schemes): (pub. 2002-05-01)

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017: Subject Land (pub. 2017-08-25)

Floor Space Ratio

- (1) The objectives of this clause are as follows:
 - (a) to establish standards for the maximum development density and intensity of land use,
 - (b) to ensure that buildings are compatible with the bulk and scale of the existing and desired future character of the locality,
 - (c) to maintain an appropriate visual relationship between new development and the existing character of areas or locations that are not undergoing, and are not likely
 - to undergo, a substantial transformation,
 - (d) to ensure that buildings do not adversely affect the streetscape, skyline or landscape when viewed from adjoining roads and other public places such as parks, and
 - community facilities,
 - (e) to minimise adverse environmental effects on the use or enjoyment of adjoining properties and the public domain,
 - (f) to provide an appropriate correlation between the size of a site and the extent of any development on that site,
 - (g) to facilitate development that contributes to the economic growth of Botany Bay.
- (2) The maximum floor space ratio for a building on any land is not to exceed the floor space ratio shown for the land on the Floor Space Ratio Map.
- (2A) Despite subclause (2), if an area of land in Zone R3 Medium Density Residential or Zone R4 High Density Residential exceeds 2,000 square metres, the floor space ratio of a building on that land may exceed the maximum floor space ratio shown for the land on the Floor Space Ratio Map but must not exceed 1.5:1.
- (2B) Subclause (2A) does not apply to land identified as "Area 1" on the Floor Space Ratio Map.
- (2C) Despite subclause (2), if an area of land identified as "Area 2" on the Floor Space Ratio Map has a site area exceeding 1,900 square metres, the maximum floor space ratio for a building on that land may exceed the maximum floor space ratio shown for the land on the Floor Space Ratio Map by no more than 0.65:1.
- (2D) Despite subclause (2), if a building is permissible under clause 9A of Schedule 1 on land identified as "Area 4" on the Floor Space Ratio Map, the maximum floor space ratio for the building must not exceed 1.5:1.

Height of Building

- (1) The objectives of this clause are as follows:
 - (a) to ensure that the built form of Botany Bay develops in a coordinated and cohesive manner,
 - (b) to ensure that taller buildings are appropriately located,
 - (c) to ensure that building height is consistent with the desired future character of an area,
 - (d) to minimise visual impact, disruption of views, loss of privacy and loss of solar access to existing development,
 - (e) to ensure that buildings do not adversely affect the streetscape, skyline or landscape when viewed from adjoining roads and other public places such as parks, and
 - community facilities.
- (2) The height of a building on any land is not to exceed the maximum height shown for the land on the Height of Buildings Map.
- (2A) Despite subclause (2), if an area of land in Zone R3 Medium Density Residential or Zone R4 High Density Residential exceeds 2,000 square metres, the height of a building on that land may exceed the maximum height shown for the land on the Height of Buildings Map but must not exceed 22 metres.
- (2B) Subclause (2A) does not apply to land identified as "Area 1" on the Height of Buildings Map.
- (2C) Despite subclause (2), if an area of land identified as "Area 2" on the Height of Buildings Map has a site area exceeding 1,900 square metres, the maximum height for a building on that land may exceed the maximum height shown for the land on the Height of Buildings Map by no more than 2 metres.

Land Zoning

Zone B5 Business Development

- 1 Objectives of zone
 - To enable a mix of business and warehouse uses, and bulky goods premises that require a large floor area, in locations that are close to, and that support the viability of,
- centres.
- 2 Permitted without consent

Nil

3 Permitted with consent

Bulky goods premises; Centre-based child care facilities; Food and drink premises; Garden centres; Hardware and building supplies; High technology industries; Landscaping material supplies; Neighbourhood shops; Passenger transport facilities; Respite day care centres; Roads; Vehicle sales or hire premises; Warehouse or distribution centres; Any other development not specified in item 2 or 4

4 Prohibited

Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Environmental facilities; Environmental protection works; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Helipads; Highway service centres; Home-based child care; Home businesses; Home occupations; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Port facilities; Recreation facilities (major); Recreation facilities (outdoor); Research stations; Residential accommodation; Resource recovery facilities; Restricted premises; Retail premises; Rural industries; Sewage treatment plants; Sex services premises; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Waste disposal facilities; Water recreation structures; Water recycling facilities; Water supply systems; Wharf or boating facilities; Wholesale supplies

Land Zoning

Zone R3 Medium Density Residential

1 Objectives of zone

- To provide for the housing needs of the community within a medium density residential environment.
- To provide a variety of housing types within a medium density residential environment.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.
- To encourage development that promotes walking and cycling.
- 2 Permitted without consent

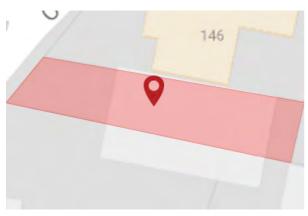
Home occupations

3 Permitted with consent

Attached dwellings; Bed and breakfast accommodation; Boarding houses; Centre-based child care facilities; Community facilities; Dwelling houses; Group homes; Multi dwelling housing; Neighbourhood shops; Office premises; Places of public worship; Residential flat buildings; Respite day care centres; Roads; Semi-detached dwellings; Seniors housing; Any other development not specified in item 2 or 4

4 Prohibited

Advertising structures; Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Car parks; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Emergency services facilities; Entertainment facilities; Environmental facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Function centres; Heavy industrial storage establishments; Helipads; Highway service centres; Home businesses; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Information and education facilities; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Passenger transport facilities; Port facilities; Public administration buildings; Recreation facilities (indoor); Recreation facilities (indoor); Recreation facilities (outdoor); Registered clubs; Research stations; Residential accommodation; Restricted premises; Rural industries; Service stations; Sewage treatment plants; Sex services premises; Storage premises; Tourist and visitor accommodation; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Warehouse or distribution centres; Waste or resource management facilities; Water recreation structures; Water recycling facilities; Water supply systems; Wharf or boating facilities; Wholesale supplies


Property Report for A/DP364217

Property Details

Address: N/A

Lot/Section/Plan no: A/-/DP364217

Council: BAYSIDE

Council Details

BAYSIDE COUNCIL

Website

Phone Number

Email Address

Council Address

Planning Controls associated with this property

Land Zoning

- B5 - Business Development : (pub. 2013-06-21)

Acid Sulfate Soils

- Class 4 (pub. 2013-06-21)

Contribution Plans (LGA-Based)

- Botany Bay CPs 2016
- Rockdale and Kogarah CP 2006 Ramsgate Commercial Centre
- Rockdale CP 2004 as amended 4 November 2010
- Rockdale CP 2008
- Rockdale CP 2016 Urban Renewal Area

Development Control Plans (LGA-Based)

- Botany Bay DCP 2013 as amended 25 Oct 2016
- Rockdale DCP 2011 -as amended 5 Jun 2015

Floor Space Ratio

- V - 3.00 Ratio : Range [3.00 - 3.49] (pub. 2013-06-21)

Height of Building

- R - 22.0 m: Range [21.0 - 22.9 m] (pub. 2013-06-21)

Key Sites

- Mascot Station Precinct (pub. 2013-06-21)

Land Application LEP

- Included : Botany Bay Local Environmental Plan 2013 (pub. 2013-06-21)

Other spatial data associated with this property

Local Government Area

- Bayside

Suburbs

- Mascot

State Environmental Planning Policies which apply at N/A

State Environmental Planning Policy (Affordable Rental Housing) 2009: (pub. 2009-07-31)

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004: (pub. 2004-06-25)

 $State\ Environmental\ Planning\ Policy\ (Exempt\ and\ Complying\ Development\ Codes)\ 2008: (pub.\ 2008-12-12)$

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 : (pub. 2004-03-31)

State Environmental Planning Policy (Infrastructure) 2007: (pub. 2007-12-21)

 $State\ Environmental\ Planning\ Policy\ (Mining\ , Petroleum\ Production\ and\ Extractive\ Industries)\ 2007: (pub.\ 2007-02-16)$

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007: (pub. 2007-09-28)

State Environmental Planning Policy No 19-Bushland in Urban Areas: (pub. 1986-10-24)

State Environmental Planning Policy No 1-Development Standards: (pub. 1980-10-17)

State Environmental Planning Policy No 21-Caravan Parks: (pub. 1992-04-24)

State Environmental Planning Policy No 30-Intensive Agriculture: (pub. 1989-12-08)
State Environmental Planning Policy No 33-Hazardous and Offensive Development: (pub. 1992-03-13)

State Environmental Planning Policy No 36-Manufactured Home Estates: (pub. 1993-07-16)

State Environmental Planning Policy No 50-Canal Estate Development: (pub. 1997-11-10)

State Environmental Planning Policy No 55-Remediation of Land : (pub. 1998-08-28)

State Environmental Planning Policy No 62-Sustainable Aquaculture : (pub. 2000-08-25)

State Environmental Planning Policy No 64-Advertising and Signage: (pub. 2001-03-16)

 $State\ Environmental\ Planning\ Policy\ No\ 65-Design\ Quality\ of\ Residential\ Apartment\ Development\ : (pub.\ 2002-07-26)$

State Environmental Planning Policy No 70-Affordable Housing (Revised Schemes): (pub. 2002-05-01)

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017: Subject Land (pub. 2017-08-25)

Floor Space Ratio

- (1) The objectives of this clause are as follows:
 - (a) to establish standards for the maximum development density and intensity of land use,
 - (b) to ensure that buildings are compatible with the bulk and scale of the existing and desired future character of the locality,
 - (c) to maintain an appropriate visual relationship between new development and the existing character of areas or locations that are not undergoing, and are not likely
 - to undergo, a substantial transformation,
 - (d) to ensure that buildings do not adversely affect the streetscape, skyline or landscape when viewed from adjoining roads and other public places such as parks, and
 - community facilities,
 - (e) to minimise adverse environmental effects on the use or enjoyment of adjoining properties and the public domain,
 - (f) to provide an appropriate correlation between the size of a site and the extent of any development on that site,
 - (g) to facilitate development that contributes to the economic growth of Botany Bay.
- (2) The maximum floor space ratio for a building on any land is not to exceed the floor space ratio shown for the land on the Floor Space Ratio Map.
- (2A) Despite subclause (2), if an area of land in Zone R3 Medium Density Residential or Zone R4 High Density Residential exceeds 2,000 square metres, the floor space ratio of a building on that land may exceed the maximum floor space ratio shown for the land on the Floor Space Ratio Map but must not exceed 1.5:1.
- (2B) Subclause (2A) does not apply to land identified as "Area 1" on the Floor Space Ratio Map.
- (2C) Despite subclause (2), if an area of land identified as "Area 2" on the Floor Space Ratio Map has a site area exceeding 1,900 square metres, the maximum floor space ratio for a building on that land may exceed the maximum floor space ratio shown for the land on the Floor Space Ratio Map by no more than 0.65:1.
- (2D) Despite subclause (2), if a building is permissible under clause 9A of Schedule 1 on land identified as "Area 4" on the Floor Space Ratio Map, the maximum floor space ratio for the building must not exceed 1.5:1.

Height of Building

- (1) The objectives of this clause are as follows:
 - (a) to ensure that the built form of Botany Bay develops in a coordinated and cohesive manner,
 - (b) to ensure that taller buildings are appropriately located,
 - (c) to ensure that building height is consistent with the desired future character of an area,
 - (d) to minimise visual impact, disruption of views, loss of privacy and loss of solar access to existing development,
 - (e) to ensure that buildings do not adversely affect the streetscape, skyline or landscape when viewed from adjoining roads and other public places such as parks, and
 - community facilities.
- (2) The height of a building on any land is not to exceed the maximum height shown for the land on the Height of Buildings Map.
- (2A) Despite subclause (2), if an area of land in Zone R3 Medium Density Residential or Zone R4 High Density Residential exceeds 2,000 square metres, the height of a building on that land may exceed the maximum height shown for the land on the Height of Buildings Map but must not exceed 22 metres.
- (2B) Subclause (2A) does not apply to land identified as "Area 1" on the Height of Buildings Map.
- (2C) Despite subclause (2), if an area of land identified as "Area 2" on the Height of Buildings Map has a site area exceeding 1,900 square metres, the maximum height for a building on that land may exceed the maximum height shown for the land on the Height of Buildings Map by no more than 2 metres.

Land Zoning

Zone B5 Business Development

- 1 Objectives of zone
 - To enable a mix of business and warehouse uses, and bulky goods premises that require a large floor area, in locations that are close to, and that support the viability of,
- centres.
- 2 Permitted without consent

Niil

3 Permitted with consent

Bulky goods premises; Centre-based child care facilities; Food and drink premises; Garden centres; Hardware and building supplies; High technology industries; Landscaping material supplies; Neighbourhood shops; Passenger transport facilities; Respite day care centres; Roads; Vehicle sales or hire premises; Warehouse or distribution centres; Any other development not specified in item 2 or 4

4 Prohibited

Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Environmental facilities; Environmental protection works; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Helipads; Highway service centres; Home-based child care; Home businesses; Home occupations; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Port facilities; Recreation facilities (major); Recreation facilities (outdoor); Research stations; Residential accommodation; Resource recovery facilities; Restricted premises; Retail premises; Rural industries; Sewage treatment plants; Sex services premises; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Waste disposal facilities; Water recreation structures; Water recycling facilities; Water supply systems; Wharf or boating facilities; Wholesale supplies

Land Zoning

Zone RE1 Public Recreation

- 1 Objectives of zone
- To enable land to be used for public open space or recreational purposes.
- To provide a range of recreational settings and activities and compatible land uses.
- To protect and enhance the natural environment for recreational purposes.
- 2 Permitted without consent

Environmental protection works

3 Permitted with consent

Centre-based child care facilities; Community facilities; Emergency services facilities; Environmental facilities; Flood mitigation works; Information and education facilities; Jetties; Kiosks; Markets; Recreation areas; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Respite day care centres; Roads; Signage; Water storage facilities

4 Prohibited

Any development not specified in item $2\,\mathrm{or}\,3$

Appendix E

Contaminated Land Register

List of NSW Contaminated Sites Notified to EPA as of 5 September 2018

Background

A strategy to systematically assess, prioritise and respond to notifications under Section 60 of the *Contaminated Land Management Act 1997* (CLM Act) has been developed by the EPA. This strategy acknowledges the EPA's obligations to make information available to the public under *Government Information (Public Access) Act 2009*.

When a site is notified to the EPA, it may be accompanied by detailed site reports where the owner has been proactive in addressing the contamination and its source. However, often there is minimal information on the nature or extent of the contamination.

For some notifications, the information indicates the contamination is securely immobilised within the site, such as under a building or carpark, and is not currently causing any offsite consequences to the community or environment. Such sites would still need to be cleaned up, but this could be done in conjunction with any subsequent building or redevelopment of the land. These sites may not require intervention under the CLM Act, but could be dealt with through the planning and development consent process.

Where indications are that contamination is significant enough to warrant regulation having regard to the matters in section 12 of the CLM Act, the EPA may apply the regulatory provisions of the CLM Act to have the appropriate person (for example, the responsible polluter and/or landowner) investigate and remediate the site.

Where the EPA reasonably suspects that a pollution incident is occurring (or has occurred) at a premise, the EPA, as the appropriate regulatory authority, may choose to regulate the incident and any resulting contamination under the POEO Act by ordering the occupier or the owner to carry out certain actions.

As such, the sites notified to the EPA and presented in the following table are at various stages of the assessment and/or remediation process. Understanding the nature of the underlying contamination, its implications and implementing a remediation program where required, can take a considerable period of time. The tables provide an indication, in relation to each nominated site, as to the management status of that particular site. Further detailed information may be available from the EPA or the responsible landowner.

The following questions and answers may assist those interested in this issue:

Frequently asked questions

What is the difference between the "List of NSW Contaminated Sites Notified to the EPA" and the "Contaminated Land: Record of Notices"?

A site will be on the <u>Contaminated Land: Record of Notices</u> only if the EPA has issued a regulatory notice in relation to the site under the <u>Contaminated Land Management Act 1997</u>.

The sites appearing on this "List of NSW contaminated sites notified to the EPA" indicate that the notifiers consider that the sites are contaminated and warrant reporting to the EPA. However, the contamination may or may not be significant enough to warrant regulation by the EPA. The EPA needs to review and, if necessary, obtain more information before it can make a determination as to whether the site warrants regulation.

Why my site appears on the list?

Your site appears on the list because of one or more of the following reasons:

- The site owner and/or the person partly or fully responsible for causing the contamination notified to the EPA about the contamination under Section 60 of the *Contaminated Land Management Act 1997*. In other words, the site owner or the "polluter" believes the site is contaminated.
- The EPA has been notified via other means and is satisfied that the site is or was contaminated.

Does the list contain all contaminated sites in NSW?

No. The list only contains contaminated sites that the EPA is aware of, with regard to its regulatory role under the CLM Act. An absence of a site from the list does not necessarily imply the site is not contaminated.

The EPA relies upon responsible parties to notify contaminated sites.

How are these notified contaminated sites managed by the EPA?

There are different ways that the EPA manages these notified contaminated sites. First, an initial assessment is carried out by the EPA. At the completion of the initial assessment, the EPA may take one or more than one of the following management approaches:

- The contamination warrants the EPA's direct regulatory intervention either under the Contaminated Land Management Act 1997 or the Protection of the Environment Operations Act 1997 (POEO Act), or both. Information about current or past regulatory action on this site can be found on EPA website.
- The contamination with respect to the current use or approved use of the site, as defined under the *Contaminated Land Management Act 1997*, is not significant enough that it warrants EPA regulation.
- The contamination does not require EPA regulation and can be managed by a planning approval process.
- The contamination is related to an operational Underground Petroleum Storage System, such as a service station or fuel depot. The contamination may be managed under the POEO Act and the Protection of the Environment Operation (Underground Petroleum Storage Systems) Regulation 2014.
- The contamination is being managed under a specifically tailored program operated by another agency (for example t
- he Department of Industry and Investment's Derelict Mines Program).

I am the owner of a site that appears on the list. What should I do?

First of all, you should ensure the current use of the site is compatible with the site contamination. Secondly, if the site is the subject of EPA regulation, make sure you comply with the regulatory requirements, and you have considered your obligations to notify other parties who may be affected.

If you have any concerns, contact us and we may be able to offer you general advice, or direct you to accredited professionals who can assist with specific issues.

I am a prospective buyer of a site that appears on the list. What should I do?

You should seek advice from the vendor to put the contamination issue into perspective. You may need to seek independent expert advice.

The information provided in the list is meant to be indicative only, and a starting point for your own assessment. Site contamination as a legacy of past site uses is not uncommon, particularly in an urbanised environment. If the contamination on a site is properly remediated or managed, it may not materially impact upon the intended future use of the site. However, each site needs to be considered in context.

List of NSW Contaminated Sites Notified to the EPA

Disclaimer

The EPA has taken all reasonable care to ensure that the information in the list of contaminated sites notified to the EPA (the list) is complete and correct. The EPA does not, however, warrant or represent that the list is free from errors or omissions or that it is exhaustive.

The EPA may, without notice, change any or all of the information in the list at any time.

You should obtain independent advice before you make any decision based on the information in the list.

The list is made available on the understanding that the EPA, its servants and agents, to the extent permitted by law, accept no responsibility for any damage, cost, loss or expense incurred by you as a result of:

- 1. any information in the list; or
- 2. any error, omission or misrepresentation in the list; or
- 3. any malfunction or failure to function of the list;
- 4. without limiting (2) or (3) above, any delay, failure or error in recording, displaying or updating information.

Site Status	Explanation
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or <i>Protection of the Environment Operations Act 1997</i> . Alternatively, the EPA may require information via a notice issued under s77 of the <i>Contaminated Land Management Act 1997</i> or issue a Preliminary Investigation Order.
Regulation under CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the <i>Contaminated Land Management Act 1997</i> is not required.
Regulation being	The EPA has completed an assessment of the contamination and decided

finalised	that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's <u>Contaminated Land Public Record</u> .
Contamination currently regulated under POEO Act	Contamination is currently regulated under the <i>Protection of the Environment Operations Act 1997</i> (POEO Act). The EPA as <i>the appropriate regulatory authority</i> reasonably suspects that a pollution incident is occurring/ has occurred and that it requires regulation under the POEO Act. The EPA may use environment protection notices, such as clean up notices, to require clean up action to be taken. Such regulatory notices are available on the <u>POEO public register</u> .
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the <i>Environmental Planning and Assessment Act 1979</i> (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the <i>Protection of the Environment Operations Act 1997</i> (POEO Act).
Contamination was addressed via the planning process	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the

(EP&A Act)	Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record.

Suburb	Site Name	Site Address	Contamination Activity Type	EPA ManagementcClass	Latitude	Longitude
MARRICKVILLE	2 Carrington Road	2 Carrington ROAD	Unclassified	Regulation under CLM Act not required	-33.91596071	151.1597199
MARRICKVILLE	Cooks River Aqueduct	Thornley STREET	Unclassified	Contamination formerly regulated under the CLM Act	-33.92204604	151.1480332
MARRICKVILLE	Former Dry Cleaners and Loading Dock (adjacent Lot 1 DP612551)	Smidmore STREET	Other Industry	Contamination currently regulated under CLM Act	-33.90707592	151.171701
MARRICKVILLE	Former Mobil Service Station	384 Illawarra ROAD	Service Station	Regulation under CLM Act not required	-33.91534969	151.1506717
MARRICKVILLE	Mackey Park	Cnr Richardsons Crescent and Carrington ROAD	Landfill	Regulation under CLM Act not required	-33.9220263	151.1547903
MARRICKVILLE	RailCorp	361 Victoria ROAD	Other Industry	Regulation under CLM Act not required	-33.91404835	151.1557132
MARRICKVILLE	TRW Steering and Suspension	22-28 Carrington ROAD	Other Industry	Contamination formerly regulated under the CLM Act	-33.92012667	151.1566181
MARRICKVILLE	Woolworths Petrol Service Station 490 Illawarra ROAD Marrickville	490 Illawarra ROAD	Service Station	Regulation under CLM Act not required	-33.91845177	151.1459951
MARSDEN PARK	226 Grange Avenue	226 Grange AVENUE	Unclassified	Regulation under CLM Act not required	-33.70259609	150.83825
MARSFIELD	Coles Express Service Station Marsfield	189 Epping ROAD	Service Station	Regulation under CLM Act not required	-33.77519246	151.1053691
MARULAN	BP Express Marulan (Northbound) (Northbound) Hume HIGHWAY	(Northbound) Hume HIGHWAY	Service Station	Regulation under CLM Act not required	-34.7188332	149.9949547
MARULAN	BP Service Station	(Southbound) Hume HIGHWAY	Service Station	Regulation under CLM Act not required	-34.71932066	150.0014827
MARYVILLE	7-Eleven (former Mobil) Service Station	184-188 Hannell STREET	Service Station	Contamination currently regulated under CLM Act	-32.91336028	151.7579315
MASCOT	Caltex Service Station	125 O'Riordan STREET	Service Station	Regulation under CLM Act not required	-33.92309169	151.1911539
MASCOT	Former Mascot Galvanising	336-348 King STREET	Metal Industry	Contamination currently regulated under CLM Act	-33.92902126	151.185874
MASCOT	Former Shell Service Station Mascot	746 Botany ROAD	Service Station	Regulation being finalised	-33.92352295	151.1955852
MASCOT	Former Zinc Smelter and Paint Manufacturing Facility	163 O'Riordan STREET	Metal Industry	Regulation under CLM Act not required	-33.92526513	151.1892582
MASCOT	Heritage Business Centre	5-9 Ricketty STREET	Unclassified	Regulation under CLM Act not required	-33.92029202	151.1816656
MASCOT	Ing Industrial Fund (unoccupied Land and General Parking)	19-33 Kent ROAD	Landfill	Regulation under CLM Act not required	-33.922765	151.185262
MASCOT	Linear Park	Lot 2, 3, 4 & 5 in DP 85917	Landfill	Regulation under CLM Act not required	-33.92278693	151.1904751
MASCOT	Mascot Pioneer Plating	25-29 Ricketty STREET	Metal Industry	Contamination currently regulated under CLM Act	-33.92075288	151.1824801
MASCOT	Sokol Corporation	50-56 Robey STREET	Other Industry	Regulation under CLM Act not required	-33.93162265	151.1904955
MASCOT	Telstra Exchange	904-922 Botany ROAD	Other Industry	Regulation under CLM Act not required	-33.9293166	151.1942777
MATRAVILLE	7-Eleven Service Station Matraville	515 Bunnerong ROAD	Service Station	Regulation being finalised	-33.95943536	151.2317598

Appendix F

SafeWork
NSW Storage
of Hazardous
Chemicals
Search

Locked Bag 2906, Lisarow NSW 2252
Customer Experience 13 10 50
ABN 81 913 830 179 | www.safework.nsw.gov.au

Our Ref: D18/169299

10 August 2018

TRACE ENVIRONMENTAL Mr Ken Henderson PO Box 422 CAMPERDOWN NSW 1450

Dear Mr Henderson

RE SITE: 146-154 O'Riordan Street, MASCOT NSW 2020

I refer to your site search request received by SafeWork NSW on 3 August 2018 requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the above-mentioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email licensing@safework.nsw.gov.au

Yours sincerely

Customer Service Officer Customer Experience - Operations SafeWork NSW

Appendix G

Field Data
(Including Bore
Logs and
Groundwater
Sampling
Logs)

SB1

0.75 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

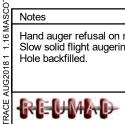
Project Name: **Environmental Site Assessment**

146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

1.16

Drill Company: **Epoca Environmental Pty Ltd**


Drill Method: CC to 0.175m, HA to 0.6m (refusal), SFA to 0.75m.

Date Started: 9/08/2018 Date Completed: 9/08/2018

nflow	m)	Sample		I Type	; Log	Symbol	Material Description	ency /	Φ	Observations / Comments
Water Inflow	Depth (m)	ID No.	PID ppm	Material Type	Graphic Log	USCS Symbol	waterial Description	Consistency / Density	Moisture	Observations / Comments
	_						CONCRETE SLAB.			
	0.18 0.2						FILL- SAND, yellow / brown, fine grained.	loose	dry	Cobbles and whole bricks at interface.
	0.30	SB1/0.3	0.0				FILL- Sandy FILL, black / brown.	loose	dry	Frequent gravels and cobbles, brick, concrete, glass, metal.
	_0.4			Ē					-	brick, concrete, glass, metal.
	_	SB1/0.5	0.0							
	_0.6									
J.com.au	0.75									
ww.reumac	_0.8						Refusal at 0.75m on possible concrete slab beneath car park (?)			
white at w	_									
vn by laurie	_1.0									
10:24:59 AM - drawn by laurie white at www.reumad.com.au	_									
	_1.2									
3DT 24/8/	_									
T.GPJ WSP.GDT 24/8/18	_1.4									

Hand auger refusal on multiple brick and concrete at 0.6m. Slow solid flight augering to $0.75 \, \mathrm{m}.$

Hole backfilled.

Log Drawn By: Laurie White

Contact: laurie.white@reumad.com.au

Logged By: Checked By: Jack Ellis

Date: 9/08/2018

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

Drill Method: HA to 0.25m. Date Started: 14/08/2018 Date Completed: 14/08/2018

Hole ID. SB4

Hole Depth: 0.25 m

GW Encountered:

Inflow	(m)	Sample		Material Type	c Log	USCS Symbol	Material Descriptic	on	Consistency / Density	ē	Observations / Comments
Water Inflow	Depth (m)	ID No.	PID ppm	Materia	Graphic Log	nscs	material Bosonpat	<i></i>	Consis	Moisture	oscorvatorio, commente
	0.05						MULCH.				
	0.10			=		-	FILL- TOPSOIL. Silty SAND, black.	ck / grey.	loose	dry dry	Frequent roots and organic material.
	_0.2	SB4/0.2	0.0	Ē			TILL OIL TO GAND, BIGA.		10030	ury	Frequent gravels & organics, woo roots.
	0.25						End of Hole at 0.25m				
							on frequent tree roots.				
	_0.4										
	-										
	_0.6										
	_										
	_0.8										
	_										
	_1.0										
	_										
	_1.2										
	_										
	_1.4										
_									<u> </u>		
	otes	- 1.60									
Н	ole b	ackfilled.									
6	RE	UMAD	Log [urie White urie.white@reumad.com.au	Logged By: Checked By:	Jack Ellis		Date: 14/08/2018 Date:

6.00 m

SB6 / MW2

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Monitoring Well Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

HA to 0.45m, SFA to 1m, PT to 5.1m, HFA to 6m. Drill Method:

Date Started: 9/08/2018 Date Completed: 9/08/2018

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	on	Consistency / Density	Moisture	Observations / Comments	Well Details	Well Construction
0 AM - drawn by laurie white at www.reumad.com.au	0.005 2.75 1.10 1.20 1.30 1.70 2.20 	SB6/0.4 SB6/1.0 SB6/1.25 SB6/2.0 SB6/2.6 SB6/3.0 SB6/3.2 SB6/3.9 SB6/4.0 SB6/4.8		Natural Fill Mate	Graf	OSN SP SP SP	BITUMEN. FILL- ROADBASE. FILL- SAND / GRAVEL / COBBL FILL- SANDY GRAVELLY, white FILL- SAND, orange / black. SAND- white / grey, fine grained. SAND- orange / brown. SAND- brown / light grey. SAND- black, fine grained.	e / grey.	loose loose loose loose loose loose	dry dry dry dry dry wet wet	Boulder at 0.45m, broken through with SFA. 1.5		را Gatio
AUG2018 1 1.16 MASCOT.GPJ WSP.GDT 24/8/18	ell ins	stalled.	Log [Drav	vn By:	La	End of Hole at 6.00m at target depth.	Logged By:	Backfill Jack Ellis		ientonite Gravel Pack Screen Date: 9/08/2018	Cave	-in

SB7 0.35 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

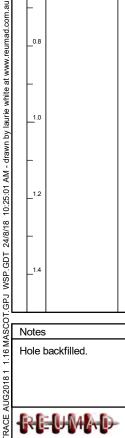
Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd


Drill Company: **Epoca Environmental Pty Ltd** Drill Method: CC to 0.12m, HA to 0.35m.

14/08/2018 Date Started: Date Completed: 14/08/2018

USCS Symbol Material Type Consistency / Density Sample Water Inflow Graphic Log Depth (m) Material Description Moisture Observations / Comments PID ID No. CONCRETE SLAB. 0.12 FILL- SAND, orange, fine grained. loose dry 0.17 Ē FILL- SAND / GRAVEL / COBBLE, brown, very loose dry coarse grained. SB7/0.25 0.0 End of Hole at 0.35m 0.4 on multiple coarse cobbles. 0.6

Notes

Hole backfilled.

Log Drawn By: Laurie White

Contact: laurie.white@reumad.com.au

Logged By: Checked By: Jack Ellis

Date: 14/08/2018

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd** Drill Method: CC to 0.135m, HA to 0.35m.

Date Started: 14/08/2018 Date Completed: 14/08/2018 Hole ID. SB8

0.35 m Hole Depth:

GW Encountered:

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	nc	Consistency / Density	Moisture	Observations / Comments
		SB8/0.15	0.0	₹			CONCRETE SLAB. FILL- SAND, orange / light brown FILL- SAND / GRAVEL / COBBL coarse grained.		loose	\ <u>dry</u> dry	Frequent cobbles.
		SB8/0.3	0.0				End of Hole at 0.35m on frequent refusals.				
	0.6										
	0.8										
	_1.2										
N H	_1.4										
H	otes lole ba	ackfilled.									
ſ	RE	UMAD	Log [urie White urie.white@reumad.com.au	Logged By: Checked By:	Jack Ellis		Date: 14/08/2018 Date:

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: Environmental Site Assessment

Project Number: 1.16

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: Epoca Environmental Pty Ltd

 Drill Method:
 HA to 0.35m.

 Date Started:
 14/08/2018

 Date Completed:
 14/08/2018

Hole ID. SB9

0.30 m

GW Encountered:

Hole Depth:

nflow	(m	Sample		I Type	c Log	Symbol	Material Description	ency /	ø	Observations / Comments
Water Inflow	Depth (m)	ID No.	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	Consistency / Density	Moisture	Observations / Comments
	_						FILL- TOPSOIL. Silty SAND, brown, fine grained.	loose	dry	
	_0.2			Fill						
	0.30	SB9/0.25	0.0							
	_0.4						Refusal at 0.30m on sand / gravel / cobbles (FILL).			
	_									
	_0.6									
	_									
ייבריטב רווו - מומאון של וממוף אווונים מי אאיינים ווממיינים ווימי	_0.8									
	_									
	_1.0									
(2										
10:01:0	_1.2									
	_1.4									

FRACE AUG2018 1 1.16 MASCOT.GPJ WSP.GDT 24/8/18 10:25:02 AM - drawn by laurie white at www.reumad.com.au

Notes

Hole backfilled.

REUMAD

Log Drawn By: Laurie White

Contact: laurie.white@reumad.com.au

Logged By: **Jack Ellis** Checked By:

Date: **14/**0

Date:

14/08/2018

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

Drill Method: HA to 1.1m. Date Started: 10/08/2018 Date Completed: 10/08/2018

Hole ID. **SB10**

1.10 m

GW Encountered:

Hole Depth:

Inflow	(m)	Sample		Material Type	Graphic Log	USCS Symbol	Material Descriptio	on.	Consistency / Density	<u> </u>	Observations / Comments
Water Inflow	Depth (m)	ID No.	PID ppm	Materi	Graphi	USCS	·		Consis Densit	Moisture	
	0.05				XXX		BITUMEN. FILL- ROADBASE.				
	0.15				\bowtie		TILL- NOADBAGE.				
	0.73						FILL- SAND & GRAVEL, light bro	own / grey.	loose	dry	Frequent rocks and concrete.
					\bowtie						
	-	SB10/0.3	0.0		\bowtie						
	_0.4				\bowtie						
	0.55	SB10/0.5	0.0		\bowtie						
	0.6			Fill			FILL- SAND, brown, fine grained.		loose	dry	
					\bowtie						
	-				\bowtie						
	_0.8				\bowtie						
					\bowtie						
ŀ	-				\bowtie						
	1.0				\bowtie						
					\bigotimes						
	1.10				XXX		Hole Terminated at 1.10m on potential service trench.				
	_1.2						on potential service trench.				
	-										
	_1.4										
N	otes		•	1							
N	ot cor	nfident to take i	risk wit	h pu	ush tu	ıbes	in potential service trench.				
Н	oie Da	ackfilled.									
fi	1	UMAD	Log [Draw	n By:	La	urie White	Logged By:	Jack Ellis		Date: 10/08/2018

6.00 m

Hole ID. SB11 / MW3

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Monitoring Well Log

Environmental Site Assessment

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

CC to 0.6m, HA to 0.3m (refusal), SFA to 1m, PT to 5.1m, HFA to 6m. Drill Method:

Date Started: 9/08/2018 Date Completed: 9/08/2018

Water Inflow)cnth (m)	(m)	Sample O No.	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	on	Consistency / Density	Moisture	Observations / Comments	Well Details	Well Construction
GPJ WSP,GDT 24/8/18 10:25:03 AM - drawn by laurie white at www.reumad.com.au		SB S	11/0.2 11/0.5 11/1.2 11/1.6 11/2.0 11/2.6 11/3.6 11/4.4 11/4.8 11/5.0	0.0 0.0 0.0	Natural		SP	CONCRETE SLAB. FILL- SAND & GRAVEL, orange FILL- SAND / GRAVEL / COBBL SAND- black / grey, fine grained. Black interval from 4.2 to 4.5m. End of Hole at 6.00m at target depth.		loose	moist wet	Frequent rocks, concrete, bitumen. 1.0 1.5 2.0		Screen Sand Bentonite Grout Gatiq
AUG2018 1 1.16 MA	Ne 							.3m. urie White	Logged By:	Backfill Jack Ellis		Bentonite Gravel Pack Screen Date: 9/08/2018	Cave-in	

0.40 m

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

Drill Method: HA to 0.4m. Date Started: 10/08/2018 Date Completed: 10/08/2018

Hole ID. **SB13**

GW Encountered:

Hole Depth:

Water Inflow	Depth (m)	Sample	PID	Material Type	Graphic Log	USCS Symbol	Material Description	nc	Consistency / Density	Moisture	Observations / Comments
× ×	De	ID No.	ppm	Ma	Gr	Sn			88	Mo	
	0.10						FILL- TOPSOIL. Silty SAND, bro	 wn / grey.	loose	dry	Frequent organics.
-	0.2			Ē			FILL- SILT / SAND / GRAVEL, b	rown / grey.	loose	dry	
	0.37 0.40	SB13/0.3	0.0				FILL- SAND, light brown.		loose	dry	
-	_						Hole Terminated at 0.40m on potential service trench.				
-	0.6										
-	_0.8										
-	1.0										
-	1.2										
-	1.4										
No	otes										
		ackfilled.									
G	4	UMAD	Log [urie White urie.white@reumad.com.au	Logged By: Checked By:	Jack Ellis		Date: 10/08/2018 Date:

SB14

10.00 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name:

Environmental Site Assessment

Project Number: Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

 $\rm HA\,to\,0.7m$ (refusal), SFA to 1m, PT to 3.9m, SFA to 10m. Drill Method:

Date Started: 10/08/2018 Date Completed: 9/08/2018

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	Consistency / Density	Moisture	Observations / Comments	
	0.11	SB14/0.2					CONCRETE SLAB.				
	0.40	QS2,QS2A SB14/0.4 SB14/0.5	0.0 0.4 0.0				FILL- SAND / GRAVEL / COBBLE, yellow / light brown. FILL- SAND / GRAVEL / COBBLE, black / brown.	loose	dry dry	Bricks, rocks, glass.	
	1.0	SB14/1.2	0.0	Fill							
		SB14/2.0	0.3								
	_ _ _ 2.80	SB14/2.5	0.0								
$\overline{\Delta}$	3.0	SB14/3.0 SB14/3.2	0.0			SP	SAND- black, fine grained. SAND- black, fine grained.	loose	moist		
www.reumad.com.au		SB14/3.8 SB14/4.0	0.0	Natural		SP SP	SAND- black, fine grained. SAND- black, fine grained.	loose loose	wet wet sat'd		
10:25:05 AM - drawn by laurie write at www.reumad.com.au	5.0	SB14/5.0	0.0								
		SB14/6.0	0.0			SP					
GFJ WSF.GD1 24/6/16		SB14/7.0	0.0								
	Notes										
Notes Hole backfilled. Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au Logged By: Jack Ellis Checked By: Date: 10/08/2018 Date:											
FACE ACC	RŒ	UMAD	Log [urie White Logged By: urie.white@reumad.com.au Checked By:	Jack Ellis	;	Date: 10/08/2018 Date:	

SB14

10.00 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name:

Environmental Site Assessment

Project Number: 1.16

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

 $\rm HA\,to\,0.7m$ (refusal), SFA to 1m, PT to 3.9m, SFA to 10m. Drill Method:

Date Started: 10/08/2018 Date Completed: 9/08/2018

Water Inflow	Depth (m)	Sample ID No.	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Descriptio	on	Consistency / Density	Moisture	Observations / Comments
							SAND- black, fine grained.(contin	nued)	loose	sat'd	
	8.0	SB14/8.0	0.0								
	9.0 	SB14/9.0	0.0	Natural		SP					
	10.0	⁰ SB14/10.0	0.0				End of Hole at 10.00m at target depth.				
an	_ _ _ _ _11	0					at target deptin.				
ww.reumad.com.											
10:25:05 AM - drawn by laurie white at www.reumad.com.au	12	0									
5 AM - drawn by	13	0									
24/8/18 10:25:0	14	0									
GPJ WSP.GDT	 - - -										
ASCOL:	Notes										
G2018 1 1.16 M/	Notes Hole backfilled. Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au Checked By: Date: 10/08/2018 Date: Tol. 10/08/2018 Date:										
TRACE AUG	Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au C								Logged By: Jack Ellis Date: 10/08/2018 Checked By: Date:		

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name:

Project Number:

Environmental Site Assessment

SB17 10.00 m

GW Encountered:

Hole ID.

Hole Depth:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

1.16

Drill Method: CC to 0.15m, HA to 0.9m (obstruction), SFA to 1.1m, PT to 3.9m, SFA to 10m

Date Started: 10/08/2018 Date Completed: 9/08/2018

Water Inflow	Depth (m)	Sample		Material Type	Graphic Log	USCS Symbol	Material Description	Consistency / Density	inre	Observations / Comments
Wate	Dept	ID No.	PID ppm	Mate	Grapl	nsc		Cons	Moisture	
_	0.15	SB17/0.2	0.0				CONCRETE SLAB.			
	0.45				\bowtie		FILL- SAND, light brown.	loose	moist	Occasional gravel.
	0.65	SB17/0.5	0.0		\bowtie		FILL- SAND / GRAVEL / COBBLE, light brown.	loose	dry	
ŀ	-				\bowtie		FILL- SAND / GRAVEL / COBBLE, black / brown.	loose	dry	
ŀ	1.0	SB17/1.0	0.0		\bowtie					
ŀ	1.30 1.40	SB17/1.2	0.0	_	\bowtie					
ŀ	1.40			昰			FILL- Clayey SAND, brown.	loose	moist	7
ŀ	1.70	SB17/1.6			\bowtie		FILL- SAND, brown.	loose	moist	
Ī	2.0	SB17/1.9			\bowtie		FILL- Sandy CLAY, brown / black.	soft	moist	Poor returns.
Ī					\bowtie					
					\bowtie					
$_{ abla} $	2.70				\bowtie					
┷	2.70						SAND- black.	loose	wet	No returns 2.7-3.6m.
-	3.0									
-	-									
ŀ	-									
ŀ	-									
ł	4.0	SB17/3.8	0.0							
ŀ	_4.0									
İ										
	5.0	SB17/5.0	0.0	<u>a</u>						
ļ	_	GB1770.0	0.0	Natural		SP				
ļ	_			_						
ļ	_									
-	-									
ŀ	6.0	SB17/6.0	0.0							
ł	-									
ł	-									
ŀ	-									
İ	7.0	CD47/7.0	0.0							
Į		SB17/7.0	0.0							
					Landa A					
N	otes									
Н	ole ba	ackfilled.								
_							1			
		UMAD	Log [)raw	n Rv	lэ	urie White Logged By:	Jack Ellis		Date: 10/08/2018

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name:

Project Number:

Environmental Site Assessment

Hole Depth:

Hole ID.

SB17 10.00 m

GW Encountered:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

Drill Method: CC to 0.15m, HA to 0.9m (obstruction), SFA to 1.1m, PT to 3.9m, SFA to 10m

Date Started: 10/08/2018 Date Completed: 9/08/2018

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	no	Consistency / Density	Moisture	Observations / Comments
^			ppiii	2	0	٦			00	2	
	8.0	SB17/8.0	0.0				SAND- black.(continued)		loose	wet	
		SB17/9.0	0.0	Natural		SP					
		SB17/10.0	0.0				End of Hole at 10.00m at target depth.				
Z I											
	15.0										
H	otes ole b	ackfilled.									
Ð	RE	UMAD	Log [urie White urie.white@reumad.com.au	Logged By: Checked By:	Jack Ellis	;	Date: 10/08/2018 Date:

1.00 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd** Drill Method: HA to 0.6m (refusal), SFA to 1m.

Date Started: 10/08/2018 Date Completed: 10/08/2018

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Descripti	on	Consistency / Density	Moisture	Observations / Comments
	0.14	SB18/0.2			20,20,00		CONCRETE SLAB. FILL- SAND / GRAVEL / COBBL	.E, light brown.	loose	dry	Brick, concrete.
		SB18/0.6					FILL- SAND / GRAVEL / COBBL	.E, black / brown.	loose	dry	
	1.00	SB18/1.0					Hole Terminated at 1.00m on brick - potential service.				
-	otes ID we	ent flat prior to u ackfilled.	use.								
Ð	R (E	UMAD	Log [urie White ırie.white@reumad.com.au	Logged By: Checked By:	Jack Ellis		Date: 10/08/2018 Date:

3.90 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

Drill Method: HA to 0.6m (obstruction), SFA to 1m, PT to 3.9m.

Date Started: 8/08/2018 Date Completed: 8/08/2018

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description		Consistency / Density	Moisture	Observations / Comments
Water	0.05 0.05 0.15 	SB19/0.2 SB19/0.8 SB19/1.5	0.0 0.8	Fill	Graph	sosn	BITUMEN. FILL- ROADBASE. FILL- Silty SAND, black / brown.		Consi	dry	Frequent rock, slag gravel, cobbles.
1 24/0/10 10.23.00 AIM - utawii by taure wille at www.reunlau.com.au	3.0 - - - - - - - - - - - - -	SB19/3.2 SB19/3.7		Natural		SM	End of Hole at 3.90m at target depth.		loose	damp	
A062010 1 181MF		ackfilled.	Log [Logged By: Checked By:	Jack Ellis		Date: 8/08/2018 Date:

12.00 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name:

Project Number:

Location / Site:

Environmental Site Assessment

146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

HA to 0.6m (refusal), SFA to 1m, PT to 3.9m, SFA to 12m. Drill Method:

Date Started: 8/08/2018 Date Completed: 8/08/2018

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	on	Consistency / Density	Moisture	Observations / Comments
	_0.10 	SB20/0.3	0.0				√ FILL- TOPSOIL. Silty SAND, bro FILL- SILT & SAND, black.	wn	loose	\dry/ dry	Frequent gravels, metal slag, concrete, glass.
	1.0 1.25	SB20/1.0	0.0	E			FILL- yellow / brown / grey.		donos	dry	Congrete and brick
	1.50 - - 2.00	SB20/1.5	0.0				FILL- yellow.		dense	dry	Concrete, sand, brick. Brick.
	2.30	SB20/2.2	0.0				FILL- SAND, grey, fine grained.		loose	dry	
∇	1 1	SB20/2.4	0.0		\bowtie		FILL- SAND, black, fine grained.		loose	dry	
		SB20/2.6	0.0				SAND - orange, fine grained.		loose	dry	
	_3.0 _	SB20/3.0	0.0			SP					
ww.reumad.com.au		SB20/3.8	0.0				SAND- black, fine grained.		loose	wet	
10:25:09 AM - drawn by laurie white at www.reumad.com.au		SB20/5.0	0.0	Natural		SP					
		SB20/6.0	0.0								
.GPJ WSP.GDT 24/8/18		SB20/7.0	0.0								
50 50 50 50 50 50 50 50 50 50 50 50 50 5	7.50		1		[633]						
MAS	lotes	ackfillad									
RACE AUG2018 1 1.16 MASCOT.	ioie d	ackfilled.									
RACE AUG	RC	UMAD	Log [urie White ırie.white@reumad.com.au	Logged By: Checked By:	Jack Ellis		Date: 8/08/2018 Date:

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name:

Project Number:

Environmental Site Assessment

Hole Depth:

Hole ID.

SB20 12.00 m

GW Encountered:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

1.16

HA to 0.6m (refusal), SFA to 1m, PT to 3.9m, SFA to 12m. Drill Method:

Date Started: 8/08/2018 Date Completed: 8/08/2018

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	ı	Consistency / Density	Moisture	Observations / Comments
					2 32.3						
	- 8.0 -	SB20/8.0	0.0				SAND- grey.		loose	wet	
		SB20/9.0	0.0								
	_ _10.0 	SB20/10.0	0.0	Natural		SP					
w.reumau.com.au		SB20/11.0	0.0								
10.25.09 AM - Grawri by laurie write at www.jeuriad.com.au							End of Hole at 12.00m at target depth.				
.5.09 AIM - diawii p	13.0 										
GD1 24/0/10 10.2	14.0 										
- GP3 Way	15.0										
N H	otes lole b	ackfilled.									
LACE ACC.	R (E	UMAD	Log [urie White urie.white@reumad.com.au	Logged By: J Checked By:	Jack Ellis		Date: 8/08/2018 Date:

0.80 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: Environmental Site Assessment

Project Number: 1.16

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: Epoca Environmental Pty Ltd

Drill Method: HA to 0.7m (refusal), SFA to 0.8m.

Date Started: 13/08/2018

Date Completed: 13/08/2018

Water Inflow	(m)	Sample		Material Type	ic Log	USCS Symbol	Material Description	Consistency / Density	Ire	Observations / Comments
Water	Depth (m)	ID No.	PID ppm	Materi	Graphic Log	nscs	· ·	Consis	Moisture	
	0.20	SB21/0.15	0.0				FILL- TOPSOIL. Silty SAND, brown.	loose	dry	Frequent organics, gravels and cobbles.
	_						FILL- Silty SAND, brown.	loose	dry	Gravels, cobbles, brick, rock.
	_0.4	SB21/0.4		≣	$\overset{\sim}{\otimes}$					
	-	SB21/0.5								
20.50	0.6 	SB21/0.8								
	_	6B2 II 6.6					Refusal at 0.80m on concrete.			
	1.0									
20.02.01	_1.2									
	_1.4									

Note

FRACE AUG2018 1 1.16 MASCOT.GPJ WSP.GDT 24/8/18 10:25:10 AM - drawn by laurie white at www.reumad.com.au

Hand auger refusal on multiple rocks at 0.7m. Hole backfilled.

Log Drawn By: Laurie White

Contact: laurie.white@reumad.com.au

Logged By: Checked By: Jack Ellis

Date: 13/08/2018

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd** HA to 1m, PT to 5m, SFA to 7m. Drill Method:

Date Started: 13/08/2018 Date Completed: 13/08/2018 Hole ID. SB22 / MW4

7.00 m Hole Depth:

GW Encountered:

Water Inflow	Depth (m)	S ID No.	ample PID	LEL %	O ₂ %	Material Type	Graphic Log	USCS Symbol	Material Description	Consistency / Density	Moisture	Observations / Comments	Well Details	Well Construction
	0.20 	SB22/0.1 SB22/0.5 SB22/0.9 SB22/1.0 SB22/1.3 SB22/2.0 SB22/2.0	0.0 0.0 0.0	LEL %	O ₂ %	Fill Materia	Graphic Graphic	SSSN M P P	FILL- SILT / SAND / GRAVEL / COBBLE, brown / black. FILL- SAND / GRAVEL / COBBLE, grey / black. Silty SAND- grey / brown, fine grained. SAND- brown / orange, fine grained. - grey / white band at 2.4-2.5m. SAND- light brown.	loose loose loose	dry dry dry moist			Bentonite Grout Gatid
GP3 WPF.GD1 24/6/18 10:2/ 41 AM - drawn by laure wnite ar www.reumad.com.au	4.0 4.0 5.0 	SB22/4.0 SB22/5.0 SB22/6.0 QS3, QS3A	0.0			Natural		SP	SAND- grey / brown.	loose	wet			Screen Sand
AUGZU18 Z 1.18 MASCOL	Notes Vell in	SB22/7.0	Log [Drawn E	By: La	urie	White	•	End of Hole at 7.00m at target depth. Logged By:	Backfill Jack Ellie		Bentonite Gravel Pack Screen Date: 13/08/201	Cave-ir	

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

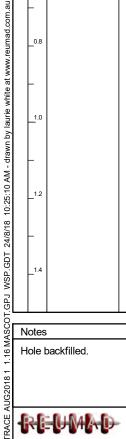
Project Name: **Environmental Site Assessment**

Project Number: 1.16

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd** CC to 0.156m, HA to 0.45m. Drill Method:


Date Started: 14/08/2018 Date Completed: 14/08/2018 Hole ID. **SB23** Hole Depth: 0.45 m

GW Encountered:

Water Inflow	(m)	Sample		Material Type	Graphic Log	USCS Symbol	Material Description	Consistency / Density	Ire	Observations / Comments
Water	Depth (m)	ID No.	PID ppm	Materi	Graph	nscs		Consis Densit	Moisture	
	_						CONCRETE SLAB.			
	0.16 0.20	SB23/0.2	0.0		\bigotimes		FILL- SAND, orange, fine grained.	loose	dry	
		SB23/U.2	0.0	≣			FILL- SAND / GRAVEL / COBBLE, brown, very coarse gravel.	loose	dry	
	_0.4	SB23/0.4	0.0							
	0.45	OB25/0.4	0.0		\bowtie					
	_						Refusal at 0.45m on very coarse multiple cobbles.			
	_0.6									
	_									
	_0.8									
	_									
	1.0									
	-									
	_1.2									
	_									
	_1.4									

Notes

Hole backfilled.

Log Drawn By: Laurie White

Contact: laurie.white@reumad.com.au

Logged By: Checked By: Jack Ellis

Date: 14/08/2018

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd** Drill Method: CC to 0.116m, HA to 0.35m.

Date Started: 14/08/2018 Date Completed: 14/08/2018 Hole ID. **SB24**

0.35 m Hole Depth:

GW Encountered:

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Descriptio	on	Consistency / Density	Moisture	Observations / Comments
MACCOL GPT3 WSP. GDT 24/6/18 10:25:11 AM - drawn by Taurie write at www.reumad.com.au	0.12 0.20 -0.35 -0.4 -0.6 -0.8 -1.0 -1.2		PID ppm	Fill Material T	Graphic Lo	USCS Syn	CONCRETE SLAB. FILL- SAND, orange / brown, fine FILL- SAND / GRAVEL / COBBL Refusal at 0.35m on very large white cobble. Could moved.	e grained. E, brown.	Consistence	dry dry	Observations / Comments
1	RE	UMBO	Log [urie White ırie.white@reumad.com.au	Logged By: Checked By:	Jack Ellis		Date: 14/08/2018 Date:

0.30 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

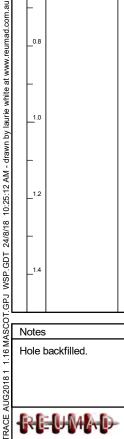
Borehole Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd


Drill Company: **Epoca Environmental Pty Ltd** Drill Method: CC to 0.116m, HA to 0.3m.

Date Started: 14/08/2018 Date Completed: 14/08/2018

_							1,100,2010			
<u>×</u>		Sample		ype	b G	loqu		/ kc		
Water Inflow	Depth (m)	ID No.	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	Consistency / Density	Moisture	Observations / Comments
>	ă		ppm	Σ	Ō	Š		ŏĞ	Σ	
							CONCRETE SLAB.			
	0.12				×					
	0.20			Ē			FILL- SAND, orange / brown, fine grained.	loose	dry	
	0.30		0.0		\bigotimes		FILL- SAND / GRAVEL / COBBLE, brown.	loose	dry	
	0.4						Refusal at 0.30m on very large cobble, larger than hole.			
	_0.4									
	_									
	_0.6									
	_									
	_0.8									
	_									
	1.0									
,										
	-									
	_1.2									
	_									
	_1.4									

Notes

Hole backfilled.

Log Drawn By: Laurie White

Contact: laurie.white@reumad.com.au

Logged By: Checked By: Jack Ellis

Date: 14/08/2018

10.00 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number: 1.16

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

Drill Method: CC to 0.12m, HA to 0.3m (refusal), SFA to 10m.

Date Started: 10/08/2018 Date Completed: 10/08/2018

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Descriptio	n	Consistency / Density	Moisture	Observations / Comments
	0.12				8 10 VVV		CONCRETE SLAD				
	0.50	SB26/0.2	0.0				CONCRETE SLAB. FILL- SAND / GRAVEL / COBBL brown.	E, yellow / light	loose	dry	Concrete, rock, organics (wood).
	0.70	SB26/0.5					FILL- SAND, brown, fine grained	·	loose	dry	
		SB26/1.0	3.9	Œ			FILL- Sandy Gravelly CLAY, blac plasticity.	к, medium	soft	humid	
	1.50	SB26/1.5-2.0	8.3				FILL- Clayey SAND & GRAVEL,	black.	loose	dry	Moderate hydrocarbon odour.
$\overline{\Delta}$	2.00	SB26/2.0	7.3				SAND- black, fine grained.		loose	wet	Hydrocarbon odour.
	3.0	SB26/3.0	6.4								
	4.0 	SB26/4.0	8.5			SP					
	5.0 	SB26/5.0	8.9	Natural							
		SB26/6.0	5.5				SAND- brown.		loose	wet	Organic odour.
		SB26/7.0	2.7			SP					
N	otes				E/A	<u> </u>					
N H	o pu: lole b	sh tube due to r packfilled.	noise ir	nsid	le buil	ding	with workers.				
-6	RE	UMAD	Log [urie White urie.white@reumad.com.au	Logged By: Checked By:	Jack Ellis	;	Date: 10/08/2018 Date:

10.00 m

Hole ID.

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Borehole Log

Project Name: **Environmental Site Assessment**

Project Number: 1.16

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

Drill Method: CC to 0.12m, HA to 0.3m (refusal), SFA to 10m.

Date Started: 10/08/2018 Date Completed: 10/08/2018

Water Inflow	Depth (m)	Sample	PID ppm	Material Type	Graphic Log	USCS Symbol	Material Description	חכ	Consistency / Density	Moisture	Observations / Comments
		SB26/8.0	2.0				SAND- brown.(continued)		loose	wet	
	9.0	SB26/9.0		Natural		SP					
		SB26/10.0	0.0				End of Hole at 10.00m at target depth.				
at www.reumad.com.au	11.0										
10:25:13 AM - drawn by laurie write at www.reumad.com.au											
<u> </u>	lotes lo pus	sh tube due to rackfilled.	noise ir	nsid	e buil	ding	with workers.				
FACE AUGZ0181		UMAD		Drav	vn By:	La	urie White ırie.white@reumad.com.au	Logged By: Checked By:	Jack Ellis	i	Date: 10/08/2018 Date:

6.00 m

Hole ID. SB27 / MW1

Hole Depth:

GW Encountered:

TRACE Environmental

Shop 2, 793-799 New Canterbury Road Dulwich Hill, NSW 2203 www.traceenviro.com enquiries@traceenviro.com

Monitoring Well Log

Project Name: **Environmental Site Assessment**

Project Number:

Location / Site: 146-154 O'Riordan Street, Mascot NSW

Client: JKN Park Pty Ltd

Drill Company: **Epoca Environmental Pty Ltd**

Drill Method: HA to 1.1m (refusal on slag), PT to 3.9m, SFA to 6m.

Date Started: 8/08/2018 Date Completed: 8/08/2018

Water Inflow	Depth (m)	ID No.	PID ppm	LEL %	O ₂ %	Material Type	Graphic Log	USCS Symbol	Material D	escription	Consistency / Density	Moisture	Observations / Comments	Well Details
	0.05 _0.15	SB27/0.2 SB27/0.5	0.0						BITUMEN. FILL- ROADBASE. FILL- Silty SAND, to slightly clayey.		loose	dry	Frequent slag gravel, brick, concrete.	1 1 2
	1.0 	SB27/1.0 SB27/1.5	0.0			Ē			NO RETURNS- like	lly sand.	very soft /		Push tubes push aside whilst advancing.	✓ tro
											10000		20	
<u></u>	_	SB27/3.1 SB27/3.8 QS1, QS1A	0.0					SP	SAND- brown, occa pockets, fine graine	asional black d.	loose	dry		\
	3.90 4.0 5.0	SB27/5.0	0.0			Natural		SP	SAND- black / grey	, fine grained.	loose	wet		
	- 6.00 - - -	SB27/6.0	0.0						End of Hole at 6.00 at target depth.	0m				
N	otes	nstalled.												
ſ	RE	UMAD	Log E	Orawn B					ımad.com.au	Logged By: Checked By:	Backfill Jack Ellis		Bentonite Gravel Pack Screen Date: 8/08/2018 Date:	Cave-in

Well Gauging Sheet - 146-154 O'Riordan Street, Mascot

Monitoring Well ID	Diameter	Total Well Depth	LNAPL	Depth to Water	TOC Elevation	WT Elevation	Calculated LNAPL Thickness	Colour	Purged Volume	Electrical Conductivity	Solids	Dissolved Oxygen DO	рН	Redox ORP	Comments
	(mm)	(mBTOC)	(mBTOC)	(mBTOC)	mAHD	mAHD	(m)		(L)	EC (uS/cm)	TDS (mg/L)	(mg/L)	(pH unit)	(mV)	
MW-1	50	5.756	-	3.682	8.40	4.718	-	Brown	5	1100	737	6.28	5.65	348.5	No odour, no sheen, high turbidity.
MW-2	50	5.870	-	4.058	8.115	4.057	-	Yellow	5	1100	737	7.03	7.21	-197.6	No odour, no sheen, low turbidity.
MW-3	50	5.729	-	3.781	8.805	5.024	-	Yellow/brown	5	1200	804	5.06	5.29	377.8	No odour, no sheen, Medium turbidity.
MW-4	50	6.866	-	4.596	8.135	3.539	-	Yellow	5	2100	1407	5.24	6.04	137.8	No odour, no sheen, low turbidity.

Notes:

"MW-#" Groundwater Monitoring Well

"TPMW-#" Tank Pit Monitoring Well

LNAPL - Light Non-Aqueous Phase Liquid

mBTOC - metres below top of casing mbgs - metres below ground surface

TOC - Top of Casing (metres Australian Height Datum)

WT - Water Table (metres Australian Height Datum)

Monitoring wells gauged on 15 August 2018

MONITORING WELL SAMPLING LOG

ENVIRONMENTAL

Well Head Condition:	Monitor Well No:	Start Time:	Site Address:	Date:
New	72)	= 50	154 o' RiardonSt	18/8/18
Recorded by:	Sampling Method:	Finish Time:	Mascot	Project No:
2	Conclow	16-13	5	1.16

H = High

M = Medium

L = Low

X = Not present Y = Yes

 $N = N_0$

Note: Do not smell for HC odour, however, inadvertent observations should be noted.

All ACT sites must be tested for ethanol.

Field Observations

	1								5	
brown	High	7	5	7	5.756	1	3:682	(R	くど
Physical Observations Colour, LNAPL colour, other odours, etc.	Turbidity	Sheen T	HC Odour	Sample Filtered	Total Well Depth (mbtoc)	LNAPL Thickness (m)	Depth to Water (mbtoc)	Depth to LNAPL (mbtoc)	Well Diameter (mm)	WellID

1204	12.01	1.59	1.56	11.53	Time
V	خ	W	2	_	Volume Purged (L)
23.4	23.6	23.4	23.3	23.6	Temp (°C)
1 ·)	1,1	1,2		7.7	Electrical Cond (EC) (µS/cm)
6.28	6-64	6.00	7.03	7/18	Dissolved Oxygen (DO) (mg/L)
0.65	0,62	大大	6.21	17.5	pН
3 48.5	3/18/1	3663	2/18/12	356,0	Redox Potential (ORP) (mV)
3-70)	104.2	3.700	3.699	2,600.	DE
					Comments
		· C			
			· 4.		ZAN.

QWI/QWIR

MONITORING WELL SAMPLING LOG

ENVIRONMENTAL

Monitor Well No:	Start Time:	Site Address:	Date:
MW	J9.58	1sti c'Ilindan St	15/8/18
Sampling Method:	Finish Time:	Mascor	Project No:
low how	10:36		1.16

H = High

M = Medium

L = Low

X = Not present Y = Yes $N = N_0$

inadvertent observations should be noted. Note: Do not smell for HC odour, however,

All ACT sites must be tested for ethanol.

Field Observations

Well Head Condition:

Recorded by:

10 low Colour	33	'C	Z	7	5.876	1	U.058	1	20	とそと
Physical Observations Colour, LNAPL colour, other odours, etc.	Turbidity	Sheen	HC Odour	Sample Filtered	Total Well Depth (mbtoc)	LNAPL Thickness (m)	Depth to Water (mbtoc)	Depth to LNAPL (mbtoc)	Well Diameter (mm)	Well ID

1014	10 17	10.08	10.05	10.01	Time
η.	Ú	S	2		Volume Purged (L)
(-)	20:3	20.1	19.6	19.2	Temp (°C)
1.1	3	1.7	1-	1.	Electrical Cond (EC)
203	38 t	りとこれ	813	8.39	Dissolved Oxygen (DO) (mg/L)
7.21	7.36	7.39	7.36	22.4	рН
- 197.6	- 174.5	- 186.5	-205.9	-199.6	Redox Potential (ORP) (mV)
4.093m	4.085-	4.082	mt 40. N	~ たたり・ り	DIVA
					Comments

MONITORING WELL SAMPLING LOG

п	670
Z	
=	
9	
ONME	The state of the s
2	
-	

Monitor Well No:	Start Time:	Site Address:	Date:
Mws	10.56	124 O' Knordon St	15/8/18
Sampling Method:	Finish Time:	Macch	Project No:
157	23	i i	1.16

H = High	
M = Medium	
L = Low	

X = Not present Y = Yes

N = No

Note: Do not smell for HC odour, however, inadvertent observations should be noted.

All ACT sites must be tested for ethanol.

Field Observations

Well Head Condition:

Recorded by:

Tellow / nown	Mod	7	>	7	5.200	1	3.781	(SO	MUZ
Physical Observations Colour, LNAPL colour, other odours, etc.	Turbidity	Odour Sheen	HC Odour	Sample Filtered	Total Well Depth (mbtoc)	LNAPL Thickness (m)	Depth to Water (mbtoc)	Depth to LNAPL (mbtoc)	Well Diameter (mm)	Well ID

	11.16	11.16	17	8071	10.1	Time
	SE.	1.1	W	2	_	Volume Purged (L)
	21.2	21.2	21.4	N, 12	21.6	Temp (°C)
	1.2	1.7	ーン	1.7	1.2	Electrical Cond (EC) (μS/cm)
	5.06	5.26	54.5	115.85	6.81	Dissolved 0xygen (D0) (mg/L)
	5,29	5:44	£8.5	27.5	5, 56	рĦ
	3.77.8	818	346.2	296.6	4.904	Redox Potential (ORP) (mV)
	3.792	3.792	3797	164.5.	68 E.S.	DTW
						Comments
	ر ،					

MONITORING WELL SAMPLING LOG

ENVIRONMENTAL

Monitor Well No:	Start Time:	Site Address:	Date:
MWY	82.71	184 O'Riardon	18/18/18
Sampling Method:	Finish Time:	St, Mass con	Project No:
lowther			1.16

H = HighM = MediumL = Low

X = Not present Y = Yes

N = No

Note: Do not smell for HC odour, however,

inadvertent observations should be noted.

All ACT sites must be tested for ethanol.

Field Observations

Well Head Condition:

Recorded by:

	,				
11.5	1247	1239	12.36	28.0	Time
3	7	2	7)	Volume Purged (L)
20.8	8.00	8.08	70.7	4:05	Temp (°C)
<u>i</u>	2.1	2	2	8.1	Electrical Cond (EC) (µS/cm)
5.24	4.66	3.90	34.5	5.55	Dissolved Oxygen (DO) (mg/L)
6.04	5.89	6.09	6.30	6.10	рН
137.8	18.9	₩ ₩	III, &	191.1	Potential (ORP) (mV)
4.611	4.610	4.609	6.607	4.605	DTW
					Comments

Appendix H

Laboratory Analytical Reports

Certificate of Analysis

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill NSW 2203 lac MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Jack Ellis

 Report
 612025-S

 Project name
 MASCOT

 Project ID
 1.16

Received Date Aug 13, 2018

Client Sample ID			SB1/0.3	SB1/0.5	SB6/0.4	SB6/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16412	S18-Au16413	S18-Au16414	S18-Au16415
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	< 20
TRH >C10-C16	50	mg/kg	< 50	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	< 50
TRH >C16-C34	100	mg/kg	< 100	-	-	160
TRH >C34-C40	100	mg/kg	< 100	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	160
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	-	< 20
TRH C10-C14	20	mg/kg	< 20	-	-	< 20
TRH C15-C28	50	mg/kg	< 50	-	-	74
TRH C29-C36	50	mg/kg	< 50	-	-	100
TRH C10-36 (Total)	50	mg/kg	< 50	-	-	174
BTEX	·					
Benzene	0.1	mg/kg	< 0.1	-	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	131	-	-	108
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.1-Dichloroethene	0.5	mg/kg	< 0.5	-	-	-
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	-	-
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	-	-
1.2-Dibromoethane	0.5	mg/kg	< 0.5	-	-	-
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	-
1.2-Dichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.2-Dichloropropane	0.5	mg/kg	< 0.5	-	-	-
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	-	-	-
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	-	-	-

Client Sample ID			SB1/0.3	SB1/0.5	SB6/0.4	SB6/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16412	S18-Au16413	S18-Au16414	S18-Au16415
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit				
Volatile Organics						
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	-
1.3-Dichloropropane	0.5	mg/kg	< 0.5	-	-	-
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	-	-	-
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	-
2-Butanone (MEK)	0.5	mg/kg	< 0.5	-	-	-
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	-	-	-
4-Chlorotoluene	0.5	mg/kg	< 0.5	-	-	-
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	-	-	-
Allyl chloride	0.5	mg/kg	< 0.5	-	-	-
Benzene	0.1	mg/kg	< 0.1	-	-	-
Bromobenzene	0.5	mg/kg	< 0.5	-	-	-
Bromochloromethane	0.5	mg/kg	< 0.5	-	-	-
Bromodichloromethane	0.5	mg/kg	< 0.5	-	-	-
Bromoform	0.5	mg/kg	< 0.5	-	-	-
Bromomethane	0.5	mg/kg	< 0.5	-	-	-
Carbon disulfide	0.5	mg/kg	< 0.5	-	-	-
Carbon Tetrachloride	0.5	mg/kg	< 0.5	-	-	-
Chlorobenzene	0.5	mg/kg	< 0.5	-	-	-
Chloroethane	0.5	mg/kg	< 0.5	-	-	-
Chloroform	0.5	mg/kg	< 0.5	-	-	-
Chloromethane	0.5	mg/kg	< 0.5	-	=	-
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	-	=	-
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	-	=	-
Dibromochloromethane	0.5	mg/kg	< 0.5	-	=	-
Dibromomethane	0.5	mg/kg	< 0.5	-	-	-
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
lodomethane	0.5	mg/kg	< 0.5	-	-	-
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
Methylene Chloride	0.5	mg/kg	< 0.5	-	=	-
o-Xylene	0.1	mg/kg	< 0.1	-	=	-
Styrene	0.5	mg/kg	< 0.5	-	=	-
Tetrachloroethene	0.5	mg/kg	< 0.5	-	=	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	-	-	-
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	-	-	-
Trichloroethene	0.5	mg/kg	< 0.5	-	-	-
Trichlorofluoromethane	0.5	mg/kg	< 0.5	-	-	-
Vinyl chloride	0.5	mg/kg	< 0.5	-	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	-
Total MAH*	0.5	mg/kg	< 0.5	-	-	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	-	-	-
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	-	-	-
4-Bromofluorobenzene (surr.)	1	%	131	-	-	-
Toluene-d8 (surr.)	1	%	115	-	-	-

Client Sample ID			SB1/0.3	SB1/0.5	SB6/0.4	SB6/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16412	S18-Au16413	S18-Au16414	S18-Au16415
				1		
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		T				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	2.2	-	1.0
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	2.5	-	1.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	2.7	-	1.5
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	0.7	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	1.7	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	1.7	-	0.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	1.3	-	0.6
Benzo(g.h.i)perylene	0.5 0.5	mg/kg	< 0.5	1.0	-	< 0.5 0.6
Benzo(k)fluoranthene Chrysene	0.5	mg/kg	< 0.5 < 0.5	1.5	-	0.6
Dibenz(a.h)anthracene	0.5	mg/kg mg/kg	< 0.5	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	3.0	-	0.9
Fluorene	0.5	mg/kg	< 0.5	< 0.5		< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	0.8	-	0.6
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	3.1	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	3.1	-	1.0
Total PAH*	0.5	mg/kg	< 0.5	18.9	_	5.2
2-Fluorobiphenyl (surr.)	1	%	94	121	_	107
p-Terphenyl-d14 (surr.)	1	%	106	103	_	113
Organochlorine Pesticides	'	70	100	100		110
Chlordanes - Total	0.1	mg/kg	_	0.1	< 0.1	_
4.4'-DDD	0.05	mg/kg	_	< 0.05	< 0.05	_
4.4'-DDE	0.05	mg/kg	_	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	_	< 0.05	< 0.05	-
a-BHC	0.05	mg/kg	_	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	_	< 0.05	< 0.05	-
b-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.05	-
Methoxychlor	0.05	mg/kg	-	< 0.05	< 0.05	-
Toxaphene	1	mg/kg	-	< 1	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	0.1	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	0.1	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	105	119	-
Tetrachloro-m-xylene (surr.)	1	%	-	77	84	-

	I	T		T	T	T
Client Sample ID			SB1/0.3	SB1/0.5	SB6/0.4	SB6/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16412	S18-Au16413	S18-Au16414	S18-Au16415
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	< 0.2	< 0.2	-
Bolstar	0.2	mg/kg	=	< 0.2	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	=	< 0.2	< 0.2	-
Chlorpyrifos	0.2	mg/kg	-	< 0.2	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	< 0.2	-
Coumaphos	2	mg/kg	-	< 2	< 2	-
Demeton-S	0.2	mg/kg	=	< 0.2	< 0.2	-
Demeton-O	0.2	mg/kg	-	< 0.2	< 0.2	-
Diazinon	0.2	mg/kg	-	< 0.2	< 0.2	-
Dichlorvos	0.2	mg/kg	-	< 0.2	< 0.2	-
Dimethoate	0.2	mg/kg	-	< 0.2	< 0.2	-
Disulfoton	0.2	mg/kg	-	< 0.2	< 0.2	-
EPN	0.2	mg/kg	-	< 0.2	< 0.2	-
Ethion	0.2	mg/kg	-	< 0.2	< 0.2	-
Ethoprop	0.2	mg/kg	-	< 0.2	< 0.2	-
Ethyl parathion	0.2	mg/kg	-	< 0.2	< 0.2	-
Fenitrothion	0.2	mg/kg	_	< 0.2	< 0.2	-
Fensulfothion	0.2	mg/kg	-	< 0.2	< 0.2	-
Fenthion	0.2	mg/kg	-	< 0.2	< 0.2	-
Malathion	0.2	mg/kg	-	< 0.2	< 0.2	-
Merphos	0.2	mg/kg	-	< 0.2	< 0.2	-
Methyl parathion	0.2	mg/kg	-	< 0.2	< 0.2	-
Mevinphos	0.2	mg/kg	-	< 0.2	< 0.2	-
Monocrotophos	2	mg/kg	-	< 2	< 2	-
Naled	0.2	mg/kg	-	< 0.2	< 0.2	-
Omethoate	2	mg/kg	-	< 2	< 2	-
Phorate	0.2	mg/kg	-	< 0.2	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	< 0.2	-
Pyrazophos	0.2	mg/kg	-	< 0.2	< 0.2	-
Ronnel	0.2	mg/kg	-	< 0.2	< 0.2	-
Terbufos	0.2	mg/kg	-	< 0.2	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	< 0.2	-
Tokuthion	0.2	mg/kg	-	< 0.2	< 0.2	-
Trichloronate	0.2	mg/kg	-	< 0.2	< 0.2	-
Triphenylphosphate (surr.)	1	%	-	74	120	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1232	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1242	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1248	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1254	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1260	0.1	mg/kg	-	< 0.1	< 1	-
Total PCB*	0.1	mg/kg	-	< 0.1	< 1	-
Dibutylchlorendate (surr.)	1	%	-	105	119	-
Tetrachloro-m-xylene (surr.)	1	%	-	77	84	-
Tetrachloro-m-xylene (surr.)	1	%	_	77	84	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SB1/0.3 Soil S18-Au16412 Aug 09, 2018	SB1/0.5 Soil S18-Au16413 Aug 09, 2018	SB6/0.4 Soil S18-Au16414 Aug 09, 2018	SB6/1.0 Soil S18-Au16415 Aug 09, 2018
Test/Reference	LOR	Unit				
% Clay	1	%	-	3.6	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	290	-	-
pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	0.1	pH Units	-	6.9	-	-
Total Organic Carbon	0.1	%	-	0.5	-	-
Cation Exchange Capacity	0.05	meq/100g	-	17	-	-
Iron (%)	0.01	%	-	1.0	-	-
% Moisture	1	%	2.3	3.6	4.9	6.2
Heavy Metals						
Arsenic	2	mg/kg	2.1	41	-	45
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	0.7
Chromium	5	mg/kg	8.9	14	-	39
Copper	5	mg/kg	37	390	-	170
Iron	20	mg/kg	-	10000	-	-
Lead	5	mg/kg	22	990	-	460
Mercury	0.1	mg/kg	< 0.1	0.1	-	0.3
Nickel	5	mg/kg	< 5	9.9	-	120
Zinc	5	mg/kg	42	190	-	1100

Client Sample ID			SB6/2.6	SB6/3.2	SB6/4.8	SB11/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16416	S18-Au16417	S18-Au16418	S18-Au16419
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	107	-	145	-

Client Semple ID			00000	00000	000/4.0	0044/00
Client Sample ID			SB6/2.6	SB6/3.2	SB6/4.8	SB11/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16416	S18-Au16417	S18-Au16418	S18-Au16419
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	=
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	=	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5 < 0.5	-	< 0.5 < 0.5	-
Fluorene Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5		< 0.5	
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	_
2-Fluorobiphenyl (surr.)	1	%	112	-	113	_
p-Terphenyl-d14 (surr.)	1	%	128	-	143	_
Organochlorine Pesticides		70	120	_	143	
Chlordanes - Total	0.1	mg/kg	_	< 0.1	_	< 0.1
4.4'-DDD	0.05	mg/kg	_	< 0.05	_	< 0.05
4.4'-DDE	0.05	mg/kg	_	< 0.05	_	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	_	< 0.05
a-BHC	0.05	mg/kg	_	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	_	< 0.05	-	< 0.05
b-BHC	0.05	mg/kg	_	< 0.05	-	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	=	< 0.05	=	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Toxaphene	1	mg/kg	-	< 1	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
	1 0 4	1 100 01/1/01	1	< 0.1	_	< 0.1
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-		-	
Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)* Dibutylchlorendate (surr.)	0.1 0.1	mg/kg %	-	< 0.1	-	< 0.1

Client Sample ID			SB6/2.6	SB6/3.2	SB6/4.8	SB11/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16416	S18-Au16417	S18-Au16418	S18-Au16419
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	1 20.1	, o				
Azinphos-methyl	0.2	mg/kg	_	< 0.2	_	< 0.2
Bolstar	0.2	mg/kg	_	< 0.2	_	< 0.2
Chlorfenvinphos	0.2	mg/kg	_	< 0.2	_	< 0.2
Chlorpyrifos	0.2	mg/kg	_	< 0.2	_	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	_	< 0.2	_	< 0.2
Coumaphos	2	mg/kg	_	< 2	_	< 2
Demeton-S	0.2	mg/kg	_	< 0.2	_	< 0.2
Demeton-O	0.2	mg/kg	_	< 0.2	-	< 0.2
Diazinon	0.2	mg/kg	_	< 0.2	_	< 0.2
Dichlorvos	0.2	mg/kg	_	< 0.2	_	< 0.2
Dimethoate	0.2	mg/kg	-	< 0.2	-	< 0.2
Disulfoton	0.2	mg/kg	_	< 0.2	_	< 0.2
EPN	0.2	mg/kg	_	< 0.2	-	< 0.2
Ethion	0.2	mg/kg	_	< 0.2	_	< 0.2
Ethoprop	0.2	mg/kg	-	< 0.2	-	< 0.2
Ethyl parathion	0.2	mg/kg	-	< 0.2	-	< 0.2
Fenitrothion	0.2	mg/kg	-	< 0.2	-	< 0.2
Fensulfothion	0.2	mg/kg	-	< 0.2	-	< 0.2
Fenthion	0.2	mg/kg	_	< 0.2	-	< 0.2
Malathion	0.2	mg/kg	_	< 0.2	_	< 0.2
Merphos	0.2	mg/kg	_	< 0.2	-	< 0.2
Methyl parathion	0.2	mg/kg	-	< 0.2	-	< 0.2
Mevinphos	0.2	mg/kg	-	< 0.2	-	< 0.2
Monocrotophos	2	mg/kg	-	< 2	-	< 2
Naled	0.2	mg/kg	-	< 0.2	-	< 0.2
Omethoate	2	mg/kg	-	< 2	-	< 2
Phorate	0.2	mg/kg	-	< 0.2	-	< 0.2
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-	< 0.2
Pyrazophos	0.2	mg/kg	-	< 0.2	-	< 0.2
Ronnel	0.2	mg/kg	-	< 0.2	-	< 0.2
Terbufos	0.2	mg/kg	-	< 0.2	-	< 0.2
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-	< 0.2
Tokuthion	0.2	mg/kg	-	< 0.2	-	< 0.2
Trichloronate	0.2	mg/kg	-	< 0.2	-	< 0.2
Triphenylphosphate (surr.)	1	%	-	109	-	78
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	< 0.1
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	96	-	90
Tetrachloro-m-xylene (surr.)	1	%	-	90	-	76

Client Sample ID			SB6/2.6	SB6/3.2	SB6/4.8	SB11/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16416	S18-Au16417	S18-Au16418	S18-Au16419
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
•	LOD	Limit	Aug 09, 2016	Aug 09, 2018	Aug 09, 2016	Aug 09, 2016
Test/Reference	LOR	Unit				
Phenols (Halogenated)	0.5				105	
2-Chlorophenol	0.5	mg/kg	-	-	< 0.5	-
2.4-Dichlorophenol	0.5	mg/kg	-	-	< 0.5	-
2.4.5-Trichlorophenol	1 1 0	mg/kg	-	-	<1	-
2.4.6-Trichlorophenol	1.0	mg/kg	-	-	<1	-
2.6-Dichlorophenol	0.5	mg/kg	-	-	< 0.5	-
4-Chloro-3-methylphenol	1.0	mg/kg	-	-	<1	-
Pentachlorophenol	1.0	mg/kg	-	-	<1	-
Tetal Halagan and Phanal*	1.0	mg/kg	-	-	<1	-
Total Halogenated Phenol*	1 1	mg/kg	-	-	<1	-
Phenois (non-Halogenated)		T "				
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	-	-	< 20	-
2-Methyl-4.6-dinitrophenol	5	mg/kg	-	-	< 5	-
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	-	< 0.2	=
2-Nitrophenol	1.0	mg/kg	-	-	< 1	-
2.4-Dimethylphenol	0.5	mg/kg	-	-	< 0.5	-
2.4-Dinitrophenol	5	mg/kg	-	-	< 5	-
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	-	< 0.4	-
4-Nitrophenol	5	mg/kg	-	-	< 5	-
Dinoseb	20	mg/kg	-	-	< 20	-
Phenol Tatal Nam Halaman at al Phanal*	0.5	mg/kg	-	-	< 0.5	-
Total Non-Halogenated Phenol*	20	mg/kg	-	-	< 20	-
Phenol-d6 (surr.)	1	%	-	-	118	-
% Clay	1	%	< 1	-	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	63	-	-	-
pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	0.1	pH Units	7.4	-	-	-
Total Organic Carbon	0.1	%	< 0.1	-	-	-
Cation Exchange Capacity	0.05	meq/100g	1.1	-	-	-
Iron (%)	0.01	%	0.01	-	-	-
% Moisture	1	%	1.4	5.2	19	9.4
Heavy Metals						
Arsenic	2	mg/kg	< 2	-	< 2	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	< 5	-	6.4	-
Copper	5	mg/kg	< 5	-	< 5	-
Iron	20	mg/kg	140	-	-	-
Lead	5	mg/kg	< 5	-	< 5	-
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	-
Nickel	5	mg/kg	< 5	-	< 5	-
Zinc	5	mg/kg	17	-	21	-

Client Sample ID			SB11/0.5	SB11/1.2	SB11/1.6	SB11/4.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16420	S18-Au16421	S18-Au16422	S18-Au16423
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit	3 11,			
Total Recoverable Hydrocarbons - 2013 NEPM) Onit				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	_	92	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	_	92	< 50
TRH >C16-C34	100	mg/kg	140	_	480	< 100
TRH >C34-C40	100	mg/kg	< 100	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	140	_	572	< 100
Total Recoverable Hydrocarbons - 1999 NEPM	<u> </u>	i iig/itg	140		072	1 100
TRH C6-C9	20	mg/kg	< 20	_	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	-	60	< 20
TRH C15-C28	50	mg/kg	70	-	350	< 50
TRH C29-C36	50	mg/kg	71	-	93	< 50
TRH C10-36 (Total)	50	mg/kg	141	-	503	< 50
BTEX	30	IIIg/kg	141	-	503	<u> </u>
	0.1	malka	< 0.1	_	< 0.1	< 0.1
Benzene	0.1	mg/kg	< 0.1		< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene		mg/kg		-		
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total 4-Bromofluorobenzene (surr.)	0.3	mg/kg %	< 0.3	-	< 0.3	< 0.3
, ,	l I	70	114	-	100	110
Volatile Organics	0.5	1 "			.0.5	
1.1-Dichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-
1.1.1-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.2-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dibromoethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-
1.2-Dichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dichloropropane	0.5	mg/kg	-	-	< 0.5	-
1.2.3-Trichloropropane	0.5	mg/kg	-	-	< 0.5	-
1.2.4-Trimethylbenzene	0.5	mg/kg	-	-	< 0.5	-
1.3-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-
1.3-Dichloropropane	0.5	mg/kg	-	-	< 0.5	-
1.3.5-Trimethylbenzene	0.5	mg/kg	-	-	< 0.5	-
1.4-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-
2-Butanone (MEK)	0.5	mg/kg	-	-	< 0.5	-
2-Propanone (Acetone)	0.5	mg/kg	-	-	< 0.5	-
4-Chlorotoluene	0.5	mg/kg	-	-	< 0.5	-
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	-	< 0.5	-
Allyl chloride	0.5	mg/kg	-	-	< 0.5	-
Benzene	0.1	mg/kg	-	-	< 0.1	-
Bromobenzene	0.5	mg/kg	-	-	< 0.5	-
Bromochloromethane	0.5	mg/kg	-	-	< 0.5	-
Bromodichloromethane	0.5	mg/kg	-	-	< 0.5	-
Bromoform	0.5	mg/kg	_	_	< 0.5	_

Client Sample ID			SB11/0.5	SB11/1.2	SB11/1.6	SB11/4.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16420	S18-Au16421	S18-Au16422	S18-Au16423
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit	3	3 22, 2232	3 22, 2212	3,
Volatile Organics	LOIN	Onic		1		
Bromomethane	0.5	mg/kg	_	_	< 0.5	+
Carbon disulfide	0.5	mg/kg		-	< 0.5	_
Carbon Tetrachloride	0.5	mg/kg	-	-	< 0.5	-
Chlorobenzene	0.5	mg/kg	_	-	< 0.5	_
Chloroethane	0.5	mg/kg	_	_	< 0.5	<u> </u>
Chloroform	0.5	mg/kg		_	< 0.5	
Chloromethane	0.5	mg/kg	_	-	< 0.5	
cis-1.2-Dichloroethene	0.5	mg/kg		-	< 0.5	<u> </u>
cis-1.3-Dichloropropene	0.5	mg/kg		-	< 0.5	_
Dibromochloromethane	0.5	mg/kg	_	-	< 0.5	<u> </u>
Dibromomethane	0.5	mg/kg	_	-	< 0.5	
Dichlorodifluoromethane	0.5			-	< 0.5	-
	0.5	mg/kg			< 0.1	-
Ethylbenzene lodomethane	0.1	mg/kg	-	-	< 0.1	-
	0.5	mg/kg mg/kg		-	< 0.5	
Isopropyl benzene (Cumene)			-	-		-
m&p-Xylenes Methylene Chloride	0.2	mg/kg	-	-	< 0.2 < 0.5	-
	0.5	mg/kg			< 0.5	
o-Xylene		mg/kg		-		-
Styrene	0.5	mg/kg	-	-	< 0.5	-
Tetrachloroethene	0.5	mg/kg	-	-	< 0.5	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
trans-1.2-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-
trans-1.3-Dichloropropene	0.5	mg/kg	-	-	< 0.5	-
Trichloroethene	0.5	mg/kg	-	-	< 0.5	-
Trichlorofluoromethane	0.5	mg/kg	-	-	< 0.5	-
Vinyl chloride	0.5	mg/kg	-	-	< 0.5	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
Total MAH*	0.5	mg/kg	-	-	< 0.5	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	-	-	< 0.5	-
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	-	-	< 0.5	-
4-Bromofluorobenzene (surr.)	1	%	-	-	100	-
Toluene-d8 (surr.)	1	%	-	-	102	-
Polycyclic Aromatic Hydrocarbons		T		 		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SB11/0.5	SB11/1.2	SB11/1.6	SB11/4.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16420	S18-Au16421	S18-Au16422	S18-Au16423
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		T				
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	3.0	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	0.7	1.9	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	0.7	5.4	< 0.5
2-Fluorobiphenyl (surr.)	1	%	108	107	103	114
p-Terphenyl-d14 (surr.)	1	%	113	113	106	136
Phenois (Halogenated)		T				
2-Chlorophenol	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	-	-	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	< 1	-	-	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	-	-	< 0.5
4-Chloro-3-methylphenol	1.0	mg/kg	< 1	-	-	< 1
Pentachlorophenol	1.0	mg/kg	< 1	-	-	< 1
Tetrachlorophenols - Total	1.0	mg/kg	< 1	-	-	< 1
Total Halogenated Phenol*		mg/kg	< 1	-	-	< 1
Phenols (non-Halogenated)		_				
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	-	-	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	-	-	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	-	-	< 0.2
2-Nitrophenol	1.0	mg/kg	< 1	-	-	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	-	-	< 5
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	-	-	< 0.4
4-Nitrophenol	5	mg/kg	< 5	-	-	< 5
Dinoseb	20	mg/kg	< 20	-	-	< 20
Phenol	0.5	mg/kg	< 0.5	-	-	< 0.5
Total Non-Halogenated Phenol*	20	mg/kg	< 20	-	-	< 20
Phenol-d6 (surr.)	1	%	106	-	-	113
% Moisture	1	%	5.8	13	30	17
Heavy Metals						
Arsenic	2	mg/kg	3.7	4.8	42	< 2
Cadmium	0.4	mg/kg	< 0.4	0.4	3.3	< 0.4
Chromium	5	mg/kg	12	13	22	< 5
Copper	5	mg/kg	30	45	150	< 5
Lead	5	mg/kg	160	280	100	< 5
Mercury	0.1	mg/kg	0.1	0.1	0.2	< 0.1
Nickel	5	mg/kg	11	18	53	< 5
Zinc	5	mg/kg	990	1900	2400	< 5

				_	Г	
Client Sample ID			SB11/5.0	SB14/0.2	SB14/0.5	SB14/1.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16424	S18-Au16425	S18-Au16426	S18-Au16427
Date Sampled			Aug 09, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
Naphthalene ^{N02}	0.5	mg/kg	_	< 0.5	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	-
TRH >C10-C16	50	mg/kg	_	< 50	_	_
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	< 50	_	-
TRH >C16-C34	100	mg/kg	_	< 100	_	-
TRH >C34-C40	100	mg/kg	_	< 100	-	_
TRH >C10-C40 (total)*	100	mg/kg	_	< 100	-	_
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions	, <u>J</u>				
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	_	< 20	-	-
TRH C15-C28	50	mg/kg	_	< 50	-	_
TRH C29-C36	50	mg/kg	_	< 50	-	-
TRH C10-36 (Total)	50	mg/kg	-	< 50	-	-
BTEX	•					
Benzene	0.1	mg/kg	_	< 0.1	-	_
Toluene	0.1	mg/kg	_	< 0.1	-	_
Ethylbenzene	0.1	mg/kg	_	< 0.1	-	_
m&p-Xylenes	0.2	mg/kg	_	< 0.2	-	_
o-Xylene	0.1	mg/kg	-	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	_	111	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	< 0.5	-	6.3
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	0.6	-	6.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	6.3
Acenaphthene	0.5	mg/kg	_	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	_	< 0.5	-	0.7
Anthracene	0.5	mg/kg	_	< 0.5	-	1.5
Benz(a)anthracene	0.5	mg/kg	_	< 0.5	-	2.9
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	3.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	3.4
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	2.2
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	3.1
Chrysene	0.5	mg/kg	-	< 0.5	-	3.6
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	1.3
Fluoranthene	0.5	mg/kg	-	< 0.5	-	7.1
Fluorene	0.5	mg/kg	-	< 0.5	-	0.6
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	2.4
Naphthalene	0.5	mg/kg	-	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	-	4.3
Pyrene	0.5	mg/kg	-	< 0.5	-	7.2
Total PAH*	0.5	mg/kg	-	< 0.5	-	44.1
2-Fluorobiphenyl (surr.)	1	%	-	109	-	111
p-Terphenyl-d14 (surr.)	1	%	_	141	_	108

Client Sample ID			SB11/5.0	SB14/0.2	SB14/0.5	SB14/1.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16424	S18-Au16425	S18-Au16426	S18-Au16427
' ' '						
Date Sampled			Aug 09, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	-
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Toxaphene	1	mg/kg	< 1	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	81	-	80	-
Tetrachloro-m-xylene (surr.)	1	%	114	-	101	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Bolstar	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	< 0.2	_
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Coumaphos	2	mg/kg	< 2	-	< 2	-
Demeton-S	0.2	mg/kg	< 0.2	-	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	-
Diazinon	0.2	mg/kg	< 0.2	_	< 0.2	_
Dichlorvos	0.2	mg/kg	< 0.2	_	< 0.2	_
Dimethoate	0.2	mg/kg	< 0.2	-	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	-	< 0.2	-
EPN	0.2	mg/kg	< 0.2	-	< 0.2	_
Ethion	0.2	mg/kg	< 0.2	_	< 0.2	_
Ethoprop	0.2	mg/kg	< 0.2	_	< 0.2	_
Ethyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	_
Fenitrothion	0.2	mg/kg	< 0.2	-	< 0.2	_
Fensulfothion	0.2	mg/kg	< 0.2	-	< 0.2	
Fenthion	0.2	mg/kg	< 0.2	-	< 0.2	_
Malathion	0.2	mg/kg	< 0.2	-	< 0.2	_
Merphos	0.2	mg/kg	< 0.2	-	< 0.2	-

Client Sample ID			0044/5.0	0011100	00440	004444
•			SB11/5.0 Soil	SB14/0.2 Soil	SB14/0.5 Soil	SB14/1.2 Soil
Sample Matrix						
Eurofins mgt Sample No.			S18-Au16424	S18-Au16425	S18-Au16426	S18-Au16427
Date Sampled			Aug 09, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Methyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Monocrotophos	2	mg/kg	< 2	-	< 2	-
Naled	0.2	mg/kg	< 0.2	-	< 0.2	-
Omethoate	2	mg/kg	< 2	-	< 2	-
Phorate	0.2	mg/kg	< 0.2	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	-	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	110	-	123	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	< 0.1	-
Total PCB*	0.1	mg/kg	< 0.1	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	81	-	80	-
Tetrachloro-m-xylene (surr.)	1	%	114	-	101	-
· · ·		•				
% Clay	1	%	_	-	_	2.9
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	_	-	_	120
pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	0.1	pH Units	_	-	_	7.5
Total Organic Carbon	0.1	%	-	-	-	2.6
Cation Exchange Capacity	0.05	meq/100g	-	-	-	21
Iron (%)	0.01	%	_	-	-	2.3
% Moisture	1	%	17	6.6	7.1	11
Heavy Metals						
Arsenic	2	mg/kg	_	< 2	_	7.7
Cadmium	0.4	mg/kg	_	< 0.4	_	1.0
Chromium	5	mg/kg	_	< 5	_	63
Copper	5	mg/kg	_	< 5	-	110
Iron	20	mg/kg	_	-	-	23000
Lead	5	mg/kg	_	< 5	-	710
Mercury	0.1	mg/kg		< 0.1	-	0.5
Nickel	5	mg/kg		< 5	-	12
Zinc	5			16	-	850
ZIIIC	1 3	mg/kg	-	ا ا		830

Client Sample ID			SB14/2.5	SB14/3.8	SB14/10.0	SB10/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16428	S18-Au16429	S18-Au16430	S18-Au16432
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit	3 , , ,			3 , , ,
Total Recoverable Hydrocarbons - 2013 NEPM		Onic				
Naphthalene ^{N02}	0.5	mg/kg	_	_	< 0.5	_
TRH C6-C10	20	mg/kg	_	-	< 20	_
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	_	-	< 20	
TRH >C10-C16	50	mg/kg	_	_	< 50	_
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	_	< 50	_
TRH >C16-C34	100	mg/kg	_	_	< 100	_
TRH >C34-C40	100	mg/kg	_	-	< 100	_
TRH >C10-C40 (total)*	100	mg/kg	_	_	< 100	_
Total Recoverable Hydrocarbons - 1999 NEPM		ing/kg			1100	
TRH C6-C9	20	mg/kg	_	_	< 20	_
TRH C10-C14	20	mg/kg		-	< 20	-
TRH C15-C28	50	mg/kg		-	< 50	-
TRH C29-C36	50	mg/kg	-	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	-	-	< 50	
BTEX	30	Hig/kg	-	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-
Benzene	0.1	malka	_	_	< 0.1	_
	0.1	mg/kg			< 0.1	
Toluene		mg/kg		-		
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	-	142	-
Volatile Organics			0.5	+		
1.1-Dichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.1-Dichloroethene	0.5	mg/kg	< 0.5	-	-	-
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	-	-	=
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	-	=
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	-	-
1.2-Dibromoethane	0.5	mg/kg	< 0.5	-	-	-
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	-
1.2-Dichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.2-Dichloropropane	0.5	mg/kg	< 0.5	-	-	-
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	-	-	-
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	-	-	-
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	-
1.3-Dichloropropane	0.5	mg/kg	< 0.5	-	-	-
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	-	-	-
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	-
2-Butanone (MEK)	0.5	mg/kg	< 0.5	-	-	-
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	-	-	-
4-Chlorotoluene	0.5	mg/kg	< 0.5	-	-	-
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	-	-	-
Allyl chloride	0.5	mg/kg	< 0.5	-	-	-
Benzene	0.1	mg/kg	< 0.1	-	-	-
Bromobenzene	0.5	mg/kg	< 0.5	-	-	-
Bromochloromethane	0.5	mg/kg	< 0.5	-	-	-
Bromodichloromethane	0.5	mg/kg	< 0.5	-	-	-
Bromoform	0.5	mg/kg	< 0.5	_	_	-

Client Sample ID			SB14/2.5	SB14/3.8	SB14/10.0	SB10/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16428	S18-Au16429	S18-Au16430	S18-Au1643
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit	7.0.9 10, 2010	7109 10, 2010	71.09 10, 2010	7.00
Volatile Organics	LOIC	Onic				
Bromomethane	0.5	ma/ka	< 0.5	_	_	
Carbon disulfide	0.5	mg/kg mg/kg	< 0.5	-	-	-
Carbon Tetrachloride	0.5	mg/kg	< 0.5	-	-	
Chlorobenzene	0.5	mg/kg	< 0.5	-	<u> </u>	_
Chloroethane	0.5	mg/kg	< 0.5	-	-	_
Chloroform	0.5	mg/kg	< 0.5	_		_
Chloromethane	0.5	mg/kg	< 0.5	_	-	_
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	_	_	_
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	_	_	_
Dibromochloromethane	0.5	mg/kg	< 0.5	_	_	_
Dibromomethane	0.5	mg/kg	< 0.5	_	_	_
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	_	_	_
Ethylbenzene	0.1	mg/kg	< 0.1	_	_	_
lodomethane	0.5	mg/kg	< 0.5	-	_	_
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	_	_	_
m&p-Xylenes	0.2	mg/kg	< 0.2	_	_	_
Methylene Chloride	0.5	mg/kg	< 0.5	_	_	_
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Styrene	0.5	mg/kg	< 0.5	_	_	_
Tetrachloroethene	0.5	mg/kg	< 0.5	_	_	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	-	-	-
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	-	-	_
Trichloroethene	0.5	mg/kg	< 0.5	-	-	-
Trichlorofluoromethane	0.5	mg/kg	< 0.5	-	-	-
Vinyl chloride	0.5	mg/kg	< 0.5	-	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	-
Total MAH*	0.5	mg/kg	< 0.5	-	-	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	-	-	-
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	-	-	-
4-Bromofluorobenzene (surr.)	1	%	111	-	-	-
Toluene-d8 (surr.)	1	%	104	-	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	=	< 0.5	-

Client Sample ID			SB14/2.5	SB14/3.8	SB14/10.0	SB10/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16428	S18-Au16429	S18-Au16430	S18-Au16432
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit	719 10, 2010	1.09 .0, 20.0	1.09 .0, 20.0	7.00
Polycyclic Aromatic Hydrocarbons	LOIN	Onic				
Naphthalene	0.5	ma/ka		-	< 0.5	
Phenanthrene	0.5	mg/kg mg/kg	-	-	< 0.5	-
Pyrene	0.5	mg/kg	-	-	< 0.5	-
Total PAH*	0.5	mg/kg	-	-	< 0.5	
2-Fluorobiphenyl (surr.)	1	// // // // // // // // // // // // //	_	-	98	-
p-Terphenyl-d14 (surr.)	1	%		-	92	
Organochlorine Pesticides	ı ı	70	-	-	32	-
Chlordanes - Total	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05			< 0.05	< 0.05	< 0.05
4.4'-DDE 4.4'-DDT	0.05	mg/kg mg/kg	-	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	_	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	_	75	74	100
Tetrachloro-m-xylene (surr.)	1	%	-	92	93	81
Organophosphorus Pesticides	•					
Azinphos-methyl	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	_	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	-	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2

Client Sample ID			SB14/2.5	SB14/3.8	SB14/10.0	SB10/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16428	S18-Au16429	S18-Au16430	S18-Au16432
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Ethoprop	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	-	< 2	< 2	< 2
Naled	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	-	< 2	< 2	< 2
Phorate	0.2	mg/kg	_	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	_	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	_	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	_	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	_	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	_	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	_	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	_	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	_	106	117	123
Polychlorinated Biphenyls				122		1
Aroclor-1016	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	_	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	_	75	74	100
Tetrachloro-m-xylene (surr.)	1	%	_	92	93	81
Totadinoro III Xyrono (dari.)	· · · · · · · · · · · · · · · · · · ·	1 /0		02		0.
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	_	-	8.2
% Moisture	1	%	9.5	16	18	3.0
Heavy Metals		1 /0	3.0	10	10	0.0
Arsenic	2	mg/kg	-		< 2	< 2
Cadmium	0.4	mg/kg	-	-	< 0.4	< 0.4
Cadmium	5	mg/kg	-	-	< 5	< 5
Copper	5	mg/kg	-	-	< 5	7.4
- ' '	5				< 5	12
Lead Mercury	0.1	mg/kg	-	-	< 0.1	< 0.1
Mielcal	U. I	mg/kg	-	-	<u> </u>	< 0.1

mg/kg

mg/kg

5

5

7.3

110

Nickel

Zinc

< 5

< 5

Client Sample ID			SB17/0.5	SB17/1.0	SB17/6.0	SB17/7.5
Sample Matrix			Soil	Soil	Soil	Soil
•			S18-Au16433	S18-Au16434	S18-Au16435	S18-Au16436
Eurofins mgt Sample No.				1		
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	-	< 20
TRH >C10-C16	50	mg/kg	< 50	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	=	-	< 50
TRH >C16-C34	100	mg/kg	< 100	=	-	< 100
TRH >C34-C40	100	mg/kg	< 100	=	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	< 100
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 20	-	-	< 20
TRH C10-C14	20	mg/kg	< 20	-	-	< 20
TRH C15-C28	50	mg/kg	< 50	-	-	< 50
TRH C29-C36	50	mg/kg	< 50	-	-	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	-	-	< 50
втех						
Benzene	0.1	mg/kg	< 0.1	_	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	_	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	_	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	_	_	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	_	_	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	_	_	< 0.3
4-Bromofluorobenzene (surr.)	1	%	61	_	_	90
Polycyclic Aromatic Hydrocarbons	•					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	_	_	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6		-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	_	_	1.2
Acenaphthene	0.5	mg/kg	< 0.5	_	_	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5		_	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	<u> </u>	<u> </u>	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-		< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5			< 0.5
Naphthalene			< 0.5	-	-	< 0.5
	0.5	mg/kg		-	-	
Phenanthrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Pyrene Tatal DALI*	0.5	mg/kg	< 0.5	-	-	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	110	-	-	119
p-Terphenyl-d14 (surr.)	1	%	116	-	-	146

Client Sample ID			SB17/0.5	SB17/1.0	SB17/6.0	SB17/7.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16433	S18-Au16434	S18-Au16435	S18-Au16436
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides	1 20.1	1 0				
Chlordanes - Total	0.1	mg/kg	_	< 0.1	-	
4.4'-DDD	0.05	mg/kg	_	< 0.05	-	
4.4'-DDE	0.05	mg/kg	_	< 0.05	-	
4.4'-DDT	0.05	mg/kg	_	< 0.05	-	
a-BHC	0.05	mg/kg	_	< 0.05	-	
Aldrin	0.05			< 0.05		
b-BHC	0.05	mg/kg mg/kg	-	< 0.05	-	
			-		-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.05	mg/kg	-	< 0.05	-	-
Toxaphene	1	mg/kg	-	< 1	=	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	=	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	121	-	-
Tetrachloro-m-xylene (surr.)	1	%	_	113	-	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	< 0.2	_	_
Bolstar	0.2	mg/kg	_	< 0.2	_	_
Chlorfenvinphos	0.2	mg/kg	_	< 0.2	_	-
Chlorpyrifos	0.2	mg/kg	_	< 0.2	_	_
Chlorpyrifos-methyl	0.2	mg/kg	_	< 0.2	_	_
Coumaphos	2	mg/kg	_	< 2	_	_
Demeton-S	0.2	mg/kg	_	< 0.2	_	_
Demeton-O	0.2	mg/kg	_	< 0.2	-	_
Diazinon	0.2	mg/kg		< 0.2		_
Dichlorvos	0.2	mg/kg	<u>-</u>	< 0.2	-	-
	0.2		-	< 0.2	-	
Dimethoate Disulfoton	0.2	mg/kg	-	< 0.2	-	
		mg/kg				
EPN Ethion	0.2	mg/kg	-	< 0.2	-	-
Ethion	0.2	mg/kg	-	< 0.2	-	-
Ethoprop	0.2	mg/kg	-	< 0.2	-	-
Ethyl parathion	0.2	mg/kg	-	< 0.2	-	-
Fenitrothion	0.2	mg/kg	-	< 0.2	-	-
Fensulfothion	0.2	mg/kg	-	< 0.2	-	-
Fenthion	0.2	mg/kg	-	< 0.2	-	-
Malathion	0.2	mg/kg	-	< 0.2	-	-
Merphos	0.2	mg/kg	-	< 0.2	-	-

Client Sample ID			SB17/0.5	SB17/1.0	SB17/6.0	SB17/7.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16433	S18-Au16434	S18-Au16435	S18-Au16436
Date Sampled			Aug 10, 2018			Aug 10, 2018
·		l	Aug 10, 2016	Aug 10, 2018	Aug 10, 2018	Aug 10, 2016
Test/Reference	LOR	Unit				
Organophosphorus Pesticides		T				
Methyl parathion	0.2	mg/kg	-	< 0.2	-	-
Mevinphos	0.2	mg/kg	-	< 0.2	-	-
Monocrotophos	2	mg/kg	-	< 2	-	-
Naled	0.2	mg/kg	-	< 0.2	-	-
Omethoate	2	mg/kg	-	< 2	-	-
Phorate	0.2	mg/kg	-	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Pyrazophos	0.2	mg/kg	-	< 0.2	-	-
Ronnel	0.2	mg/kg	-	< 0.2	-	-
Terbufos	0.2	mg/kg	-	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-	-
Tokuthion	0.2	mg/kg	-	< 0.2	-	-
Trichloronate	0.2	mg/kg	-	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	-	123	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	-
Total PCB*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	121	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	113	-	-
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	-	-	-	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	-	-	-	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	-	-	-	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	-	-	-	< 1
2.6-Dichlorophenol	0.5	mg/kg	-	-	-	< 0.5
4-Chloro-3-methylphenol	1.0	mg/kg	-	-	-	< 1
Pentachlorophenol	1.0	mg/kg	-	-	-	< 1
Tetrachlorophenols - Total	1.0	mg/kg	-	-	-	< 1
Total Halogenated Phenol*	1	mg/kg	-	-	-	< 1
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	-	-	-	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	-	-	-	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	-	-	< 0.2
2-Nitrophenol	1.0	mg/kg	-	-	-	< 1
2.4-Dimethylphenol	0.5	mg/kg	-	-	-	< 0.5
2.4-Dinitrophenol	5	mg/kg	-	-	-	< 5
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	-	-	< 0.4
4-Nitrophenol	5	mg/kg	-	-	-	< 5
Dinoseb	20	mg/kg	-	-	-	< 20
Phenol	0.5	mg/kg	-	-	-	< 0.5
Total Non-Halogenated Phenol*	20	mg/kg	-	-	-	< 20
Phenol-d6 (surr.)	1	%	-	-	-	117

Client Sample ID Sample Matrix			SB17/0.5 Soil	SB17/1.0 Soil	SB17/6.0 Soil	SB17/7.5 Soil
Eurofins mgt Sample No.			S18-Au16433	S18-Au16434	S18-Au16435	S18-Au16436
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	_	7.7	-
% Moisture	1	%	8.5	15	16	16
Heavy Metals	•					
Arsenic	2	mg/kg	3.3	-	-	< 2
Cadmium	0.4	mg/kg	< 0.4	-	-	< 0.4
Chromium	5	mg/kg	8.0	-	-	< 5
Copper	5	mg/kg	9.5	-	-	< 5
Lead	5	mg/kg	31	-	-	11
Mercury	0.1	mg/kg	< 0.1	-	-	< 0.1
Nickel	5	mg/kg	7.5	-	-	< 5
Zinc	5	mg/kg	250	-	-	61

Client Sample ID			SB17/9.0	SB18/0.2	SB18/0.6	SB18/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16437	S18-Au16438	S18-Au16439	S18-Au16440
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 20
TRH >C10-C16	50	mg/kg	-	=	-	210
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	-	-	210
TRH >C16-C34	100	mg/kg	-	-	-	2000
TRH >C34-C40	100	mg/kg	-	-	-	810
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	3020
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	-	150
TRH C15-C28	50	mg/kg	-	-	-	1100
TRH C29-C36	50	mg/kg	-	-	-	1100
TRH C10-36 (Total)	50	mg/kg	-	-	-	2350
ВТЕХ						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	_	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	=	-	114
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-
1.1.1-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.2-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dibromoethane	0.5	mg/kg	-	=	< 0.5	-

Client Sample ID			SB17/9.0	SB18/0.2	SB18/0.6	SB18/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16437	S18-Au16438	S18-Au16439	S18-Au16440
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Volatile Organics		1 0				
1.2-Dichlorobenzene	0.5	mg/kg	_	_	< 0.5	_
1.2-Dichloroethane	0.5	mg/kg	_	_	< 0.5	_
1.2-Dichloropropane	0.5	mg/kg	_	_	< 0.5	_
1.2.3-Trichloropropane	0.5	mg/kg	_	_	< 0.5	_
1.2.4-Trimethylbenzene	0.5	mg/kg	_	_	< 0.5	_
1.3-Dichlorobenzene	0.5	mg/kg	_	_	< 0.5	_
1.3-Dichloropropane	0.5	mg/kg	_	_	< 0.5	_
1.3.5-Trimethylbenzene	0.5	mg/kg	-	_	< 0.5	_
1.4-Dichlorobenzene	0.5	mg/kg	-	_	< 0.5	-
2-Butanone (MEK)	0.5	mg/kg	-	-	< 0.5	-
2-Propanone (Acetone)	0.5	mg/kg	-	-	< 0.5	-
4-Chlorotoluene	0.5	mg/kg	-	=	< 0.5	-
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	_	< 0.5	_
Allyl chloride	0.5	mg/kg	-	-	< 0.5	-
Benzene	0.1	mg/kg	-	-	< 0.1	-
Bromobenzene	0.5	mg/kg	-	-	< 0.5	=
Bromochloromethane	0.5	mg/kg	-	-	< 0.5	-
Bromodichloromethane	0.5	mg/kg	-	-	< 0.5	-
Bromoform	0.5	mg/kg	-	-	< 0.5	-
Bromomethane	0.5	mg/kg	-	-	< 0.5	-
Carbon disulfide	0.5	mg/kg	-	-	< 0.5	-
Carbon Tetrachloride	0.5	mg/kg	-	-	< 0.5	-
Chlorobenzene	0.5	mg/kg	-	-	< 0.5	-
Chloroethane	0.5	mg/kg	-	-	< 0.5	-
Chloroform	0.5	mg/kg	-	-	< 0.5	-
Chloromethane	0.5	mg/kg	-	-	< 0.5	-
cis-1.2-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-
cis-1.3-Dichloropropene	0.5	mg/kg	-	-	< 0.5	-
Dibromochloromethane	0.5	mg/kg	-	-	< 0.5	-
Dibromomethane	0.5	mg/kg	-	-	< 0.5	-
Dichlorodifluoromethane	0.5	mg/kg	-	-	< 0.5	-
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
lodomethane	0.5	mg/kg	-	-	< 0.5	-
Isopropyl benzene (Cumene)	0.5	mg/kg	-	-	< 0.5	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
Methylene Chloride	0.5	mg/kg	-	-	< 0.5	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Styrene	0.5	mg/kg	-	-	< 0.5	-
Tetrachloroethene	0.5	mg/kg	-	-	< 0.5	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
trans-1.2-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-
trans-1.3-Dichloropropene	0.5	mg/kg	-	-	< 0.5	-
Trichloroethene	0.5	mg/kg	-	-	< 0.5	-
Trichlorofluoromethane	0.5	mg/kg	-	-	< 0.5	-
Vinyl chloride	0.5	mg/kg	-	-	< 0.5	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
Total MAH*	0.5	mg/kg	-	-	< 0.5	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	_	-	< 0.5	_

Client Sample ID			SB17/9.0	SB18/0.2	SB18/0.6	SB18/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16437	S18-Au16438	S18-Au16439	S18-Au16440
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Volatile Organics		•				
4-Bromofluorobenzene (surr.)	1	%	-	-	108	-
Toluene-d8 (surr.)	1	%	-	-	109	-
Polycyclic Aromatic Hydrocarbons		•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	2.4
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	4.8
Acenaphthene	0.5	mg/kg	-	< 0.5	-	< 2
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	< 2
Anthracene	0.5	mg/kg	_	< 0.5	-	< 2
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	< 2
Benzo(a)pyrene	0.5	mg/kg	_	< 0.5	-	< 2
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	< 2
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	< 2
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	< 2
Chrysene	0.5	mg/kg	-	< 0.5	-	< 2
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	< 2
Fluoranthene	0.5	mg/kg	-	< 0.5	-	< 2
Fluorene	0.5	mg/kg	-	< 0.5	-	< 2
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	< 2
Naphthalene	0.5	mg/kg	-	< 0.5	-	< 2
Phenanthrene	0.5	mg/kg	-	< 0.5	-	< 2
Pyrene	0.5	mg/kg	-	< 0.5	-	< 2
Total PAH*	0.5	mg/kg	-	< 0.5	-	< 2
2-Fluorobiphenyl (surr.)	1	%	-	99	-	116
p-Terphenyl-d14 (surr.)	1	%	-	107	-	137
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	=	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	=	=
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketana	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene Methovychlor	0.05 0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	1	mg/kg	< 0.05 < 1	< 0.05 < 1	-	
Toxaphene Aldrin and Dieldrin (Total)*	0.05	mg/kg mg/kg	< 0.05	< 0.05		-
DDT + DDE + DDD (Total)*	0.05	mg/kg mg/kg	< 0.05	< 0.05	-	-

	والانهم
11115	
,	-

Client Sample ID			SB17/9.0	SB18/0.2	SB18/0.6	SB18/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16437	S18-Au16438	S18-Au16439	S18-Au16440
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides	'					
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	_	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	_	-
Dibutylchlorendate (surr.)	1	%	114	117	-	-
Tetrachloro-m-xylene (surr.)	1	%	119	118	-	-
Organophosphorus Pesticides	•	•				
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	-
Bolstar	0.2	mg/kg	< 0.2	< 0.2	-	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	-
Coumaphos	2	mg/kg	< 2	< 2	-	-
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	-	-
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	-	-
Diazinon	0.2	mg/kg	< 0.2	< 0.2	-	-
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	-	-
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	-	-
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	-	-
EPN	0.2	mg/kg	< 0.2	< 0.2	-	-
Ethion	0.2	mg/kg	< 0.2	< 0.2	-	-
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fenthion	0.2	mg/kg	< 0.2	< 0.2	-	-
Malathion	0.2	mg/kg	< 0.2	< 0.2	-	-
Merphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	-	-
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Monocrotophos	2	mg/kg	< 2	< 2	-	-
Naled	0.2	mg/kg	< 0.2	< 0.2	-	-
Omethoate	2	mg/kg	< 2	< 2	-	-
Phorate	0.2	mg/kg	< 0.2	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	-
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	-	-
Ronnel	0.2	mg/kg	< 0.2	< 0.2	-	-
Terbufos	0.2	mg/kg	< 0.2	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	-	-
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	114	110	-	-
Polychlorinated Biphenyls	ı					
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	-	-

Client Sample ID			SB17/9.0	SB18/0.2	SB18/0.6	SB18/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16437	S18-Au16438	S18-Au16439	S18-Au16440
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	1 20.1	1 0				
Dibutylchlorendate (surr.)	1	%	114	117	_	_
Tetrachloro-m-xylene (surr.)	1	%	119	118	_	_
Phenols (Halogenated)		1				
2-Chlorophenol	0.5	mg/kg	_	_	_	< 2
2.4-Dichlorophenol	0.5	mg/kg	_	_	_	< 2
2.4.5-Trichlorophenol	1	mg/kg	_	_	_	< 5
2.4.6-Trichlorophenol	1.0	mg/kg	_	_	_	< 5
2.6-Dichlorophenol	0.5	mg/kg	_	-	-	< 2
4-Chloro-3-methylphenol	1.0	mg/kg	-	-	-	< 5
Pentachlorophenol	1.0	mg/kg	-	_	_	< 5
Tetrachlorophenols - Total	1.0	mg/kg	-	-	-	< 10
Total Halogenated Phenol*	1	mg/kg	-	-	-	< 5
Phenols (non-Halogenated)	'					
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	-	-	-	< 50
2-Methyl-4.6-dinitrophenol	5	mg/kg	-	-	-	< 20
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	-	-	< 2
2-Nitrophenol	1.0	mg/kg	-	=	=	< 5
2.4-Dimethylphenol	0.5	mg/kg	-	-	-	< 2
2.4-Dinitrophenol	5	mg/kg	-	-	-	< 20
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	-	-	< 5
4-Nitrophenol	5	mg/kg	-	-	-	< 20
Dinoseb	20	mg/kg	-	-	-	< 50
Phenol	0.5	mg/kg	-	-	-	< 2
Total Non-Halogenated Phenol*	20	mg/kg	-	-	-	< 50
Phenol-d6 (surr.)	1	%	-	-	-	77
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	8.7	-	-
% Moisture	1	%	16	7.7	7.0	9.8
Heavy Metals						
Arsenic	2	mg/kg	-	< 2	-	4.9
Cadmium	0.4	mg/kg	-	< 0.4	-	< 0.4
Chromium	5	mg/kg	-	< 5	-	21
Copper	5	mg/kg	-	< 5	-	37
Lead	5	mg/kg	-	8.4	-	620
Mercury	0.1	mg/kg	-	< 0.1	-	0.1
Nickel	5	mg/kg	-	< 5	-	21
Zinc	5	mg/kg	-	9.3	=	1000

Client Sample ID			SB19/0.8	SB19/1.5	SB19/2.5	SB19/3.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16441	S18-Au16442	S18-Au16443	S18-Au16444
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit	3 11,			3 11, 11
Total Recoverable Hydrocarbons - 2013 NEPM) Onic				
Naphthalene ^{N02}	0.5	mg/kg	_	< 0.5	_	< 0.5
TRH C6-C10	20	mg/kg	_	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	_	< 20		< 20
TRH >C10-C16	50	mg/kg	_	< 50	_	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	< 50	_	< 50
TRH >C16-C34	100	mg/kg	_	160	_	< 100
TRH >C34-C40	100	mg/kg	_	< 100	_	< 100
TRH >C10-C40 (total)*	100	mg/kg	_	160	_	< 100
Total Recoverable Hydrocarbons - 1999 NEPM	-	i iig/itg		100		1 100
TRH C6-C9	20	mg/kg	_	< 20	_	< 20
TRH C10-C14	20	mg/kg	_	< 20	-	< 20
TRH C15-C28	50	mg/kg		91	-	< 50
TRH C29-C36	50	mg/kg	-	66	-	< 50
TRH C10-36 (Total)	50	mg/kg		157	-	< 50
BTEX	30	Hg/kg	-	157	-	<u> </u>
	0.1	ma m/l cm	_	< 0.1	_	< 0.1
Benzene	0.1	mg/kg		< 0.1	-	< 0.1
Toluene		mg/kg				
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg %	-	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	117	-	113
Volatile Organics		T "		+		+
1.1-Dichloroethane	0.5	mg/kg	-	=	< 0.5	-
1.1-Dichloroethene	0.5	mg/kg	-	=	< 0.5	-
1.1.1-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.2-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dibromoethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-
1.2-Dichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dichloropropane	0.5	mg/kg	-	-	< 0.5	-
1.2.3-Trichloropropane	0.5	mg/kg	-	-	< 0.5	-
1.2.4-Trimethylbenzene	0.5	mg/kg	-	-	< 0.5	-
1.3-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-
1.3-Dichloropropane	0.5	mg/kg	-	-	< 0.5	-
1.3.5-Trimethylbenzene	0.5	mg/kg	-	-	< 0.5	-
1.4-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-
2-Butanone (MEK)	0.5	mg/kg	-	-	< 0.5	-
2-Propanone (Acetone)	0.5	mg/kg	-	-	< 0.5	-
4-Chlorotoluene	0.5	mg/kg	-	-	< 0.5	-
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	-	< 0.5	 -
Allyl chloride	0.5	mg/kg	-	-	< 0.5	-
Benzene	0.1	mg/kg	-	-	< 0.1	-
Bromobenzene	0.5	mg/kg	-	-	< 0.5	-
Bromochloromethane	0.5	mg/kg	-	-	< 0.5	-
Bromodichloromethane	0.5	mg/kg	-	-	< 0.5	-
Bromoform	0.5	mg/kg	_	_	< 0.5	_

Client Sample ID			SB19/0.8	SB19/1.5	SB19/2.5	SB19/3.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16441	S18-Au16442	S18-Au16443	S18-Au16444
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Volatile Organics	1 20.1	1 0				
Bromomethane	0.5	mg/kg	_	_	< 0.5	_
Carbon disulfide	0.5	mg/kg	_	-	< 0.5	_
Carbon Tetrachloride	0.5	mg/kg	_	_	< 0.5	_
Chlorobenzene	0.5	mg/kg	_	_	< 0.5	
Chloroethane	0.5	mg/kg	_	_	< 0.5	
Chloroform	0.5	mg/kg	_	_	< 0.5	_
Chloromethane	0.5	mg/kg	_	_	< 0.5	_
cis-1.2-Dichloroethene	0.5	mg/kg	_	-	< 0.5	
cis-1.3-Dichloropropene	0.5	mg/kg	_	_	< 0.5	
Dibromochloromethane	0.5	mg/kg	_	-	< 0.5	_
Dibromomethane	0.5	mg/kg	-	-	< 0.5	
Dichlorodifluoromethane	0.5		_	-	< 0.5	
	0.5	mg/kg		-	< 0.1	-
Ethylbenzene lodomethane	0.1	mg/kg			< 0.1	-
		mg/kg	-	-		-
Isopropyl benzene (Cumene)	0.5	mg/kg	-	-	< 0.5	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
Methylene Chloride	0.5	mg/kg	-	-	< 0.5	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Styrene	0.5	mg/kg	-	-	< 0.5	-
Tetrachloroethene	0.5	mg/kg	-	-	< 0.5	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
trans-1.2-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-
trans-1.3-Dichloropropene	0.5	mg/kg	-	-	< 0.5	-
Trichloroethene	0.5	mg/kg	-	-	< 0.5	-
Trichlorofluoromethane	0.5	mg/kg	-	-	< 0.5	-
Vinyl chloride	0.5	mg/kg	-	-	< 0.5	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
Total MAH*	0.5	mg/kg	-	-	< 0.5	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	-	-	< 0.5	-
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	-	-	< 0.5	-
4-Bromofluorobenzene (surr.)	1	%	-	-	116	-
Toluene-d8 (surr.)	1	%	-	-	110	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.8	1.1	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.1	1.4	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.4	1.7	=	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	=	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	0.6	0.8	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	0.7	0.9	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.6	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	0.6	0.6	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.9	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	0.9	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	0.9	1.5	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5

Client Sample ID Sample Matrix			SB19/0.8 Soil	SB19/1.5 Soil	SB19/2.5 Soil	SB19/3.7 Soil
•						
Eurofins mgt Sample No.			S18-Au16441	S18-Au16442	S18-Au16443	S18-Au16444
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	0.7	0.7	-	< 0.5
Pyrene	0.5	mg/kg	0.9	1.5	-	< 0.5
Total PAH*	0.5	mg/kg	4.4	8.4	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	85	111	-	100
p-Terphenyl-d14 (surr.)	1	%	72	107	-	125
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	_
Aldrin	0.05	mg/kg	< 0.05	-	0.07	_
b-BHC	0.05	mg/kg	< 0.05	-	< 0.05	_
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	-	0.24	-
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	-
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Toxaphene	1	mg/kg	< 1	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	0.31	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	0.31	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	107	-	112	-
Tetrachloro-m-xylene (surr.)	1	%	96	-	107	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Bolstar	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	< 0.2	_
Chlorpyrifos	0.2	mg/kg	< 0.2	-	< 0.2	_
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Coumaphos	2	mg/kg	< 2	-	< 2	_
Demeton-S	0.2	mg/kg	< 0.2	-	< 0.2	_
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	-
Diazinon	0.2	mg/kg	< 0.2	-	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.2	-	< 0.2	-
Dimethoate	0.2	mg/kg	< 0.2	-	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	-	< 0.2	-
EPN	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethion	0.2	mg/kg	< 0.2	-	< 0.2	-

Client Sample ID			SB19/0.8	SB19/1.5	SB19/2.5	SB19/3.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16441	S18-Au16442	S18-Au16443	S18-Au16444
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides		1 0				
Ethoprop	0.2	mg/kg	< 0.2	_	< 0.2	_
Ethyl parathion	0.2	mg/kg	< 0.2	_	< 0.2	_
Fenitrothion	0.2	mg/kg	< 0.2	_	< 0.2	_
Fensulfothion	0.2	mg/kg	< 0.2	_	< 0.2	_
Fenthion	0.2	mg/kg	< 0.2	_	< 0.2	_
Malathion	0.2	mg/kg	< 0.2	_	< 0.2	_
Merphos	0.2	mg/kg	< 0.2	_	< 0.2	_
Methyl parathion	0.2	mg/kg	< 0.2	_	< 0.2	_
Mevinphos	0.2	mg/kg	< 0.2	_	< 0.2	_
Monocrotophos	2	mg/kg	< 2	_	< 2	_
Naled	0.2	mg/kg	< 0.2	_	< 0.2	_
Omethoate	2	mg/kg	< 2	-	< 2	-
Phorate	0.2	mg/kg	< 0.2	_	< 0.2	_
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	_
Pyrazophos	0.2	mg/kg	< 0.2	-	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	-	< 0.2	_
Triphenylphosphate (surr.)	1	%	98	-	106	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	< 0.1	-
Total PCB*	0.1	mg/kg	< 0.1	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	107	-	112	-
Tetrachloro-m-xylene (surr.)	1	%	96	-	107	-
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	-	-	-	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	-	-	-	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	-	-	-	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	-	-	-	< 1
2.6-Dichlorophenol	0.5	mg/kg	-	-	-	< 0.5
4-Chloro-3-methylphenol	1.0	mg/kg	-	-	-	< 1
Pentachlorophenol	1.0	mg/kg	-	-	-	< 1
Tetrachlorophenols - Total	1.0	mg/kg	-	-	-	< 1
Total Halogenated Phenol*	1	mg/kg	-	-	-	< 1
Phenols (non-Halogenated)	<u> </u>					
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	-	-	-	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	-	-	-	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	-	-	< 0.2
2-Nitrophenol	1.0	mg/kg	-	-	-	< 1
2.4-Dimethylphenol	0.5	mg/kg				< 0.5

Client Sample ID			SB19/0.8	SB19/1.5	SB19/2.5	SB19/3.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16441	S18-Au16442	S18-Au16443	S18-Au16444
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Phenols (non-Halogenated)						
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	-	-	< 0.4
4-Nitrophenol	5	mg/kg	-	-	-	< 5
Dinoseb	20	mg/kg	-	-	-	< 20
Phenol	0.5	mg/kg	-	-	-	< 0.5
Total Non-Halogenated Phenol*	20	mg/kg	-	-	-	< 20
Phenol-d6 (surr.)	1	%	-	-	-	104
% Moisture	1	%	7.9	9.0	8.8	15
Heavy Metals						
Arsenic	2	mg/kg	4.0	3.6	-	< 2
Cadmium	0.4	mg/kg	< 0.4	1.5	-	< 0.4
Chromium	5	mg/kg	24	24	-	< 5
Copper	5	mg/kg	30	26	-	< 5
Lead	5	mg/kg	89	34	-	< 5
Mercury	0.1	mg/kg	0.1	< 0.1	-	< 0.1
Nickel	5	mg/kg	58	120	-	< 5
Zinc	5	mg/kg	860	320	-	< 5

Client Sample ID			SB20/0.3	SB20/1.0	SB20/1.5	SB20/3.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16445	S18-Au16446	S18-Au16447	S18-Au16448
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	=	< 20	-	-
TRH >C10-C16	50	mg/kg	=	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	=	< 100	-	-
TRH >C34-C40	100	mg/kg	=	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	-
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	< 50	-	-
TRH C10-36 (Total)	50	mg/kg	-	< 50	-	-
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	-	-
Toluene	0.1	mg/kg	-	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	-
o-Xylene	0.1	mg/kg	-	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	_	140	-	-

Client Sample ID			SB20/0.3	SB20/4 0	SB20/1.5	SB20/3.0
Sample Matrix			SB20/0.3 Soil	SB20/1.0 Soil	SB20/1.5 Soil	SB20/3.0 Soil
•						
Eurofins mgt Sample No.			S18-Au16445	S18-Au16446	S18-Au16447	S18-Au16448
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		T				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	=
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Acetaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benz(a)anthracene	0.5 0.5	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	-	-
Benzo(a)pyrene Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	_
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	_
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	_	_
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	_	_
Fluorene	0.5	mg/kg	< 0.5	< 0.5	_	_
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	_
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	_	_
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	=	-
2-Fluorobiphenyl (surr.)	1	%	94	101	-	-
p-Terphenyl-d14 (surr.)	1	%	83	120	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	=	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	=	=	< 0.05
a-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
b-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
d-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	< 0.05
Hexachlorobenzene Mothovychlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Toxaphene Aldrin and Dialdrin (Total)*	0.05	mg/kg	< 1	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	< 0.05
DDT + DDE + DDD (Total)* Vic EPA IMPG 621 OCP (Total)*	0.05	mg/kg	< 0.05	-		< 0.05
Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg mg/kg	< 0.1 < 0.1	-	-	< 0.1 < 0.1
Dibutylchlorendate (surr.)	1	mg/kg %	102	-	-	104
Tetrachloro-m-xylene (surr.)	1	%	96	-	-	104

mgt						
80						
Client Sample ID Sample Matrix			SB20/0.3 Soil	SB20/1.0 Soil	SB20/1.5 Soil	SB20/3.0 Soil
Eurofins mgt Sample No.			S18-Au16445	S18-Au16446	S18-Au16447	S18-Au16448
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit	Aug 00, 2010	Aug 00, 2010	Aug 00, 2010	Aug 00, 2010
Organophosphorus Pesticides	LOIN	Offic				
Azinphos-methyl	0.2	mg/kg	< 0.2	_	_	< 0.2
Bolstar	0.2	mg/kg	< 0.2			< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	_	_	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	_	_	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	_	_	< 0.2
Coumaphos	2	mg/kg	< 2	_	_	< 2
Demeton-S	0.2	mg/kg	< 0.2	-	_	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	-	_	< 0.2
Diazinon	0.2	mg/kg	< 0.2	_	_	< 0.2
Dichloryos	0.2	mg/kg	< 0.2	_	_	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	-	_	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	_	-	< 0.2
EPN	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethion	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	-	_	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	=	-	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	=	-	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	-	-	< 0.2
Fenthion	0.2	mg/kg	< 0.2	=	-	< 0.2
Malathion	0.2	mg/kg	< 0.2	=	-	< 0.2
Merphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	-	-	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Monocrotophos	2	mg/kg	< 2	-	-	< 2
Naled	0.2	mg/kg	< 0.2	-	-	< 0.2
Omethoate	2	mg/kg	< 2	-	-	< 2
Phorate	0.2	mg/kg	< 0.2	_	-	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
1	1	1	1	1	1	1

Dibutylchlorendate (surr.)

Tetrachloro-m-xylene (surr.)

Pyrazophos

Ronnel

Terbufos

Tokuthion

Trichloronate

Aroclor-1016

Aroclor-1221

Aroclor-1232

Aroclor-1242

Aroclor-1248

Aroclor-1254

Aroclor-1260

Total PCB*

% Moisture

Tetrachlorvinphos

Triphenylphosphate (surr.)

Polychlorinated Biphenyls

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SB20/0.3 Soil S18-Au16445 Aug 08, 2018	SB20/1.0 Soil S18-Au16446 Aug 08, 2018	SB20/1.5 Soil S18-Au16447 Aug 08, 2018	SB20/3.0 Soil S18-Au16448 Aug 08, 2018
Heavy Metals						
Arsenic	2	mg/kg	6.9	3.2	5.8	-
Cadmium	0.4	mg/kg	0.5	< 0.4	< 0.4	-
Chromium	5	mg/kg	28	39	38	-
Copper	5	mg/kg	47	89	35	-
Lead	5	mg/kg	200	90	460	-
Mercury	0.1	mg/kg	0.2	0.5	0.2	-
Nickel	5	mg/kg	66	200	71	-
Zinc	5	mg/kg	810	92	170	-

Client Sample ID			SB20/3.8	SB20/9.0	SB20/12.0	SB26/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16449	S18-Au16450	S18-Au16451	S18-Au16452
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	-	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	< 100
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	-	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	-	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	-	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	134	-	53	139
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SB20/3.8	SB20/9.0	SB20/12.0	SB26/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16449	S18-Au16450	S18-Au16451	S18-Au16452
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		1			-	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	85	93	97	95
p-Terphenyl-d14 (surr.)	1	%	107	121	117	114
Phenols (Halogenated)	T 0.5	T ,,			 	-
2-Chlorophenol	0.5	mg/kg	< 0.5	-	< 0.5	-
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	-	< 0.5	-
2.4.5-Trichlorophenol	1	mg/kg	< 1	-	<1	-
2.4.6-Trichlorophenol	1.0	mg/kg	<1	-	< 1	-
2.6-Dichlorophenol	0.5 1.0	mg/kg	< 0.5 < 1	-	< 0.5 < 1	-
4-Chloro-3-methylphenol	1.0	mg/kg	<1	-	<1	-
Pentachlorophenol Tetrachlorophenols - Total	1.0	mg/kg	<1	-	<1	-
Total Halogenated Phenol*	1.0	mg/kg mg/kg	< 1	-	< 1	
Phenois (non-Halogenated)		IIIg/kg		-		-
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	_	< 20	
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	-	< 5	-
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	-	< 0.2	
2-Nitrophenol	1.0	mg/kg	< 1	-	< 1	-
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	-	< 0.5	
2.4-Dinitrophenol	5	mg/kg	< 5	-	< 5	_
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	-	< 0.4	_
4-Nitrophenol	5	mg/kg	< 5	_	< 5	_
Dinoseb	20	mg/kg	< 20	_	< 20	_
Phenol	0.5	mg/kg	< 0.5	_	< 0.5	_
Total Non-Halogenated Phenol*	20	mg/kg	< 20	-	< 20	_
Phenol-d6 (surr.)	1	%	70	-	78	_
There as (carry)		1				
% Clay	1	%	_	< 1	_	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	14	_	_
pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	0.1	pH Units	-	6.2	_	_
Total Organic Carbon	0.1	%	-	0.3	_	_
Cation Exchange Capacity	0.05	meq/100g	-	1.0	_	_
Iron (%)	0.01	%	-	0.06	_	_
% Moisture	1	%	20	16	16	10
Heavy Metals	<u> </u>					1.5
Arsenic	2	mg/kg	< 2	_	3.9	3.5
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	-	< 5	17
Copper	5	mg/kg	< 5	_	< 5	25
Iron	20	mg/kg	-	640	-	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled	100		SB20/3.8 Soil S18-Au16449 Aug 08, 2018	SB20/9.0 Soil S18-Au16450 Aug 08, 2018	SB20/12.0 Soil S18-Au16451 Aug 08, 2018	SB26/0.2 Soil S18-Au16452 Aug 10, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	< 5	-	< 5	120
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	0.2
Nickel	5	mg/kg	< 5	-	< 5	19
Zinc	5	mg/kg	< 5	-	12	430

Client Sample ID			SB26/0.5	SB26/2.0	SB26/3.0	SB26/4.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16453	S18-Au16454	S18-Au16455	S18-Au16456
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit	3 ,			3 1,
Total Recoverable Hydrocarbons - 2013 NEPM		Onic				
Naphthalene ^{N02}	0.5	mg/kg	_	_	_	< 0.5
TRH C6-C10	20	mg/kg	_	_	_	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	_	_	_	< 20
TRH >C10-C16	50	mg/kg	_	_	_	72
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	_	_	72
TRH >C16-C34	100	mg/kg	_	_	_	< 100
TRH >C34-C40	100	mg/kg	_	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	_	_	_	< 100
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	1 5 5				
TRH C6-C9	20	mg/kg	_	-	-	< 20
TRH C10-C14	20	mg/kg	_	_	_	43
TRH C15-C28	50	mg/kg	_	_	_	50
TRH C29-C36	50	mg/kg	_	-	_	< 50
TRH C10-36 (Total)	50	mg/kg	_	_	_	93
ВТЕХ	1	, <u>J</u>				
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	143
Polycyclic Aromatic Hydrocarbons		_				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5

Client Sample ID			SB26/0.5	SB26/2.0	SB26/3.0	SB26/4.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16453	S18-Au16454	S18-Au16455	S18-Au16456
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	1 2011	1 01111				
Fluorene	0.5	mg/kg	_	_	_	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	_	_	-	< 0.5
Naphthalene	0.5	mg/kg	_	_	_	< 0.5
Phenanthrene	0.5	mg/kg	_	_	_	< 0.5
Pyrene	0.5	mg/kg	_	-	_	< 0.5
Total PAH*	0.5	mg/kg	_	-	_	< 0.5
2-Fluorobiphenyl (surr.)	1	%	_	_	_	113
p-Terphenyl-d14 (surr.)	1	%	_	_	_	130
Organochlorine Pesticides	,	1				
Chlordanes - Total	0.1	mg/kg	< 0.1	_	< 0.1	_
4.4'-DDD	0.05	mg/kg	< 0.05	_	< 0.05	_
4.4'-DDE	0.05	mg/kg	< 0.05	_	< 0.05	_
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	_
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	_	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	=	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	=	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	-
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.05	=
Toxaphene	1	mg/kg	< 1	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	110	-	118	-
Tetrachloro-m-xylene (surr.)	1	%	104	-	96	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Bolstar	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Coumaphos	2	mg/kg	< 2	-	< 2	-
Demeton-S	0.2	mg/kg	< 0.2	-	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	-
Diazinon	0.2	mg/kg	< 0.2	-	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.2	-	< 0.2	-
Dimethoate	0.2	mg/kg	< 0.2	-	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	-	< 0.2	-

Client Sample ID			SB26/0.5	SB26/2.0	SB26/3.0	SB26/4.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16453	S18-Au16454	S18-Au16455	S18-Au16456
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit	7.0.9 10, 2010	1.09 .0, 20.0	1.09 .0, 20.0	7.0.9 10, 2010
Organophosphorus Pesticides	LOK	Ullit				
	0.0		100		100	+
EPN	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethion	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethoprop	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fenitrothion 5	0.2	mg/kg	< 0.2	-	< 0.2	-
Fensulfothion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fenthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Malathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Merphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Methyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Monocrotophos	2	mg/kg	< 2	-	< 2	-
Naled	0.2	mg/kg	< 0.2	-	< 0.2	-
Omethoate	2	mg/kg	< 2	-	< 2	-
Phorate	0.2	mg/kg	< 0.2	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	-	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	126	-	129	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	< 0.1	-
Total PCB*	0.1	mg/kg	< 0.1	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	110	-	118	-
Tetrachloro-m-xylene (surr.)	1	%	104	-	96	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	8.8	-	-
% Moisture	1	%	6.4	14	16	17
Heavy Metals						
Arsenic	2	mg/kg	-	-	-	< 2
Cadmium	0.4	mg/kg	-	-	-	< 0.4
Chromium	5	mg/kg	-	-	-	< 5
Copper	5	mg/kg	-	-	-	< 5
Lead	5	mg/kg	-	-	-	39
Mercury	0.1	mg/kg	-	-	-	< 0.1
Nickel	5	mg/kg	-	-	-	< 5
Zinc	5	mg/kg	-	-	-	12
	•			-	•	•

Client Sample ID			SB26/5.0	SB26/6.0	SB26/8.0	SB26/1.5-2.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16457	S18-Au16458	S18-Au16459	S18-Au16460
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit	3 ,			
Total Recoverable Hydrocarbons - 2013 NEPM Fra		_ Onit				
Naphthalene ^{N02}	0.5	mg/kg	_	< 0.5	_	3.4
TRH C6-C10	20	mg/kg	_	< 20	-	41
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	_	< 20	-	40
TRH >C10-C16	50	mg/kg	_	63	-	1400
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	63	_	1400
TRH >C16-C34	100	mg/kg	_	130	-	1800
TRH >C34-C40	100	mg/kg	_	< 100	-	270
TRH >C10-C40 (total)*	100	mg/kg		193	<u> </u>	3470
Total Recoverable Hydrocarbons - 1999 NEPM Fra		IIIg/Rg	_	193	-	3470
TRH C6-C9	20	ma/ka		< 20		< 20
TRH C10-C14	20	mg/kg mg/kg	_	39	-	1000
TRH C15-C28	50		-	81	-	1500
TRH C29-C36	50	mg/kg mg/kg	-	69	-	500
TRH C10-36 (Total)	50	mg/kg		189	-	3000
BTEX	30	Hg/kg	-	109	-	3000
	0.4	ma m/l cm		< 0.1		< 0.1
Benzene	0.1	mg/kg	-	-	-	-
Toluene		mg/kg	-	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1 < 0.2	-	0.3
m&p-Xylenes	0.2	mg/kg	-		-	0.5
o-Xylene Xylenes - Total	0.1	mg/kg	-	< 0.1 < 0.3	-	0.8
4-Bromofluorobenzene (surr.)	1	mg/kg %		56	-	103
Volatile Organics	l I	70	-	50	-	103
-	0.5		105	+		105
1.1-Dichloroethane	0.5	mg/kg	< 0.5	-	-	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	-	-	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	-	-	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	-	< 0.5
1.1.2-Trichloroethane 1.1.2.2-Tetrachloroethane	0.5	mg/kg mg/kg	< 0.5 < 0.5	-	-	< 0.5 < 0.5
1.2-Dibromoethane	0.5		< 0.5	-	-	< 0.5
1.2-Dibromoetriane 1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	
1.2-Dichloroethane		mg/kg mg/kg	< 0.5	-	-	< 0.5 < 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	-	-	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5		-	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	-	-	4.9
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	-		< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5			< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	-	-	0.9
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5	-	-	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	-	-	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	-	-	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	-	-	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzene	0.5	mg/kg	< 0.5	-	-	< 0.5
Bromobenzene	0.1	mg/kg	< 0.1	-	-	< 0.1
Bromochloromethane	0.5	mg/kg	< 0.5	-	-	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5	-	-	< 0.5
Bromoform	0.5	mg/kg	< 0.5	-	-	< 0.5

Client Sample ID			SB26/5.0	SB26/6.0	SB26/8.0	SB26/1.5-2.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16457	S18-Au16458	S18-Au16459	S18-Au16460
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit	19 10, 2010	7.09 .0, 20.0	1.09 10, 2010	7.00
Volatile Organics	LOIC	Onit		1		
Bromomethane	0.5	ma/ka	< 0.5	_	_	< 0.5
Carbon disulfide	0.5	mg/kg mg/kg	< 0.5	-	-	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	-	-	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	-	_	< 0.5
Chloroethane	0.5	mg/kg	< 0.5	-		< 0.5
Chloroform	0.5	mg/kg	< 0.5	-	_	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	_	_	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	_	_	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	_	_	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	_	_	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	_	_	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	-	_	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	_	_	0.3
lodomethane	0.5	mg/kg	< 0.5	-	-	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	_	_	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	_	_	0.5
Methylene Chloride	0.5	mg/kg	< 0.5	_	_	< 0.5
o-Xylene	0.1	mg/kg	< 0.1	-	-	0.3
Styrene	0.5	mg/kg	< 0.5	_	_	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5	_	_	< 0.5
Toluene	0.1	mg/kg	< 0.1	-	-	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	-	-	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	-	-	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5	-	-	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	=	-	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5	-	-	< 0.5
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	0.8
Total MAH*	0.5	mg/kg	< 0.5	-	-	1.1
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	-	-	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	-	-	< 0.5
4-Bromofluorobenzene (surr.)	1	%	103	-	-	103
Toluene-d8 (surr.)	1	%	104	-	-	93
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	1.9
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	2.2
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	2.4
Acenaphthene	0.5	mg/kg	-	< 0.5	-	2.3
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	-	1.6
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	1.8
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	1.4
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	1.3
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	0.7
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	1.1
Chrysene	0.5	mg/kg	-	< 0.5	-	1.9
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	-	4.8
Fluorene	0.5	mg/kg	-	< 0.5	-	2.6
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	0.8

ma	C	٠
	~	L
	0	-

Client Sample ID Sample Matrix			SB26/5.0 Soil	SB26/6.0 Soil	SB26/8.0 Soil	SB26/1.5-2.0 Soil
•						
Eurofins mgt Sample No.			S18-Au16457	S18-Au16458	S18-Au16459	S18-Au16460
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	-	< 0.5	-	4.7
Phenanthrene	0.5	mg/kg	-	< 0.5	-	7.4
Pyrene	0.5	mg/kg	-	< 0.5	-	5.2
Total PAH*	0.5	mg/kg	-	< 0.5	-	37.6
2-Fluorobiphenyl (surr.)	1	%	-	100	-	102
p-Terphenyl-d14 (surr.)	1	%	-	109	-	102
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-BHC	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.05	mg/kg	-	-	< 0.05	-
Toxaphene	1	mg/kg	-	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	92	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	66	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Bolstar	0.2	mg/kg	-	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	-	-	< 0.2	-
Coumaphos	2	mg/kg	-	-	< 2	-
Demeton-S	0.2	mg/kg	-	-	< 0.2	-
Demeton-O	0.2	mg/kg	-	-	< 0.2	-
Diazinon	0.2	mg/kg	-	-	< 0.2	-
Dichlorvos	0.2	mg/kg	-	-	< 0.2	-
Dimethoate	0.2	mg/kg	-	-	< 0.2	-
Disulfoton	0.2	mg/kg	-	-	< 0.2	-
EPN	0.2	mg/kg	-	-	< 0.2	-
Ethion	0.2	mg/kg	-	-	< 0.2	-

Client Sample ID			SB26/5.0	SB26/6.0	SB26/8.0	SB26/1.5-2.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16457	S18-Au16458	S18-Au16459	S18-Au1646
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Ethoprop	0.2	mg/kg	_	_	< 0.2	_
Ethyl parathion	0.2	mg/kg	-	-	< 0.2	_
Fenitrothion	0.2	mg/kg	-	-	< 0.2	-
Fensulfothion	0.2	mg/kg	_	-	< 0.2	-
Fenthion	0.2	mg/kg	-	-	< 0.2	-
Malathion	0.2	mg/kg	-	-	< 0.2	-
Merphos	0.2	mg/kg	-	=	< 0.2	-
Methyl parathion	0.2	mg/kg	-	-	< 0.2	-
Mevinphos	0.2	mg/kg	-	-	< 0.2	-
Monocrotophos	2	mg/kg	-	-	< 2	-
Naled	0.2	mg/kg	-	-	< 0.2	-
Omethoate	2	mg/kg	-	=	< 2	-
Phorate	0.2	mg/kg	-	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Pyrazophos	0.2	mg/kg	-	-	< 0.2	-
Ronnel	0.2	mg/kg	-	-	< 0.2	-
Terbufos	0.2	mg/kg	-	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	-	-	< 0.2	-
Tokuthion	0.2	mg/kg	-	-	< 0.2	-
Trichloronate	0.2	mg/kg	-	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	-	-	107	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	-
Total PCB*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	=	92	-
Tetrachloro-m-xylene (surr.)	1	%	-	=	66	-
Phenois (Halogenated)	0.5					
2-Chlorophenol	0.5	mg/kg	-	-	-	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	-	-	-	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	-	-	-	<1
2.4.6-Trichlorophenol	1.0	mg/kg	-	-	-	< 1
2.6-Dichlorophenol	0.5	mg/kg	-	-	-	< 0.5
4-Chloro-3-methylphenol Pentachlorophenol	1.0	mg/kg	-	-	-	< 1
•	1.0	mg/kg	-	-	-	< 1
Tetrachlorophenols - Total Total Halogenated Phenol*	1.0	mg/kg	-			<1
Phenols (non-Halogenated)		mg/kg	-	-	-	<u> </u>
2-Cyclohexyl-4.6-dinitrophenol	20	maller	_		-	< 20
2-Cyclonexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol	5	mg/kg		-		< 20
2-Metnyl-4.o-dinitropnenol 2-Methylphenol (o-Cresol)	0.2	mg/kg mg/kg	-	-	-	< 0.2
2-Nitrophenol	1.0	mg/kg	-	-	-	< 1
			-	-	-	< 0.5
2.4-Dimethylphenol 2.4-Dinitrophenol	0.5 5	mg/kg mg/kg	-	-	-	< 5

Client Sample ID			SB26/5.0	SB26/6.0	SB26/8.0	SB26/1.5-2.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16457	S18-Au16458	S18-Au16459	S18-Au16460
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Phenols (non-Halogenated)						
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	-	-	< 0.4
4-Nitrophenol	5	mg/kg	-	-	-	< 5
Dinoseb	20	mg/kg	-	-	-	< 20
Phenol	0.5	mg/kg	-	-	-	< 0.5
Total Non-Halogenated Phenol*	20	mg/kg	-	-	-	< 20
Phenol-d6 (surr.)	1	%	-	-	-	93
% Moisture	1	%	17	16	17	12
Heavy Metals	•	•				
Arsenic	2	mg/kg	-	< 2	-	46
Cadmium	0.4	mg/kg	-	< 0.4	-	1.1
Chromium	5	mg/kg	-	< 5	-	77
Copper	5	mg/kg	_	< 5	_	290
Lead	5	mg/kg	-	11	-	9000
Mercury	0.1	mg/kg	-	< 0.1	-	0.2
Nickel	5	mg/kg	-	< 5	-	76
Zinc	5	mg/kg	-	< 5	-	2700

Client Sample ID			SB27/0.2	SB27/0.5	SB27/1.0	SB27/3.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16461	S18-Au16462	S18-Au16463	S18-Au16465
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	=	< 20
TRH >C10-C16	50	mg/kg	-	=	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	=	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	< 100
TRH >C34-C40	100	mg/kg	-	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	< 100
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	-	< 20
TRH C15-C28	50	mg/kg	-	-	-	< 50
TRH C29-C36	50	mg/kg	-	-	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	-	-	< 50
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	140

Client Sample ID			SB27/0.2	SB27/0.5	SB27/1.0	SB27/3.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16461	S18-Au16462	S18-Au16463	S18-Au16465
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit	Aug 00, 2010	Aug 00, 2010	Aug 00, 2010	Aug 00, 2010
Polycyclic Aromatic Hydrocarbons	LON	Offic				
Benzo(a)pyrene TEQ (lower bound) *	0.5	ma/ka			< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg mg/kg	-	-	0.6	0.6
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	1.2	1.2
Acenaphthene	0.5	mg/kg	_	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg		-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	_	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	_	_	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	_	_	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	_	_	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	_	_	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	_	_	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	_	_	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	_	_	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	_	_	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	_	< 0.5	< 0.5
Pyrene	0.5	mg/kg	_	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	101	120
p-Terphenyl-d14 (surr.)	1	%	-	-	107	135
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	=
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.05	mg/kg	< 0.05	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	110	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	79	-	-	-

Client Sample ID			SB27/0.2	SB27/0.5	SB27/1.0	SB27/3.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16461	S18-Au16462	S18-Au16463	S18-Au16465
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit	3 11,			3,
Organophosphorus Pesticides	1 2011	1 01110				
Azinphos-methyl	0.2	mg/kg	< 0.2	-	-	_
Bolstar	0.2	mg/kg	< 0.2	_	_	_
Chlorfenvinphos	0.2	mg/kg	< 0.2	_	_	_
Chlorpyrifos	0.2	mg/kg	< 0.2	_	_	_
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	_	_
Coumaphos	2	mg/kg	< 2	_	_	_
Demeton-S	0.2	mg/kg	< 0.2		_	_
Demeton-O	0.2	mg/kg	< 0.2	-	-	
Diazinon	0.2	mg/kg	< 0.2	-	-	_
Dichlorvos	0.2	mg/kg	< 0.2	_	-	_
Dimethoate	0.2	mg/kg	< 0.2	-	-	
Disulfoton	0.2	mg/kg	< 0.2	_	_	_
EPN	0.2	mg/kg	< 0.2	_	_	_
Ethion	0.2	mg/kg	< 0.2	-	_	<u> </u>
Ethoprop	0.2	mg/kg	< 0.2		_	_
Ethyl parathion	0.2	mg/kg	< 0.2	-	_	_
Fenitrothion	0.2	mg/kg	< 0.2		-	_
Fensulfothion	0.2	mg/kg	< 0.2	_	_	_
Fenthion	0.2	mg/kg	< 0.2		_	_
Malathion	0.2	mg/kg	< 0.2	_	_	_
Merphos	0.2	mg/kg	< 0.2	-	-	_
Methyl parathion	0.2	mg/kg	< 0.2	_	-	_
Mevinphos	0.2	mg/kg	< 0.2	-	-	_
Monocrotophos	2	mg/kg	< 2	-	_	_
Naled	0.2	mg/kg	< 0.2	-	-	_
Omethoate	2	mg/kg	< 2	_	_	_
Phorate	0.2	mg/kg	< 0.2	_	_	_
Pirimiphos-methyl	0.2	mg/kg	< 0.2	_	_	_
Pyrazophos	0.2	mg/kg	< 0.2	_	-	_
Ronnel	0.2	mg/kg	< 0.2	-	-	_
Terbufos	0.2	mg/kg	< 0.2	_	-	_
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-	-
Tokuthion	0.2	mg/kg	< 0.2	_	_	_
Trichloronate	0.2	mg/kg	< 0.2	-	-	-
Triphenylphosphate (surr.)	1	%	117	-	-	-
Polychlorinated Biphenyls		70	117	_	_	
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	_
Aroclor-1010	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221 Aroclor-1232	0.1	mg/kg	< 0.1	-	-	_
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	
	0.1		< 0.1	-	-	-
Aroclor-1254 Aroclor-1260		mg/kg	< 0.1			
Total PCB*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)		mg/kg %	1	-	-	-
	1		110	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	79	-	-	-

%

5.7

5.8

13

5.3

% Moisture

Client Sample ID Sample Matrix			SB27/0.2 Soil	SB27/0.5 Soil	SB27/1.0 Soil	SB27/3.8 Soil
Eurofins mgt Sample No.			S18-Au16461	S18-Au16462	S18-Au16463	S18-Au16465
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	-	4.8	-	< 2
Cadmium	0.4	mg/kg	-	7.8	-	< 0.4
Chromium	5	mg/kg	-	38	-	< 5
Copper	5	mg/kg	-	66	-	< 5
Lead	5	mg/kg	-	440	-	< 5
Mercury	0.1	mg/kg	-	0.1	-	< 0.1
Nickel	5	mg/kg	-	84	-	< 5
Zinc	5	mg/kg	_	1500	-	5.4

Client Sample ID			SB27/5.0	SB27/6.0	QS1	QS2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16466	S18-Au16467	S18-Au16468	S18-Au16470
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 10, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	-	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	-	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	-	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	< 100	< 100
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	-	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	-	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	-	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	-	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	-	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	104	131	148
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5

		T	Γ		Т	1
Client Sample ID			SB27/5.0	SB27/6.0	QS1	QS2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au16466	S18-Au16467	S18-Au16468	S18-Au16470
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 10, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	•	•				
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	113	120	102
p-Terphenyl-d14 (surr.)	1	%	-	132	135	122
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	-	< 0.5	-	-
2.4-Dichlorophenol	0.5	mg/kg	-	< 0.5	-	-
2.4.5-Trichlorophenol	1	mg/kg	-	< 1	-	-
2.4.6-Trichlorophenol	1.0	mg/kg	-	< 1	-	-
2.6-Dichlorophenol	0.5	mg/kg	-	< 0.5	-	-
4-Chloro-3-methylphenol	1.0	mg/kg	-	< 1	-	-
Pentachlorophenol	1.0	mg/kg	-	< 1	-	-
Tetrachlorophenols - Total	1.0	mg/kg	-	< 1	-	-
Total Halogenated Phenol*	1	mg/kg	-	< 1	-	-
Phenols (non-Halogenated)	•					
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	-	< 20	-	-
2-Methyl-4.6-dinitrophenol	5	mg/kg	-	< 5	-	-
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	< 0.2	-	-
2-Nitrophenol	1.0	mg/kg	-	< 1	-	-
2.4-Dimethylphenol	0.5	mg/kg	-	< 0.5	-	-
2.4-Dinitrophenol	5	mg/kg	-	< 5	-	-
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	< 0.4	-	-
4-Nitrophenol	5	mg/kg	-	< 5	-	-
Dinoseb	20	mg/kg	-	< 20	-	-
Phenol	0.5	mg/kg	-	< 0.5	-	-
Total Non-Halogenated Phenol*	20	mg/kg	-	< 20	-	-
Phenol-d6 (surr.)	1	%	-	105	-	-
	•	•				
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.4	-	-	-
% Moisture	1	%	19	18	13	12
Heavy Metals						
Arsenic	2	mg/kg	-	< 2	< 2	< 2
Cadmium	0.4	mg/kg	-	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	-	< 5	< 5	< 5
Copper	5	mg/kg	-	< 5	< 5	< 5
Lead	5	mg/kg	-	< 5	< 5	< 5
Mercury	0.1	ma/ka	-	₹ U. I	< 0.1	< U. I
Mercury Nickel	0.1 5	mg/kg mg/kg	-	< 0.1 < 5	< 0.1 < 5	< 0.1 < 5

Client Sample ID			TS	тв	
Sample Matrix			Soil	Soil S18-Au16646	
Eurofins mgt Sample No.			S18-Au16645		
Date Sampled			Aug 09, 2018	Aug 09, 2018	
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 2013 NE	EPM Fractions				
Naphthalene ^{N02}	0.5	mg/kg	99	< 0.5	
TRH C6-C10	20	mg/kg	110	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	
Total Recoverable Hydrocarbons - 1999 NE	EPM Fractions				
TRH C6-C9	20	mg/kg	110	< 20	
BTEX					
Benzene	0.1	mg/kg	110	< 0.1	
Toluene	0.1	mg/kg	110	< 0.1	
Ethylbenzene	0.1	mg/kg	110	< 0.1	
m&p-Xylenes	0.2	mg/kg	110	< 0.2	
o-Xylene	0.1	mg/kg	110	< 0.1	
Xylenes - Total	0.3	mg/kg	110	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	94	54	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Testing Site Melbourne	Extracted Aug 16, 2018	Holding Time 14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons	Sydney	Aug 16, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 16, 2018	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Aug 16, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Eurofins mgt Suite B7A			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 16, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 16, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (Halogenated)	Melbourne	Aug 16, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Melbourne	Aug 16, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Melbourne	Aug 16, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Volatile Organics	Melbourne	Aug 16, 2018	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Aug 16, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Eurofins mgt Suite B15			
Organochlorine Pesticides	Melbourne	Aug 16, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Melbourne	Aug 16, 2018	14 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Melbourne	Aug 16, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
NEPM Screen for Soil Classification			
% Clay	Brisbane	Aug 20, 2018	6 Day
- Method: LTM-GEN-7040			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Aug 16, 2018	7 Day
- Method: LTM-INO-4030 Conductivity			
pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	Melbourne	Aug 16, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Aug 17, 2018	28 Day
- Method: APHA 5310B Total Organic Carbon			
Cation Exchange Capacity	Melbourne	Aug 17, 2018	28 Day
- Method: LTM-MET-3060 - Cation Exchange Capacity (CEC) & Exchangeable Sodium Percentage (ES	P)		
Iron (%)	Melbourne	Aug 16, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Iron	Melbourne	Aug 16, 2018	6 Month
- Method: LTM-MET-3030 by ICP-OES			
% Moisture	Melbourne	Aug 16, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Report Number: 612025-S

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Due: Priority: Contact Name: Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

02 8960 0555

612025

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

CANCELLED Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

pH (1:5 Aqueous extract at 25°C as rec.)

× ×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794

Perth Laboratory - NATA Site # 23736

Sydney Laboratory - NATA Site # 18217

×

Sampling Time

Aug 09, 2018

Sample Date

Sample ID

ŝ

External Laboratory

LAB ID

Matrix

× S18-Au16412 S18-Au16413 S18-Au16414 S18-Au16415

Soil

Aug 09, 2018

SB1/0.5 SB6/0.4

SB1/0.3

Aug 09, 2018

S18-Au16416 Soil Soil

× ×

× × × × × ×

×

×

× ×

×

×

× ×

×

×

×

×

Soil Soil

SB6/2.6

4 0 9

SB6/3.2 SB6/4.8

SB6/1.0

က

Soil Aug 09, 2018 Aug 09, 2018 Aug 09, 2018 Aug 09, 2018

S18-Au16417 S18-Au16418 S18-Au16419 S18-Au16420

> Soil Soil Aug 09, 2018 Aug 09, 2018

> > SB11/0.5 SB11/0.2

×

Page 50 of 79 Report Number: 612025-S

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

Due: Priority: Contact Name:

Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofins | mgt Suite B7 NEPM Screen for Soil Classification Moisture Set Sample Detail

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Volatile Organics Eurofins | mgt Suite B15 Metals M8 Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract at 25°C as rec.) HOLD CANCELLED Asbestos - WA guidelines

×

×

× ×

×

×

×

×

×

×

×

×

×

Perth Laboratory - NATA Site # 23736

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Melbourne Laboratory - NATA Site # 1254 & 14271

Aug 09, 2018

SB11/1.2 SB11/1.6 SB11/4.4 SB11/5.0

10

12 13 4 15

Aug 09, 2018

Aug 09, 2018

S18-Au16421

S18-Au16423 S18-Au16424 S18-Au16425 S18-Au16426 S18-Au16427

S18-Au16422

Soil Soil Soil

Aug 09, 2018

×

× × ×

× ×

×

 \times

×

× × ×

×

×

×

×

× ×

×

×

×

×

×

×

S18-Au16432

Aug 10, 2018

SB14/10.0

19

SB10/0.3 SB10/0.5

×

×

×

×

×

×

×

Soil

×

SB14/0.5

SB14/0.2

S18-Au16428 S18-Au16429 S18-Au16430 S18-Au16431

Soil Soil Soil

Soil Soil Aug 10, 2018

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

> SB14/2.5 SB14/3.8

17 18

SB14/1.2

16

Page 51 of 79 Report Number: 612025-S

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Due: Priority: Contact Name: Received:

02 8960 0555

612025

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

CANCELLED

Volatile Organics

NEPM Screen for Soil Classification

Eurofins | mgt Suite B15 Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract at 25°C as rec.) Asbestos - WA guidelines Sample Detail

×

× ×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB17/0.5 SB17/1.0 SB17/6.0 SB17/7.5 SB17/9.0

Aug 10, 2018 Aug 10, 2018

×

× ×

×

×

×

× × ×

×

× ×

 \times

×

×

S18-Au16433 S18-Au16434 S18-Au16435 S18-Au16436 S18-Au16437 S18-Au16438 S18-Au16439 S18-Au16440 S18-Au16441 S18-Au16442 S18-Au16443 S18-Au16444

× × ×

×

Soil Soil

> Aug 10, 2018 Aug 10, 2018

×

× ×

×

×

×

×

Soil Soil Soil

> Aug 10, 2018 Aug 10, 2018 Aug 08, 2018

SB18/0.6 SB18/1.0

SB18/0.2

22 23 24 24 25 26 27 27 27 28 29 30

Aug 10, 2018

Soil Soil Soil

> Aug 08, 2018 Aug 08, 2018 Aug 08, 2018

SB19/1.5 SB19/2.5

31

SB19/3.7

SB19/0.8

Soil

×

× ×

×

×

×

× ×

×

×

×

×

× ×

×

×

Page 52 of 79 Report Number: 612025-S

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Due: Priority: Contact Name: Received:

02 8960 0555

612025

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofins | mgt Suite B7A Eurofins | mgt Suite B7 NEPM Screen for Soil Classification Moisture Set Volatile Organics Eurofins | mgt Suite B15 Metals M8 HOLD CANCELLED Asbestos - WA guidelines Sample Detail

BTEXN and Volatile TRH

Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract at 25°C as rec.)

× ×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 08, 2018

SB20/0.3 SB20/1.0 SB20/1.5

34

Aug 08, 2018 Aug 08, 2018

×

× × ×

×

×

× ×

×

×

×

×

Soil Soil

> Aug 08, 2018 Aug 08, 2018

SB20/3.0 SB20/3.8

35 36 37 38

Soil Soil Soil

Aug 08, 2018 Aug 08, 2018

SB20/12.0

40

SB26/0.2 SB26/0.5 SB26/2.0

4 42 43

SB20/9.0

39

Soil

×

S18-Au16445 S18-Au16446 S18-Au16447 S18-Au16448 S18-Au16449 S18-Au16450 S18-Au16451

× × × × × × ×

×

×

×

×

 \times

×

×

× ×

×

×

×

×

S18-Au16452

S18-Au16453 S18-Au16454 S18-Au16455 S18-Au16456

Soil Soil Soil

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

SB26/3.0

SB26/4.0

44

Page 53 of 79 Report Number: 612025-S

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

612025 Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

02 8960 0555

Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Due: Priority: Contact Name:

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

HOLD CANCELLED Asbestos - WA guidelines

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

Polycyclic Aromatic Hydrocarbons

pH (1:5 Aqueous extract at 25°C as rec.)

×

×

×

×

×

×

×

×

×

×

×

Sydney Laboratory - NATA Site # 18217

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB26/5.0 SB26/6.0 SB26/8.0

46

Aug 10, 2018

S18-Au16458 S18-Au16459 S18-Au16460 S18-Au16461 S18-Au16462 S18-Au16463

S18-Au16457

Aug 10, 2018

Soil Soil

SB26/1.5-2.0

SB27/0.2 SB27/0.5 SB27/1.0 SB27/1.5 SB27/3.8 SB27/5.0 SB27/6.0

47 48 49 50 51 52 53 54

×

×

× ×

×

× ×

 \times

×

× ×

×

 \times

×

S18-Au16464 S18-Au16465 S18-Au16466 S18-Au16467 S18-Au16468

Soil Soil

Aug 08, 2018 Aug 08, 2018 Aug 10, 2018

55

QS1

×

×

Soil Soil Soil

Soil

Aug 08, 2018

Aug 10, 2018

Soil Aug 08, 2018 Aug 08, 2018 Aug 08, 2018 Aug 08, 2018

×

× ×

×

×

Page 54 of 79 Report Number: 612025-S

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Due: Priority: Contact Name:

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH × × Eurofins | mgt Suite B7A × × Eurofins | mgt Suite B7 × × NEPM Screen for Soil Classification × × Moisture Set × Volatile Organics Eurofins | mgt Suite B15 × × Metals M8 × Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract at 25°C as rec.) × × \times × \times × HOLD CANCELLED × Asbestos - WA guidelines S18-Au16470 S18-Au16542 S18-Au16543 S18-Au16544 S18-Au16545 S18-Au16546 S18-Au16472 Water Soil Soil Soil Soil Soil Melbourne Laboratory - NATA Site # 1254 & 14271 Sample Detail Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Perth Laboratory - NATA Site # 23736 Aug 08, 2018 Aug 09, 2018 Aug 09, 2018 Aug 08, 2018 Aug 09, 2018 Aug 09, 2018 Aug 09, 2018

× ×

S18-Au16547 S18-Au16548 S18-Au16549 S18-Au16550

Soil

Aug 10, 2018 Aug 10, 2018

SB14/0.4 SB14/3.2 SB14/5.0

SB11/2.0 SB11/2.6 SB11/3.6

60 60 62 63 64 65 66

SB6/3.9

SB6/1.25

QS2 RB1

58

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

SB14/6.0

67

SB14/7.0

Soil Soil Soil

× ×

S18-Au16551

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

612025

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

HOLD CANCELLED Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

Sample Detail

pH (1:5 Aqueous extract at 25°C as rec.)

× ×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB14/9.0 SB17/0.2 SB17/1.3 SB17/1.6 SB17/1.6 SB17/1.9 SB17/3.8

70

71 72 73

Aug 10, 2018 Aug 10, 2018

×

× ×

× × ×

×

×

 \times

S18-Au16554 S18-Au16555 S18-Au16556 S18-Au16557 S18-Au16558 S18-Au16559 S18-Au16560 S18-Au16561 S18-Au16562 S18-Au16563

Soil Soil

> Aug 10, 2018 Aug 10, 2018

×

×

× ×

S18-Au16552 S18-Au16553

×

 \times × × × ×

×

Soil Soil Soil

> Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

> > SB17/10.0

SB19/0.2 SB19/3.2 SB20/2.4 SB26/1.0

77 79

Aug 10, 2018

74 75 76

Soil Soil Soil

> Aug 10, 2018 Aug 10, 2018

Soil

Page 56 of 79 Report Number: 612025-S

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name:

Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Due: Priority: Contact Name:

Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH	×	×								×	×	2
Eurofins mgt Suite B7A	×	×										11
Eurofins mgt Suite B7	×	×										15
NEPM Screen for Soil Classification	×		×									4
Moisture Set	×											99
Volatile Organics	×											7
Eurofins mgt Suite B15	×											20
Metals M8	×											6
Polycyclic Aromatic Hydrocarbons	×											8
pH (1:5 Aqueous extract at 25°C as rec.)	×											5
HOLD	×				×	×	×	×	×			26
CANCELLED		×										1
Asbestos - WA guidelines				×								14
					S18-Au16564	S18-Au16565	S18-Au16566	S18-Au16567	S18-Au16609	S18-Au16645	S18-Au16646	
ətail	8 14271				Soil	Soil	Soil	Soil	Soil	Soil	Soil	
Sample Detail	Melbourne Laboratory - NATA Site # 1254 & 1427	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	SB26/7.0 Aug 10, 2018	SB26/9.0	SB26/10.0	SB27/3.1	SB14/8.0 Aug 10, 2018	TS Aug 09, 2018	TB Aug 09, 2018	Test Counts
	Ž	S	ā	Pe	82	83	84	85	86	87	88	Te

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

ora/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

coc Chain of Custody SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

Date Reported: Aug 21, 2018

- Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 58 of 79 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 612025-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractio	ns				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractio	ns				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	19,9	0.0			
Volatile Organics					
1.1-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dichloropropane	mg/kg	< 0.5	0.5	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.5	0.5	Pass	
1.2.4-Trimethylbenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichloropropane	mg/kg	< 0.5	0.5	Pass	
1.3.5-Trimethylbenzene	mg/kg	< 0.5	0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
2-Butanone (MEK)	mg/kg	< 0.5	0.5	Pass	
• •			0.5		
2-Propanone (Acetone)	mg/kg	< 0.5	0.5	Pass Pass	
4-Chlorotoluene	mg/kg	< 0.5			
4-Methyl-2-pentanone (MIBK)	mg/kg	< 0.5	0.5	Pass	
Allyl chloride	mg/kg	< 0.5	0.5	Pass	
Bromobenzene	mg/kg	< 0.5	0.5	Pass	
Bromochloromethane	mg/kg	< 0.5	0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5	0.5	Pass	
Bromoform	mg/kg	< 0.5	0.5	Pass	
Bromomethane	mg/kg	< 0.5	0.5	Pass	
Carbon disulfide	mg/kg	< 0.5	0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5	0.5	Pass	
Chlorobenzene	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chloroethane	mg/kg	< 0.5	0.5	Pass	
Chloroform	mg/kg	< 0.5	0.5	Pass	
Chloromethane	mg/kg	< 0.5	0.5	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Dibromochloromethane	mg/kg	< 0.5	0.5	Pass	
Dibromomethane	mg/kg	< 0.5	0.5	Pass	
Dichlorodifluoromethane	mg/kg	< 0.5	0.5	Pass	
lodomethane	mg/kg	< 0.5	0.5	Pass	
Isopropyl benzene (Cumene)	mg/kg	< 0.5	0.5	Pass	
Methylene Chloride	mg/kg	< 0.5	0.5	Pass	
Styrene	mg/kg	< 0.5	0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5	0.5	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Trichloroethene	mg/kg	< 0.5	0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5	0.5	Pass	
Vinyl chloride	mg/kg	< 0.5	0.5	Pass	
Method Blank		,			
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Phenois (Halogenated)	-				
2-Chlorophenol	mg/kg	< 0.5	0.5	Pass	

2.4-Dichlorophenol 2.4.5-Trichlorophenol 2.4.6-Trichlorophenol 2.6-Dichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Method Blank Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals Arsenic	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.5 <1 <1 <0.5 <1 <1 <1 <1 <1 <20 <5 <0.2 <1 <0.5	0.5 1 1.0 0.5 1.0 1.0 1.0	Pass Pass Pass Pass Pass Pass Pass Pass	
2.4.6-Trichlorophenol 2.6-Dichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Method Blank Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<1 < 0.5 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	1.0 0.5 1.0 1.0 1.0	Pass Pass Pass Pass Pass Pass	
2.6-Dichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Method Blank Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5	0.5 1.0 1.0 1.0 20 5	Pass Pass Pass Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Method Blank Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dinitrophenol 3&4-Dinitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	1.0 1.0 1.0 20 5	Pass Pass Pass Pass	
Pentachlorophenol Tetrachlorophenols - Total Method Blank Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<1 <1 <1 <20 <5 <0.2 <1	1.0 1.0 20 5	Pass Pass Pass	
Tetrachlorophenols - Total Method Blank Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 1 < 20 < 5 < 0.2 < 1	20 5	Pass Pass	
Method Blank Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 5 < 0.2 < 1	20 5	Pass	
Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg mg/kg	< 5 < 0.2 < 1	5		
2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dinitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg mg/kg	< 5 < 0.2 < 1	5		
2-Methyl-4.6-dinitrophenol 2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dinitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg mg/kg	< 5 < 0.2 < 1	5		
2-Methylphenol (o-Cresol) 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dinitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg	< 0.2 < 1		_	
2-Nitrophenol 2.4-Dimethylphenol 2.4-Dinitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg mg/kg	< 1		Pass	
2.4-Dimethylphenol 2.4-Dinitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg mg/kg		0.2	Pass	
2.4-Dinitrophenol 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg mg/kg	< 0.5	1.0	Pass	
3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg	` 0.0	0.5	Pass	
4-Nitrophenol Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals		< 5	5	Pass	
Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals		< 0.4	0.4	Pass	
Dinoseb Phenol Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg	< 5	5	Pass	
Method Blank % Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg	< 20	20	Pass	
% Clay Total Organic Carbon Method Blank Heavy Metals	mg/kg	< 0.5	0.5	Pass	
Total Organic Carbon Method Blank Heavy Metals					
Method Blank Heavy Metals	%	< 1	1	Pass	
Heavy Metals	%	< 0.1	0.1	Pass	
	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Iron	mg/kg	< 20	20	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	96	70-130	Pass	
Naphthalene	%	122	70-130	Pass	
TRH C6-C10	%	98	70-130	Pass	
TRH C6-C10	%	117	70-130	Pass	
TRH >C10-C16	%	104	70-130	Pass	
LCS - % Recovery	1.2		,		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	101	70-130	Pass	
TRH C10-C14	%	89	70-130	Pass	
LCS - % Recovery		,	, , , , , , , , ,	. 200	
BTEX					
Benzene	%	91	70-130	Pass	
Toluene	%	85	70-130	Pass	
Ethylbenzene	%	90	70-130	Pass	
m&p-Xylenes	%	85	70-130	Pass	
Xylenes - Total	%	85	70-130	Pass	
LCS - % Recovery	, ,0		1 70-100	1 433	
Volatile Organics					1
1.1-Dichloroethene	%		1	1	1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
1.1.1-Trichloroethane	%	71	70-130	Pass	
1.2-Dichlorobenzene	%	86	70-130	Pass	
1.2-Dichloroethane	%	110	70-130	Pass	
Benzene	%	106	70-130	Pass	
Ethylbenzene	%	107	70-130	Pass	
m&p-Xylenes	%	101	70-130	Pass	
Toluene	%	100	70-130	Pass	
Trichloroethene	%	106	70-130	Pass	
Xylenes - Total	%	102	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	86	70-130	Pass	
Acenaphthylene	%	84	70-130	Pass	
Anthracene	%	89	70-130	Pass	
Benz(a)anthracene	%	70	70-130	Pass	
Benzo(a)pyrene	%	88	70-130	Pass	
Benzo(b&j)fluoranthene	%	98	70-130	Pass	
Benzo(g.h.i)perylene	%	70	70-130	Pass	
Benzo(k)fluoranthene	%	88	70-130	Pass	
Chrysene	%	97	70-130	Pass	
Dibenz(a.h)anthracene	%	75	70-130	Pass	
Fluoranthene	%	86	70-130	Pass	
Fluorene	%	86	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	85	70-130	Pass	
Naphthalene	%	84	70-130	Pass	
Phenanthrene	%	83	70-130	Pass	
Pyrene	%	87	70-130	Pass	
LCS - % Recovery		, ,			
Organochlorine Pesticides					
4.4'-DDD	%	93	70-130	Pass	
4.4'-DDE	%	109	70-130	Pass	
4.4'-DDT	%	115	70-130	Pass	
a-BHC	%	104	70-130	Pass	
Aldrin	%	112	70-130	Pass	
b-BHC	%	100	70-130	Pass	
d-BHC	%	100	70-130	Pass	
Dieldrin	%	105	70-130	Pass	
Endosulfan I	%	104	70-130	Pass	
Endosulfan II	%	98	70-130	Pass	
Endosulfan sulphate	%	105	70-130	Pass	
Endrin	%	116	70-130	Pass	
Endrin aldehyde	%	107	70-130	Pass	
Endrin ketone	%	106	70-130	Pass	
g-BHC (Lindane)	%	104	70-130	Pass	
Heptachlor	%	106	70-130	Pass	
Heptachlor epoxide	%	105	70-130	Pass	
Hexachlorobenzene	%	105	70-130	Pass	
Methoxychlor	%	112	70-130	Pass	
LCS - % Recovery	1 70	,	1 70-100		
Organophosphorus Pesticides					
Diazinon	%	89	70-130	Pass	
Dimethoate	%	96	70-130	Pass	
Ethion	%	107	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Methyl parathion			%	83		70-130	Pass	
Mevinphos			%	88		70-130	Pass	
LCS - % Recovery			70			70 100	1 455	
Polychlorinated Biphenyls								
Aroclor-1260			%	86		70-130	Pass	
LCS - % Recovery			/0			70-130	l rass	
Phenols (Halogenated)						T		
2-Chlorophenol			%	98		20 120	Pass	
2.4-Dichlorophenol			% %	97		30-130 30-130	Pass	
<u>'</u>				109		30-130		
2.4.5-Trichlorophenol			%				Pass	
2.4.6-Trichlorophenol				110		30-130	Pass	
2.6-Dichlorophenol			%	104		30-130	Pass	
4-Chloro-3-methylphenol			%	99		30-130	Pass	
Pentachlorophenol			%	64		30-130	Pass	
Tetrachlorophenols - Total			%	84		30-130	Pass	
LCS - % Recovery					T T	T		
Phenols (non-Halogenated)		 1						
2-Cyclohexyl-4.6-dinitrophenol			%	59		30-130	Pass	
2-Methyl-4.6-dinitrophenol			%	46		30-130	Pass	
2-Methylphenol (o-Cresol)			%	81		30-130	Pass	
2-Nitrophenol			%	72		30-130	Pass	
2.4-Dimethylphenol			%	93		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	69		30-130	Pass	
4-Nitrophenol			%	60		30-130	Pass	
Dinoseb			%	66		30-130	Pass	
Phenol			%	103		30-130	Pass	
LCS - % Recovery								
% Clay			%	89		70-130	Pass	
Total Organic Carbon			%	100		70-130	Pass	
LCS - % Recovery				•				
Heavy Metals								
Arsenic			%	111		80-120	Pass	
Cadmium			%	102		80-120	Pass	
Chromium			%	119		80-120	Pass	
Copper			%	118		80-120	Pass	
Lead			 %	119		80-120	Pass	
Mercury				107		75-125	Pass	
Nickel				118		80-120	Pass	
			% %	112		80-120	Pass	
Zinc	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Pass Limits	Qualifying Code
Spike - % Recovery		,						
Volatile Organics				Result 1				
1.1-Dichloroethene	M18-Au19625	NCP	%	72		70-130	Pass	
1.1.1-Trichloroethane	M18-Au19625	NCP	// 0	79		70-130	Pass	
1.2-Dichlorobenzene	M18-Au19625	NCP	%	106		70-130	Pass	
1.2-Dichloroethane	M18-Au19625	NCP	%	121		70-130	Pass	
Trichloroethene	M18-Au19625	NCP	% %			70-130		
	IVI 10-AU 19025	INCP	70	110		10-130	Pass	
Spike - % Recovery	2042 NEDM E	lian-		Dogult 4		T		
Total Recoverable Hydrocarbons -			0/	Result 1		70.400	Des	
Naphthalene	S18-Au16415	CP	%	98		70-130	Pass	
TRH C6-C10	S18-Au16415	CP	%	109		70-130	Pass	
TRH >C10-C16	S18-Au16415	CP	%	92		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1		1		<u> </u>

Test	Lab Sample ID	QA Source	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9	S18-Au16415	CP	%	110		70-130	Pass	
TRH C10-C14	S18-Au16415	CP	%	84		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S18-Au16415	CP	%	96		70-130	Pass	
Toluene	S18-Au16415	СР	%	95		70-130	Pass	
Ethylbenzene	S18-Au16415	CP	%	96		70-130	Pass	
m&p-Xylenes	S18-Au16415	CP	%	91		70-130	Pass	
o-Xylene	S18-Au16415	CP	%	93		70-130	Pass	
Xylenes - Total	S18-Au16415	CP	%	91		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	tions		Result 1				
Naphthalene	S18-Au16418	СР	%	126		70-130	Pass	
TRH C6-C10	S18-Au16418	CP	%	123		70-130	Pass	
Spike - % Recovery				•				
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	tions		Result 1				
TRH C6-C9	S18-Au16418	СР	%	127		70-130	Pass	
Spike - % Recovery		,						
BTEX				Result 1				
Benzene	S18-Au16418	СР	%	108		70-130	Pass	
Toluene	S18-Au16418	CP	%	108		70-130	Pass	
Ethylbenzene	S18-Au16418	CP	%	112		70-130	Pass	
m&p-Xylenes	S18-Au16418	CP	%	106		70-130	Pass	
o-Xylene	S18-Au16418	CP	%	109		70-130	Pass	
Xylenes - Total	S18-Au16418	CP	%	107		70-130	Pass	
Spike - % Recovery	1 01071010410	U U	70	107		70 100	1 433	
Phenols (Halogenated)				Result 1				
2-Chlorophenol	M18-Au13822	NCP	%	103		30-130	Pass	
2.4-Dichlorophenol	M18-Au13822	NCP	%	101		30-130	Pass	
2.4.5-Trichlorophenol	M18-Au13822	NCP	%	95		30-130	Pass	
2.4.6-Trichlorophenol	M18-Au13822	NCP	// 0	83		30-130	Pass	
2.6-Dichlorophenol	M18-Au13822	NCP	%	94		30-130	Pass	
4-Chloro-3-methylphenol	M18-Au13822	NCP	//	89		30-130	Pass	
Pentachlorophenol	M18-Au13809	NCP	//	34		30-130	Pass	
Tetrachlorophenols - Total	M18-Au13822	NCP		79		30-130	Pass	
Spike - % Recovery	W110-Au13022	INCP	70	1 19		30-130	Pass	
Phenois (non-Halogenated)				Result 1				
2-Cyclohexyl-4.6-dinitrophenol	M18-Au18657	NCP	%	43		30-130	Pass	
2-Methyl-4.6-dinitrophenol	M18-Au15968	NCP	%	32		30-130	Pass	
2-Methylphenol (o-Cresol)	M18-Au13822	NCP		99		30-130	Pass	
2-Nitrophenol	M18-Au13822	NCP NCP	<u>%</u> %	100		30-130	Pass	
2.4-Dimethylphenol	M18-Au13822 M18-Au18657	NCP	<u>%</u>	63		30-130	Pass	
2.4-Dinitrophenol		NCP	<u>%</u>	102		30-130 30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M18-Au13822						Pass	
4-Nitrophenol	M18-Au13822	NCP	%	53		30-130	Pass	
Dinoseb	M18-Au15968	NCP	%	46		30-130	Pass	
Phenol	M18-Au13822	NCP	%	107		30-130	Pass	
Spike - % Recovery				D " 4				
Polycyclic Aromatic Hydrocarbo			0/	Result 1		70.400		
Acenaphthene	S18-Au16421	CP	%	90		70-130	Pass	
Acenaphthylene	S18-Au16421	CP	%	91		70-130	Pass	
Anthracene Benz(a)anthracene	S18-Au16421	CP CP	%	94		70-130	Pass	
	S18-Au16421	1 (*D	%	76		70-130	Pass	

mn	10	rĐ
	12	
	.с	, -

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene	S18-Au16421	CP	%	79	70-130	Pass	
Benzo(g.h.i)perylene	S18-Au16421	CP	%	90	70-130	Pass	
Benzo(k)fluoranthene	S18-Au16421	CP	%	87	70-130	Pass	
Chrysene	S18-Au16421	CP	%	97	70-130	Pass	
Dibenz(a.h)anthracene	S18-Au16421	CP	%	86	70-130	Pass	
Fluoranthene	S18-Au16421	CP	%	91	70-130	Pass	
Fluorene	S18-Au16421	CP	%	93	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au16421	CP	%	73	70-130	Pass	
Naphthalene	S18-Au16421	CP	%	90	70-130	Pass	
Phenanthrene	S18-Au16421	CP	%	89	70-130	Pass	
Pyrene	S18-Au16421	СР	%	92	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S18-Au16422	СР	%	86	75-125	Pass	
Cadmium	S18-Au16422	СР	%	91	75-125	Pass	
Chromium	S18-Au16422	CP	%	108	75-125	Pass	
Copper	S18-Au16422	CP	%	98	75-125	Pass	
Lead	S18-Au16422	CP	%	133	75-125	Fail	Q08
Mercury	S18-Au16422	СР	%	98	70-130	Pass	
Nickel	S18-Au16422	СР	%	113	75-125	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	S18-Au16429	CP	%	100	70-130	Pass	
4.4'-DDE	S18-Au16429	CP	%	105	70-130	Pass	
4.4'-DDT	S18-Au16429	CP	%	98	70-130	Pass	
a-BHC	S18-Au16429	CP	%	93	70-130	Pass	
Aldrin	S18-Au16429	CP	%	103	70-130	Pass	
b-BHC	S18-Au16429	CP	%	95	70-130	Pass	
d-BHC	S18-Au16429	CP	%	89	70-130	Pass	
Dieldrin	S18-Au16429	CP	%	98	70-130	Pass	
Endosulfan I	S18-Au16429	CP	%	97	70-130	Pass	
Endosulfan II	S18-Au16429	CP	%	95	70-130	Pass	
		CP	%				
Endosulfan sulphate	S18-Au16429		%	100	70-130	Pass	
Endrin	S18-Au16429	CP		109	70-130	Pass	
Endrin aldehyde	S18-Au16429	CP	%	102	70-130	Pass	
Endrin ketone	S18-Au16429	CP	%	103	70-130	Pass	
g-BHC (Lindane)	S18-Au16429	CP	%	93	70-130	Pass	
Heptachlor	S18-Au16429	CP	%	97	70-130	Pass	
Heptachlor epoxide	S18-Au16429	CP	%	95	70-130	Pass	
Hexachlorobenzene	S18-Au16429	CP	%	95	70-130	Pass	
Methoxychlor	S18-Au16429	CP	%	100	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls				Result 1		_	
Aroclor-1260	S18-Au16432	CP	%	102	70-130	Pass	
Spike - % Recovery							
Heavy Metals			6.1	Result 1			
Arsenic	S18-Au16441	CP	%	109	75-125	Pass	
Cadmium	S18-Au16441	CP	%	98	75-125	Pass	
Chromium	S18-Au16441	CP	%	109	75-125	Pass	
Copper	S18-Au16441	CP	%	118	75-125	Pass	
Lead	S18-Au16441	CP	%	114	75-125	Pass	
Mercury	S18-Au16441	CP	%	104	70-130	Pass	
Nickel	S18-Au16441	CP	%	109	75-125	Pass	
Spike - % Recovery							

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Organophosphorus Pesticides				Result 1			
Diazinon	S18-Au16445	CP	%	99	70-130	Pass	
Dimethoate	S18-Au16445	CP	%	91	70-130	Pass	
Ethion	S18-Au16445	СР	%	126	70-130	Pass	
Fenitrothion	S18-Au16445	СР	%	109	70-130	Pass	
Methyl parathion	S18-Au16445	СР	%	87	70-130	Pass	
Mevinphos	S18-Au16445	СР	%	106	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	S18-Au16453	СР	%	95	70-130	Pass	
4.4'-DDE	S18-Au16453	СР	%	100	70-130	Pass	
4.4'-DDT	S18-Au16453	СР	%	114	70-130	Pass	
a-BHC	S18-Au16453	CP	%	92	70-130	Pass	
Aldrin	S18-Au16453	CP	%	96	70-130	Pass	
b-BHC	S18-Au16453	CP	%	85	70-130	Pass	
d-BHC	S18-Au16453	CP	//	83	70-130	Pass	
Dieldrin	S18-Au16453	CP	// 0	99	70-130	Pass	1
Endosulfan I	S18-Au16453	CP	% %	99	70-130	Pass	
Endosulfan II	S18-Au16453	CP	%	93	70-130	Pass	
Endosulfan sulphate	S18-Au16453	CP	// 0	93	70-130	Pass	
		CP					
Endrin	S18-Au16453			107	70-130	Pass	
Endrin aldehyde	S18-Au16453	CP	%	99	70-130	Pass	
Endrin ketone	S18-Au16453	CP	%	91	70-130	Pass	
g-BHC (Lindane)	S18-Au16453	CP	%	92	70-130	Pass	
Heptachlor	S18-Au16453	CP	%	118	70-130	Pass	
Heptachlor epoxide	S18-Au16453	CP	%	89	70-130	Pass	
Hexachlorobenzene	S18-Au16453	CP	%	91	70-130	Pass	
Methoxychlor	S18-Au16453	CP	%	115	70-130	Pass	
Spike - % Recovery						Г	
Heavy Metals				Result 1			
Arsenic	S18-Au16456	CP	%	104	75-125	Pass	
Cadmium	S18-Au16456	CP	%	93	75-125	Pass	
Chromium	S18-Au16456	CP	%	112	75-125	Pass	
Copper	S18-Au16456	CP	%	112	75-125	Pass	
Lead	S18-Au16456	CP	%	117	75-125	Pass	
Mercury	S18-Au16456	CP	%	95	70-130	Pass	
Nickel	S18-Au16456	CP	%	108	75-125	Pass	
Zinc	S18-Au16456	CP	%	120	75-125	Pass	
Spike - % Recovery					 		
Polycyclic Aromatic Hydrocarbor	ns			Result 1			
Acenaphthene	S18-Au16458	CP	%	78	70-130	Pass	
Acenaphthylene	S18-Au16458	CP	%	77	70-130	Pass	
Anthracene	S18-Au16458	CP	%	82	70-130	Pass	
Benz(a)anthracene	S18-Au16458	CP	%	89	70-130	Pass	
Benzo(a)pyrene	S18-Au16458	CP	%	72	70-130	Pass	
Benzo(b&j)fluoranthene	S18-Au16458	СР	%	79	70-130	Pass	
Benzo(g.h.i)perylene	S18-Au16458	СР	%	79	70-130	Pass	
Benzo(k)fluoranthene	S18-Au16458	СР	%	101	70-130	Pass	
Chrysene	S18-Au16458	CP	%	88	70-130	Pass	
Dibenz(a.h)anthracene	S18-Au16458	CP	%	79	70-130	Pass	
Fluoranthene	S18-Au16458	CP	// 0	81	70-130	Pass	
Fluorene	S18-Au16458	CP	// 0	79	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au16458	CP	// 0	89	70-130	Pass	
Naphthalene	S18-Au16458	CP		78	70-130	Pass	

								D	O !! f !
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene	S18-Au16458	CP	%	73			70-130	Pass	
Pyrene	S18-Au16458	CP	%	80			70-130	Pass	
Spike - % Recovery					, ,				
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S18-Au16459	CP	%	102			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S18-Au16465	CP	%	101			70-130	Pass	
TRH C6-C10	S18-Au16465	CP	%	96			70-130	Pass	
TRH >C10-C16	S18-Au16465	CP	%	128			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S18-Au16465	CP	%	99			70-130	Pass	
TRH C10-C14	S18-Au16465	СР	%	110			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S18-Au16465	СР	%	83			70-130	Pass	
Toluene	S18-Au16465	CP	%	85			70-130	Pass	
Ethylbenzene	S18-Au16465	CP	%	87			70-130	Pass	
m&p-Xylenes	S18-Au16465	CP	%	84			70-130	Pass	
o-Xylene	S18-Au16465	CP	%	87			70-130	Pass	
Xylenes - Total	S18-Au16465	CP	%	85			70-130	Pass	
•		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate							, ,		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S18-Au16412	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S18-Au16412	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S18-Au16412	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S18-Au16412	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S18-Au16412	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S18-Au16412	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Total Organic Carbon	M18-Ma04658	NCP	%	0.4	0.5	29	30%	Pass	
Cation Exchange Capacity	M18-Au17660	NCP	meq/100g	11	11	1.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-Au16416	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-Au16416	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate					Result 2	RPD			
Duplicate Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	KPD			
•	1999 NEPM Fract S18-Au16416	ions CP	mg/ka	Result 1 < 20	< 20	<1	30%	Pass	
Total Recoverable Hydrocarbons -			mg/kg				30%	Pass	
Total Recoverable Hydrocarbons - TRH C6-C9 Duplicate			mg/kg	< 20	< 20	<1	30%	Pass	
Total Recoverable Hydrocarbons - TRH C6-C9 Duplicate BTEX	S18-Au16416			< 20 Result 1	< 20 Result 2		30%		
Total Recoverable Hydrocarbons - TRH C6-C9 Duplicate BTEX Benzene	S18-Au16416 S18-Au16416	СР	mg/kg	< 20	< 20	<1 RPD		Pass Pass Pass	
Total Recoverable Hydrocarbons - TRH C6-C9 Duplicate BTEX Benzene Toluene	S18-Au16416 S18-Au16416 S18-Au16416	CP CP CP	mg/kg mg/kg	< 20 Result 1 < 0.1 < 0.1	< 20 Result 2 < 0.1 < 0.1	<1 RPD <1 <1	30%	Pass Pass	
Total Recoverable Hydrocarbons - TRH C6-C9 Duplicate BTEX Benzene Toluene Ethylbenzene	\$18-Au16416 \$18-Au16416 \$18-Au16416 \$18-Au16416	CP CP CP CP	mg/kg mg/kg mg/kg	< 20 Result 1 < 0.1 < 0.1 < 0.1	< 20 Result 2 < 0.1 < 0.1 < 0.1	<1 RPD <1 <1 <1	30% 30% 30%	Pass Pass Pass	
Total Recoverable Hydrocarbons - TRH C6-C9 Duplicate BTEX Benzene Toluene	S18-Au16416 S18-Au16416 S18-Au16416	CP CP CP	mg/kg mg/kg	< 20 Result 1 < 0.1 < 0.1	< 20 Result 2 < 0.1 < 0.1	<1 RPD <1 <1	30%	Pass Pass	

Duplicate									
				Result 1	Result 2	RPD			
% Clay	S18-Au16416	CP	%	< 1	< 1	<1	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	S18-Au16416	СР	uS/cm	63	70	11	30%	Pass	
pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	S18-Au16416	СР	pH Units	7.4	7.2	pass	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Au16418	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S18-Au16418	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Au16418	CP	mg/kg	6.4	5.9	8.0	30%	Pass	
Copper	S18-Au16418	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Iron	S18-Au16418	CP	mg/kg	1100	1000	8.0	30%	Pass	
Lead	S18-Au16418	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	S18-Au16418	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Au16418	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S18-Au16418	CP	mg/kg	21	20	4.0	30%	Pass	
Duplicate			ביישייי ב						
Polycyclic Aromatic Hydrocarbons	·			Result 1	Result 2	RPD			
Acenaphthene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
(0 /1 /	S18-Au16419	CP CP		< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene		CP CP	mg/kg				30%		
Chrysene	S18-Au16419		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1		Pass	
Fluoranthene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				- · · ·	D # 0		I		
Organophosphorus Pesticides				Result 1	Result 2	RPD		 _ 	
Azinphos-methyl	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S18-Au16419	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S18-Au16419	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
	S18-Au16419	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	310-Au10413		IIIg/Kg	- 0.2	O		00 /0	ucc .	

Duplicate				I			T	T	
Organophosphorus Pesticides	T		1	Result 1	Result 2	RPD			
Malathion	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S18-Au16419	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S18-Au16419	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S18-Au16419	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S18-Au16419	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S18-Au16419	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S18-Au16419	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S18-Au16419	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	S18-Au16419	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	S18-Au16419	CP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S18-Au16419	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S18-Au16419	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
2-Nitrophenol	S18-Au16419	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	S18-Au16419	CP	mg/kg	< 5	< 5	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S18-Au16419	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	S18-Au16419	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	S18-Au16419	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	S18-Au16419	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S18-Au16419	CP	%	9.4	9.7	3.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Au16422	CP	mg/kg	42	43	1.0	30%	Pass	
Cadmium	S18-Au16422	CP	mg/kg	3.3	3.3	1.0	30%	Pass	
Chromium	S18-Au16422	CP	mg/kg	22	23	2.0	30%	Pass	
Copper	S18-Au16422	СР	mg/kg	150	150	2.0	30%	Pass	
Lead	S18-Au16422	CP	mg/kg	100	100	1.0	30%	Pass	
Mercury	S18-Au16422	CP	mg/kg	0.2	0.2	4.0	30%	Pass	
Mercury Nickel	S18-Au16422 S18-Au16422	CP CP	mg/kg mg/kg	53	54	1.0	30%	Pass	

					9	
9	•	٠.	~		4	-
			٠.	,	п	
			5-		۹	۰

Duplicate Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S18-Au16426	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<u></u> <1	30%	Pass	
a-BHC	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<u> </u>	30%	Pass	
Dieldrin	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<u></u> <1	30%	Pass	
Endosulfan I	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<u></u>	30%	Pass	
g-BHC (Lindane)	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-Au16426	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S18-Au16426	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate	010710120	U.	mg/ng			• •	0070	1 466	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Au16426	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S18-Au16426	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Au16426	CP	mg/kg	< 0.1	< 0.1	<u></u>	30%	Pass	
Aroclor-1242	S18-Au16426	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S18-Au16426	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S18-Au16426	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S18-Au16426	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S18-Au16426	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate			, <i>J</i> J						
				Result 1	Result 2	RPD			
% Moisture	S18-Au16429	CP	%	16	17	2.0	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S18-Au16430	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-Au16430	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-Au16430	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-Au16430	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-Au16430	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-Au16430	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
		l .	J J		< 0.05	<1	30%		

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Hexachlorobenzene	S18-Au16430	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-Au16430	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S18-Au16430	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate			1	-				1	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Au16430	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S18-Au16430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Au16430	CP		< 0.1	< 0.1	<u> </u>	30%	Pass	
Aroclor-1242			mg/kg						
	S18-Au16430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S18-Au16430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S18-Au16430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S18-Au16430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S18-Au16430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
		1	1	Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C a							2001		
rec.)	M18-Au19787	NCP	pH Units	8.1	8.0	pass	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons			1	Result 1	Result 2	RPD			
Naphthalene	S18-Au16436	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-Au16436	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S18-Au16436	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S18-Au16436	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S18-Au16436	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-Au16436	СР	mg/kg	< 20	< 20	<1	30%	Pass	-
TRH C10-C14	S18-Au16436	CP	mg/kg	< 20	< 20	<u> </u>	30%	Pass	
TRH C15-C28	S18-Au16436	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S18-Au16436	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	310-Au10430	l Ci	i ilig/kg	_ \ 30	_ \ 30		30 70	1 ass	
				Result 1	Dogult 2	DDD	I	T	
BTEX	040 4::40400	OD			Result 2	RPD	200/	D	
Benzene	S18-Au16436	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-Au16436	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-Au16436	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-Au16436	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S18-Au16436	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S18-Au16436	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbo	ns		1	Result 1	Result 2	RPD			
Acenaphthene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-Au16438	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<u></u> <1	30%	Pass	
Benzo(k)fluoranthene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
•		CP				<u> </u>	30%		
Dibenz(a.h)anthracene	S18-Au16438		mg/kg	< 0.5	< 0.5			Pass	
Fluoranthene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Dunlicato									
Duplicate				D	D- "-	DDD			
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD	/	_	
Phenanthrene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				I 5 " 4			I		
Organophosphorus Pesticides				Result 1	Result 2	RPD	/	_	
Azinphos-methyl	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S18-Au16438	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S18-Au16438	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S18-Au16438	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S18-Au16438	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S18-Au16438	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S18-Au16438	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S18-Au16438	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	S18-Au16438	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	S18-Au16438	CP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S18-Au16438	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S18-Au16438	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
2-Nitrophenol	S18-Au16438	CP	mg/kg	< 1	< 1	<1	30%	Pass	
opiiolioi	3107.010-00		1119/119	· · · · · ·				. 455	

Report Number: 612025-S

Duplicate									
Phenois (non-Halogenated)				Result 1	Result 2	RPD			
2.4-Dimethylphenol	S18-Au16438	СР	malka	< 0.5	< 0.5	<1	30%	Pass	
, , , , , , , , , , , , , , , , , , ,	S18-Au16438	CP	mg/kg	< 5	< 5	<u> </u>	30%	Pass	
2.4-Dinitrophenol			mg/kg			<u> </u>			
3&4-Methylphenol (m&p-Cresol)	S18-Au16438	CP	mg/kg	< 0.4	< 0.4		30%	Pass	
4-Nitrophenol	S18-Au16438	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	S18-Au16438	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	S18-Au16438	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Result 1	Booult 2	BDD			
% Moisture	S18-Au16440	СР	%	9.8	Result 2 9.9	<u>RPD</u> 1.0	30%	Pass	
Duplicate	310-Au10440	L CF	/0	9.0	9.9	1.0	30 /6	Fass	
Heavy Metals				Result 1	Result 2	RPD	I		
Arsenic	S18-Au16440	СР	mg/kg	4.9	4.6	7.0	30%	Pass	
Cadmium	S18-Au16440	CP	mg/kg	< 0.4	< 0.4	<u>7.0</u> <1	30%	Pass	
Chromium	S18-Au16440	CP	mg/kg	21	18	16	30%	Pass	
	S18-Au16440	CP		37	34	8.0	30%	Pass	
Copper Lead	S18-Au16440	CP	mg/kg mg/kg	620	610	2.0	30%	Pass	
Mercury	S18-Au16440	CP	mg/kg	0.1	0.1	3.0	30%	Pass	
Nickel	S18-Au16440	CP	mg/kg	21	12	53	30%	Fail	Q15
Zinc	S18-Au16440	CP	mg/kg	1000	870	16	30%	Pass	QIS
Duplicate	310-Au10440	L CF	Hig/kg	1000] 870]	10	J 30 70	Fass	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Au16441	СР	mg/kg	4.0	4.2	3.0	30%	Pass	
Cadmium	S18-Au16441	CP	mg/kg	< 0.4	< 0.4	 <1	30%	Pass	
Chromium	S18-Au16441	CP	mg/kg	24	24	1.0	30%	Pass	
	S18-Au16441	CP		30	31	2.0	30%	Pass	
Copper Iron	S18-Au16441	CP	mg/kg	15000	15000	2.0	30%	Pass	
Lead	S18-Au16441	CP	mg/kg	89	92	3.0	30%	Pass	
	S18-Au16441	CP	mg/kg	0.1	< 0.1	3.0 11	30%	Pass	
Mercury Nickel	S18-Au16441	CP	mg/kg	58		2.0	30%	Pass	
Zinc	S18-Au16441	CP	mg/kg mg/kg	860	58 870	2.0	30%	Pass	
Duplicate	310-Au10441	L CF	i ilig/kg	000	070	2.0	30 /6	Fass	
Organochlorine Pesticides				Result 1	Result 2	RPD	I		
Chlordanes - Total	S18-Au16448	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-Au16448	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-Au16448	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-Au16448	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-Au16448	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Au16448	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Au16448	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Au16448	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-Au16448	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-Au16448	CP	mg/kg	< 0.05	< 0.05	<u> </u>	30%	Pass	
Endosulfan II		CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Linguagian il	S18-A116///8			· U.UU	- 0.00	- 1	1		
Endosulfan sulphate	S18-Au16448			< 0.05	< 0.05	~1	30%		
Endosulfan sulphate	S18-Au16448	СР	mg/kg	< 0.05	< 0.05 < 0.05	<1 <1	30%	Pass	
Endrin	S18-Au16448 S18-Au16448	CP CP	mg/kg mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin Endrin aldehyde	S18-Au16448 S18-Au16448 S18-Au16448	CP CP CP	mg/kg mg/kg mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	<1 <1	30% 30%	Pass Pass	
Endrin Endrin aldehyde Endrin ketone	\$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448	CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane)	\$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor	\$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide	\$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor	\$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448 \$18-Au16448	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Au16448	СР	malka	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S18-Au16448	CP	mg/kg mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Au16448	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S18-Au16448	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S18-Au16448	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S18-Au16448	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S18-Au16448	CP	mg/kg	< 0.1	< 0.1	<u></u> <1	30%	Pass	
Total PCB*	S18-Au16448	CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
Duplicate			, <u>, , , , , , , , , , , , , , , , , , </u>						
				Result 1	Result 2	RPD			
% Moisture	S18-Au16450	CP	%	16	16	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Au16452	CP	mg/kg	3.5	3.7	5.0	30%	Pass	
Cadmium	S18-Au16452	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Au16452	CP	mg/kg	17	20	20	30%	Pass	
Copper	S18-Au16452	CP	mg/kg	25	21	19	30%	Pass	
Iron	S18-Au16452	CP	mg/kg	11000	12000	1.0	30%	Pass	
Lead	S18-Au16452	CP	mg/kg	120	110	11	30%	Pass	
Mercury	S18-Au16452	CP	mg/kg	0.2	0.2	19	30%	Pass	
Nickel	S18-Au16452	CP	mg/kg	19	18	8.0	30%	Pass	
Zinc	S18-Au16452	CP	mg/kg	430	410	4.0	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S18-Au16455	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldahyda	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde Endrin ketone	S18-Au16455 S18-Au16455	CP CP	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	<1 <1	30% 30%	Pass Pass	
g-BHC (Lindane)	S18-Au16455	CP CP	mg/kg mg/kg	< 0.05	< 0.05	<u> </u>	30%	Pass	
Heptachlor	S18-Au16455 S18-Au16455	CP CP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%	Pass	
Heptachlor epoxide	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-Au16455	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S18-Au16455	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate	,		פייפי						
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Au16455	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S18-Au16455	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Au16455	CP	mg/kg	< 0.1	< 0.1	<u></u> <1	30%	Pass	
Aroclor-1242	S18-Au16455	CP	mg/kg	< 0.1	< 0.1	<u></u> <1	30%	Pass	
Aroclor-1248	S18-Au16455	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S18-Au16455	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S18-Au16455	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S18-Au16455	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Duplicate				I	I				
Polycyclic Aromatic Hydrocarbon			I	Result 1	Result 2	RPD			
Acenaphthene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S18-Au16456	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S18-Au16456	СР	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	S18-Au16456	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S18-Au16456	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S18-Au16456	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	S18-Au16456	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	S18-Au16456	CP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S18-Au16456	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S18-Au16456	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
2-Nitrophenol	S18-Au16456	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	S18-Au16456	CP	mg/kg	< 5	< 5	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S18-Au16456	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	S18-Au16456	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	S18-Au16456	CP	ma/ka	< 20	< 20	<1	30%	Pass	
Phenol	S18-Au16456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate			1			-			
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Au16456	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S18-Au16456	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Au16456	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S18-Au16456	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Iron	S18-Au16456	CP	mg/kg	370	340	7.0	30%	Pass	
Lead	S18-Au16456	CP	mg/kg	39	40	1.0	30%	Pass	
Mercury	S18-Au16456	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Au16456	CP	mg/kg	< 5	< 5	<1	30%	Pass	
INIONGI	S18-Au16456	CP	mg/kg	12	13	2.0	30%	Pass	

20	т	c	٧	٠
ш		2	•	п
		c	5	•

Duplicate									
Total Recoverable Hydrocarbons			1	Result 1	Result 2	RPD		1	
Naphthalene	S18-Au16460	CP	mg/kg	3.4	5.3	45	30%	Fail	Q15
TRH C6-C10	S18-Au16460	CP	mg/kg	41	58	34	30%	Fail	Q15
TRH >C10-C16	S18-Au16460	CP	mg/kg	1400	1500	12	30%	Pass	
TRH >C16-C34	S18-Au16460	CP	mg/kg	1800	2100	16	30%	Pass	
TRH >C34-C40	S18-Au16460	CP	mg/kg	270	330	21	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-Au16460	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S18-Au16460	СР	mg/kg	1000	1000	1.0	30%	Pass	
TRH C15-C28	S18-Au16460	СР	mg/kg	1500	1800	18	30%	Pass	
TRH C29-C36	S18-Au16460	СР	mg/kg	500	590	17	30%	Pass	
Duplicate	<u> </u>								
BTEX				Result 1	Result 2	RPD			
Benzene	S18-Au16460	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-Au16460	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-Au16460	CP	mg/kg	0.3	0.5	46	30%	Fail	Q15
m&p-Xylenes	S18-Au16460	CP	mg/kg	0.5	0.8	43	30%	Fail	Q15
o-Xylene	S18-Au16460	CP	mg/kg	0.3	0.8	47	30%	Fail	Q15
Xylenes - Total		CP		0.8		47 45	30%	Fail	
	S18-Au16460	L CP	mg/kg	υ.δ	1.2	45	30%	ган	Q15
Duplicate				Des. 4	Doz!! O	DDD			
Volatile Organics	040 4::40400	OD		Result 1	Result 2	RPD	200/	D	
1.1-Dichloroethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2-Trichloroethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichlorobenzene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.4-Trimethylbenzene	S18-Au16460	CP	mg/kg	4.9	7.0	35	30%	Fail	Q15
1.3-Dichlorobenzene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3.5-Trimethylbenzene	S18-Au16460	CP	mg/kg	0.9	1.5	50	30%	Fail	Q15
1.4-Dichlorobenzene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Butanone (MEK)	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Propanone (Acetone)	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chlorotoluene	S18-Au16460	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Allyl chloride	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromobenzene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<u></u>	30%	Pass	
Bromochloromethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	,
Bromomethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon disulfide	S18-Au16460	CP		< 0.5	< 0.5	<1	30%	Pass	
			mg/kg						
Carbon Tetrachloride	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorosthana	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
cis-1.3-Dichloropropene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorodifluoromethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Iodomethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Isopropyl benzene (Cumene)	S18-Au16460	CP	mg/kg	< 0.5	0.5	46	30%	Fail	Q15
Methylene Chloride	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Styrene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.2-Dichloroethene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S18-Au16460	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
			•	Result 1	Result 2	RPD			
% Moisture	S18-Au16461	CP	%	5.7	5.4	6.0	30%	Pass	

Comments

Sample Integrity

- ample mogney	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAGC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q08	The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference
Q15	The RPD reported passes Eurofins mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Senior Analyst-Volatile (VIC) Harry Bacalis Jonathon Angell Senior Analyst-Inorganic (QLD) Joseph Edouard Senior Analyst-Organic (VIC) Matthew Deaves Senior Analyst-Asbestos (WA) Michael Brancati Senior Analyst-Inorganic (VIC) Rhys Thomas Senior Analyst-Asbestos (WA)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the cient, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 612025-S

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road **Dulwich Hill NSW 2203**

Attention: Jack Ellis

612025-V2-AID Report

Project Name MASCOT **Project ID** 1.16

Received Date Aug 13, 2018 Aug 21, 2018 **Date Reported**

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as

Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an

independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-

sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Project Name Project ID

MASCOT

1.16

Date Sampled

Aug 08, 2018 to Aug 10, 2018

612025-V2-AID

Report

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SB1/0.5	18-Au16413	Aug 09, 2018	Approximate Sample 908g Sample consisted of: Brown coarse grain soil and rocks	ACM: Chrysotile and amosite asbestos detected in fibre cement fragments. Approximate raw weight of ACM = 1.6g Total estimated asbestos content in ACM = 0.24g* Total estimated asbestos concentration in ACM = 0.027% w/w* Organic fibre detected. No resolizable fibres detected.
SB6/0.4	18-Au16414	Aug 09, 2018	Approximate Sample 1016g Sample consisted of: Brown coarse grain soil and rocks	ACM: Chrysotile asbestos detected in fibre cement fragments. Chrysotile asbestos detected in fibre cement fragments. Approximate raw weight of ACM = 5.3g Total estimated asbestos content in ACM = 0.80g* Total estimated asbestos concentration in ACM = 0.079% w/w* FA: Chrysotile asbestos detected in weathered fibre cement fragments. Approximate raw weight of FA = 0.032g Estimated asbestos content in FA = 0.013g* AF: Chrysotile asbestos detected in fibre cement fragments and in the form of loose fibre bundles. Approximate raw weight of AF = 0.0071g* Estimated asbestos content in AF = 0.0064g* Total estimated asbestos content in FA and AF = 0.0199% w/w* Organic fibre detected.
SB11/1.2	18-Au16421	Aug 09, 2018	Approximate Sample 425g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

First Reported: Aug 21, 2018 Date Reported: Sep 07, 2018

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/institonal standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SB14/0.2	18-Au16425	Aug 10, 2018	Approximate Sample 644g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB14/2.5	18-Au16428	Aug 10, 2018	Approximate Sample 416g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB10/0.3	18-Au16431	Aug 10, 2018	Approximate Sample 853g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB17/1.0	18-Au16434	Aug 10, 2018	Approximate Sample 536g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB18/0.2	18-Au16438	Aug 10, 2018	Approximate Sample 740g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB18/0.6	18-Au16439	Aug 10, 2018	Approximate Sample 673g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB19/0.8	18-Au16441	Aug 08, 2018	Approximate Sample 656g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB20/1.0	18-Au16446	Aug 08, 2018	Approximate Sample 591g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB26/0.2	18-Au16452	Aug 10, 2018	Approximate Sample 694g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB27/0.2	18-Au16461	Aug 08, 2018	Approximate Sample 936g Sample consisted of: Brown coarse grain soil and rocks	ACM: Chrysotile asbestos detected in fibre cement fragments. Approximate raw weight of ACM = 0.82g Total estimated asbestos content in ACM = 0.12g* Total estimated asbestos concentration in ACM = 0.013% w/w*
				Organic fibre detected. No respirable fibres detected.
SB27/1.5	18-Au16464	Aug 08, 2018	Approximate Sample 484g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020PerthAug 20, 2018Indefinite

Report Number: 612025-V2-AID

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone - +613 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261

Site # 23736

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Received:

Jack Ellis

Due: Priority: Contact Name:

02 8960 0555

612025

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

CANCELLED Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

pH (1:5 Aqueous extract at 25°C as rec.)

×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

External Laboratory

×

× ×

× × × × × ×

 \times

×

× \times

×

×

×

Soil Soil Soil

Soil Soil Soil Soil

> Aug 09, 2018 Aug 09, 2018 Aug 09, 2018

> > SB11/0.5 SB11/0.2

Soil

Aug 09, 2018

Aug 09, 2018

SB1/0.3 SB1/0.5 Aug 09, 2018 Aug 09, 2018 Aug 09, 2018

Aug 09, 2018

SB6/0.4

SB6/1.0 SB6/2.6 SB6/3.2 SB6/4.8

> 2 9

S18-Au16412 S18-Au16413 S18-Au16414 S18-Au16415 S18-Au16416 S18-Au16417 S18-Au16418 S18-Au16419 S18-Au16420

LAB ID

Matrix

Sampling Time

Sample Date

Sample ID

ę

× ×

×

×

×

×

Report Number: 612025-V2-AID

Page 5 of 14

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

Melbourne
3-5 Kingston Town Close
Cakkings VIC 3166
Phone: +613 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
6/wdale WA 6/105
Phone: +6/18 925/1 9600
NATA # 126/1
Site # 237/36

Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Aug 13, 2018 3:09 PM Aug 20, 2018

Jack Ellis 5 Day

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

													_			
BTEXN and Volatile TRH	×	×														
Eurofins mgt Suite B7A	×	×					×									
Eurofins mgt Suite B7	×	×				×			×					×		
NEPM Screen for Soil Classification	×		×								×					
Moisture Set	×				×	×	×	×	×	×	×	×	×	×		×
Volatile Organics	×					×						×				
Eurofins mgt Suite B15	×							×		×			×	×		×
Metals M8	×				×						X					×
Polycyclic Aromatic Hydrocarbons	×				×						×					
pH (1:5 Aqueous extract at 25°C as rec.)	×															×
HOLD	×															
CANCELLED		×														
Asbestos - WA guidelines				×	×				×			×			×	
Sample Detail					S18-Au16421	S18-Au16422	S18-Au16423	S18-Au16424	S18-Au16425	S18-Au16426	S18-Au16427	S18-Au16428	S18-Au16429	S18-Au16430	S18-Au16431	S18-Au16432
		7	794		Soil											
Samp	Melbourne Laboratory - NATA Site # 1254 & 14271	- NATA Site # 18217		NATA Site # 23736	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 10, 2018							
		Sydney Laboratory - NAT	bane Laborato	Perth Laboratory - NATA	SB11/1.2	SB11/1.6	SB11/4.4	SB11/5.0	SB14/0.2	SB14/0.5	SB14/1.2	SB14/2.5	SB14/3.8	SB14/10.0	SB10/0.3	SB10/0.5
	Melk	Sydi	Bris	Pert	10	11	12	13	14	15	16	17	18	19	20	21

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone - +613 8564 5000 NATA # 1261 Site # 1254 & 14271

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261

Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Aug 13, 2018 3:09 PM Aug 20, 2018 Due: Priority: Contact Name:

02 8960 0555

612025

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Received:

5 Day

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Metals M8 Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract at 25°C as rec.) CANCELLED Asbestos - WA guidelines Sample Detail

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

SB17/0.5 SB17/1.0

Page 7 of 14

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

First Reported: Aug 21, 2018 Date Reported: Sep 07, 2018

×

× ×

×

×

×

×

× ×

×

×

×

×

S18-Au16444

×

×

×

×

×

 \times ×

×

× × ×

×

S18-Au16435 S18-Au16436 S18-Au16437 S18-Au16438 S18-Au16439 S18-Au16440 S18-Au16441 S18-Au16442 S18-Au16443

Soil

SB17/7.5

SB17/9.0 SB18/0.2

SB17/6.0

22 23 24 25 26

Soil

Soil

Soil

Soil

Aug 10, 2018 Aug 08, 2018 Aug 08, 2018

SB18/1.0 SB19/0.8 SB19/1.5

30

SB18/0.6

27

Aug 08, 2018 Aug 08, 2018

SB19/2.5

31

SB19/3.7

Aug 10, 2018

Soi Soil Soil

Soil

×

×

×

×

S18-Au16433 S18-Au16434 Report Number: 612025-V2-AID

×

Eurofins | mgt Suite B15

Moisture Set Volatile Organics

HOLD

BTEXN and Volatile TRH Eurofins | mgt Suite B7A Eurofins | mgt Suite B7 NEPM Screen for Soil Classification

Jack Ellis

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261

Site # 23736

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Due: Priority: Contact Name:

Aug 13, 2018 3:09 PM Aug 20, 2018

5 Day

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

02 8960 0555

Report #: Phone: Fax:

612025

Moisture Set Volatile Organics Eurofins | mgt Suite B15 Metals M8

HOLD

CANCELLED

Asbestos - WA guidelines

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

NEPM Screen for Soil Classification

Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract at 25°C as rec.)

Sample Detail

Brisbane Laboratory - NATA Site # 20794

Perth Laboratory - NATA Site # 23736

Sydney Laboratory - NATA Site # 18217

Aug 08, 2018

SB20/0.3 SB20/1.0 SB20/1.5

34

35

Aug 08, 2018

Soil

Aug 08, 2018

Melbourne Laboratory - NATA Site # 1254 & 14271

S18-Au16445 S18-Au16446 S18-Au16447 S18-Au16448 S18-Au16449 S18-Au16450 S18-Au16451 S18-Au16452 S18-Au16453 S18-Au16454 S18-Au16455 S18-Au16456

Soil

Aug 08, 2018 Aug 08, 2018 Aug 08, 2018

SB20/3.0 SB20/3.8

36 37 38

Soil

Soil

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× × × × × × ×

×

×

×

×

× ×

×

×

×

×

Soil

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

Aug 10, 2018 Aug 10, 2018

45

44

Aug 08, 2018

SB20/12.0

SB26/0.2 SB26/0.5 SB26/2.0 SB26/3.0 SB26/4.0

SB20/9.0

39 40 4 42 43

Soi Soil Soil

Soil

×

×

 \times

Page 8 of 14

Report Number: 612025-V2-AID

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

First Reported: Aug 21, 2018 Date Reported: Sep 07, 2018

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Order No.:

> Shop 2, 793-799 New Canterbury Road Dulwich Hill Trace Environmental P/L

> > Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone - +613 8564 5000 NATA # 1261 Site # 1254 & 14271

Melbourne
3-5 Kingston Town Close
Cakkings VIC 3166
Phone: +613 8564 5000
NATA # 1261
Site # 1254 & 14271

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261

Site # 23736

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Aug 13, 2018 3:09 PM Aug 20, 2018

Jack Ellis 5 Day

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

HOLD

Volatile Organics

NEPM Screen for Soil Classification

Eurofins | mgt Suite B15 Metals M8 Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract at 25°C as rec.) CANCELLED Asbestos - WA guidelines Sample Detail

Melbourne Laboratory - NATA Site # 1254 & 14271		×	×	×	×	×	×
Sydney Laboratory - NATA Site # 18217	×						
Brisbane Laboratory - NATA Site # 20794							
	ŀ	ŀ	l	l	l	l	

×

×

×

×

×

Pert	Laboratory - Λ	Perth Laboratory - NATA Site # 23736	36			×	
46	SB26/5.0	Aug 10, 2018	5	Soil	S18-Au16457		
47	SB26/6.0	Aug 10, 2018	5	Soil	S18-Au16458		
48	SB26/8.0	Aug 10, 2018	6)	Soil	S18-Au16459		

	-	-	
	Soil	Soil	Soil
moracol and an arrow	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
	26/5.0	26/6.0	26/8.0

Soll	Soil	Soil	Soil	Soil	Soil	
Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 08, 2018	Aug 08, 2018	
SB26/5.0	SB26/6.0	SB26/8.0	SB26/1.5-2.0	SB27/0.2	SB27/0.5	

49 50

51 52

×

× ×

×

 \times

×

S18-Au16464

S18-Au16465 S18-Au16466 S18-Au16467 S18-Au16468

Soil

Aug 08, 2018

SB27/6.0

53 54 22 QS1

Aug 10, 2018

×

×

× ×

 \times

S18-Au16461 S18-Au16462 S18-Au16463

S18-Au16460

×

×

×

×

×

× ×

×

×

Soil Soil Soil Aug 08, 2018 Aug 08, 2018 Aug 08, 2018 Aug 08, 2018 SB27/1.5 SB27/3.8 SB27/5.0 SB27/1.0

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone - +613 8564 5000 NATA # 1261 Site # 1254 & 14271

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261

Site # 23736

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Due: Priority: Contact Name: Received:

02 8960 0555

612025

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

CANCELLED

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

Sample Detail

× Melbourne Laboratory - NATA Site # 1254 & 14271

Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract at 25°C as rec.)

×

×

×

×

×

×

×

×

×

×

×

×

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 08, 2018

QS2 RB1

28

Aug 08, 2018 Aug 09, 2018

SB6/1.25

9 61

59

SB6/3.9

S18-Au16470 S18-Au16472

Water

Soil Soil Soil

> Aug 09, 2018 Aug 09, 2018 Aug 09, 2018

 \times × ×

Soil Soil Soil

Soi Soil Soil

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

Aug 10, 2018 Aug 10, 2018

SB14/6.0

SB14/7.0

Aug 09, 2018

SB11/2.6

SB11/3.6

64

SB14/0.4 SB14/3.2 SB14/5.0

65 66

67

SB11/2.0

62 63 × × ×

S18-Au16551

× × × ×

S18-Au16542 S18-Au16543 S18-Au16544 S18-Au16545 S18-Au16546 S18-Au16547 S18-Au16548 S18-Au16549 S18-Au16550

Page 10 of 14

Report Number: 612025-V2-AID

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

First Reported: Aug 21, 2018 Date Reported: Sep 07, 2018

Melbourne
3-5 Kingston Town Close
Cakkings VIC 3166
Phone: +613 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth2/91 Leach Highway
6/wdale WA 6/105
Phone : +6/1 8 925/1 9600
NATA # 126/1
Site # 23736

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

BTEXN and Volatile TRH	×	×														
Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×														
NEPM Screen for Soil Classification	×		×													
Moisture Set	×															
Volatile Organics	×															
Eurofins mgt Suite B15	×															
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
pH (1:5 Aqueous extract at 25°C as rec.)	×															
HOLD	×				X	×	×	×		×	×	×	×	×	×	×
CANCELLED		×							×							
Asbestos - WA guidelines				×												
					S18-Au16552	S18-Au16553	S18-Au16554	S18-Au16555	S18-Au16556	S18-Au16557	S18-Au16558	S18-Au16559	S18-Au16560	S18-Au16561	S18-Au16562	S18-Au16563
b Detail	54 & 14271	,	94		Soil	Soil	Soil	Soil	Soil							
Sample Detail	NATA Site # 1254 & 14271	TA Site # 18217	ATA Site # 2079	A Site # 23736	10, 2018	10, 2018	Aug 10, 2018	10, 2018	10, 2018	10, 2018	10, 2018	10, 2018	10, 2018	10, 2018	10, 2018	j 10, 2018
	Melbourne Laboratory -	Sydney Laboratory - NAT	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA	SB14/9.0 Aug	SB17/0.2 Aug	SB17/1.3 Aug	SB17/1.6 Aug	SB17/1.6 Aug	SB17/1.9 Aug	SB17/3.8 Aug	SB17/10.0 Aug	SB19/0.2 Aug	SB19/3.2 Aug	SB20/2.4 Aug	SB26/1.0 Aug
	Melbou	Sydney	Brisbar	Perth L	70 SE	71 St	72 SE	73 SE	74 SE	75 SE	76 SE	77 SE	78 SE	79 SE	80 SE	81 SE

Melbourne
3-5 Kingston Town Close
Cakkings VIC 3166
Phone: +613 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
6/wdale WA 6/105
Phone: +6/1 8 925/1 9600
NATA # 126/1
Site # 23736

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Due: Priority: Contact Name: Received:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail NATA Site # 1254 & 14271 TA Site # 18217
S18-Au16564
S18-Au16565
S18-Au16566
S18-Au16567
S18-Au16609
S18-Au16645
S18-Au16646

Page 12 of 14

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

AF Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substatntial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Comments

This report has been revised (V2) to amend Asbestos test results for samples 18-Au16413, 18-Au16414 and 18-Au16461.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Edward Rowley Asbestos Analyst (WA)

Authorised by:

Rhys Thomas Senior Analyst-Asbestos (WA)

Glenn Jackson

National Operations Manager

Final Report – this report replaces any previously issued Report

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Impl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company in resulting from the use of any information or interpretation given in this report. In occase shall Eurofins, Impl be liable for consequential damages including, but not limited to, lost profess, damages for shall result on sheet designations and lost production arising from the lises included except in full and relates only be the lems tested. Unless indicated betherwise, the testes were performed on the samples as required.

Report Number: 612025-V2-AID

⁻ Indicates Not Requested

^{*} Indicates NATA accreditation does not cover the performance of this service

Certificate of Analysis

ilac-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 — Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 1 of 19

Report Number: 612025-W

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill NSW 2203

Attention: Jack Ellis

 Report
 612025-W

 Project name
 MASCOT

 Project ID
 1.16

Received Date Aug 13, 2018

Date Reported: Aug 21, 2018

Client Sample ID Sample Matrix			RB1 Water
•			
Eurofins mgt Sample No.			S18-Au16472
Date Sampled			Aug 08, 2018
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions		
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	82
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001

Client Sample ID			RB1
Sample Matrix			Water
Eurofins mgt Sample No.			S18-Au16472
Date Sampled			Aug 08, 2018
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	92
p-Terphenyl-d14 (surr.)	1	%	116
Phenois (Halogenated)			1
2-Chlorophenol	0.003	mg/L	< 0.003
2.4-Dichlorophenol	0.003	mg/L	< 0.003
2.4.5-Trichlorophenol	0.003	mg/L	< 0.003
2.4.6-Trichlorophenol	0.01	mg/L	< 0.01
2.6-Dichlorophenol	0.003	mg/L	< 0.003
4-Chloro-3-methylphenol	0.003	mg/L	< 0.003
Pentachlorophenol	0.01	mg/L	< 0.01
Tetrachlorophenols - Total	0.03	mg/L	< 0.01
Total Halogenated Phenol*	0.03	mg/L	< 0.03
Phenois (non-Halogenated)	0.01	IIIg/L	V 0.01
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	< 0.1
2-Methyl-4.6-dinitrophenol	0.03	mg/L	< 0.03
2-Methylphenol (o-Cresol)	0.003	mg/L	< 0.003
2-Nitrophenol	0.003	mg/L	< 0.003
2.4-Dimethylphenol	0.003	mg/L	< 0.003
2.4-Dinitrophenol	0.003	mg/L	< 0.003
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	< 0.006
4-Nitrophenol	0.000	mg/L	< 0.000
Dinoseb	0.03	mg/L	< 0.03
Phenol	0.003	mg/L	< 0.003
Total Non-Halogenated Phenol*	0.003	mg/L	< 0.1
Phenol-d6 (surr.)	1	%	50
Heavy Metals	'	1 /0	
Arsenic	0.001	ma/l	< 0.001
		mg/L	
Chromium	0.0002	mg/L	< 0.0002
Coppor		mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	< 0.001
Mercury Niekol	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L mg/L	< 0.001 < 0.005

Report Number: 612025-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Melbourne	Extracted Aug 17, 2018	Holding Time 7 Day
- Method: LTM-ORG-2010 TRH C6-C36			·
BTEX	Melbourne	Aug 15, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 15, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Eurofins mgt Suite B7A			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 17, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 17, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (Halogenated)	Melbourne	Aug 17, 2018	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Melbourne	Aug 17, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Melbourne	Aug 15, 2018	28 Days

Report Number: 612025-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

612025 Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

× NEPM Screen for Soil Classification × Moisture Set × Volatile Organics Eurofins | mgt Suite B15 × × Metals M8 × Polycyclic Aromatic Hydrocarbons × pH (1:5 Aqueous extract at 25°C as rec.) × HOLD CANCELLED Asbestos - WA guidelines Melbourne Laboratory - NATA Site # 1254 & 14271 Sample Detail Sydney Laboratory - NATA Site # 18217

×

×

×

×

×

× ×

× × × × × ×

 \times

×

× \times

×

×

×

Soil Soil Soil

Soil Soil Soil Soil

Aug 09, 2018

SB11/0.5 SB11/0.2

Aug 09, 2018 Aug 09, 2018

Soil

Aug 09, 2018

SB1/0.5 SB6/0.4

SB1/0.3

Aug 09, 2018

Aug 09, 2018 Aug 09, 2018 Aug 09, 2018

SB6/2.6

4 0 9

SB6/3.2 SB6/4.8

SB6/1.0

က

Aug 09, 2018

S18-Au16412 S18-Au16413 S18-Au16414 S18-Au16415 S18-Au16416 S18-Au16417 S18-Au16418 S18-Au16419 S18-Au16420

LAB ID

Matrix

Sampling Time

Sample Date

Sample ID

ŝ

Brisbane Laboratory - NATA Site # 20794

Perth Laboratory - NATA Site # 23736

External Laboratory

× ×

×

×

×

×

Report Number: 612025-W

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

612025

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

CANCELLED

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

Polycyclic Aromatic Hydrocarbons

Sample Detail

pH (1:5 Aqueous extract at 25°C as rec.)

Asbestos - WA guidelines

× ×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 09, 2018

SB11/1.2 SB11/1.6 SB11/4.4 SB11/5.0

10

12 13 4 15

Aug 09, 2018 Aug 09, 2018

×

×

× × ×

× ×

×

Soil Soil Soil

> Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

Aug 10, 2018

SB14/0.5

SB14/0.2

SB14/2.5 SB14/3.8

17 18

SB14/1.2

16

Soil

Aug 09, 2018 Aug 10, 2018 ×

 \times

×

× × ×

×

×

×

S18-Au16428

S18-Au16429 S18-Au16430 S18-Au16431 S18-Au16432

Soil Soil Soil

> Aug 10, 2018 Aug 10, 2018

SB14/10.0

19

SB10/0.3 SB10/0.5

×

× ×

×

×

×

×

×

×

×

S18-Au16421

S18-Au16423 S18-Au16424 S18-Au16425 S18-Au16426 S18-Au16427

Soil Soil

S18-Au16422

×

×

×

×

×

×

×

Page 5 of 19

Report Number: 612025-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

612025

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

02 8960 0555

Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Due: Priority: Contact Name:

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Moisture Set Volatile Organics Eurofins | mgt Suite B15 Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract at 25°C as rec.) Sample Detail

Metals M8 HOLD CANCELLED Asbestos - WA guidelines

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

NEPM Screen for Soil Classification

× ×

× ×

×

×

×

×

×

×

×

×

×

×

Brisbane Laboratory - NATA Site # 20794

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

Aug 10, 2018

SB17/0.5 SB17/1.0 SB17/6.0 SB17/7.5 SB17/9.0

Soil

Soil

Aug 10, 2018 Aug 10, 2018

Aug 10, 2018

Soil Soil Soil

> Aug 10, 2018 Aug 10, 2018 Aug 08, 2018

SB18/0.6 SB18/1.0

SB18/0.2

22 23 24 24 25 26 27 27 27 28 29 30

Aug 10, 2018

Soil Soil Soil

> Aug 08, 2018 Aug 08, 2018 Aug 08, 2018

SB19/1.5 SB19/2.5

31

SB19/3.7

SB19/0.8

Soil

×

× × ×

×

×

× ×

 \times

×

Page 6 of 19

×

× ×

×

×

×

×

× ×

×

×

×

× ×

×

×

×

×

×

× \times ×

Report Number: 612025-W

S18-Au16433 S18-Au16434 S18-Au16435 S18-Au16436 S18-Au16437 S18-Au16438 S18-Au16439 S18-Au16440 S18-Au16441 S18-Au16442 S18-Au16443 S18-Au16444

Sydney Laboratory - NATA Site # 18217

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

612025 Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

02 8960 0555

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Due: Priority: Contact Name:

Received:

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Asbestos - WA guidelines Sample Detail

pH (1:5 Aqueous extract at 25°C as rec.) HOLD CANCELLED

Polycyclic Aromatic Hydrocarbons

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

×

× ×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 08, 2018

SB20/0.3 SB20/1.0 SB20/1.5

34

Aug 08, 2018 Aug 08, 2018

×

×

×

×

× ×

×

×

×

×

Soil Soil

> Aug 08, 2018 Aug 08, 2018

SB20/3.0 SB20/3.8

35 36 37 38

Soil Soil Soil

Aug 08, 2018 Aug 08, 2018

SB20/12.0

40

SB26/0.2 SB26/0.5 SB26/2.0

4 42 43

SB20/9.0

39

Soil

×

S18-Au16445 S18-Au16446 S18-Au16447 S18-Au16448 S18-Au16449 S18-Au16450 S18-Au16451

×

× × × × × × ×

×

×

×

×

×

 \times

× ×

×

×

×

×

S18-Au16452

S18-Au16453 S18-Au16454 S18-Au16455 S18-Au16456

Soil Soil Soil

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

SB26/3.0

SB26/4.0

44

×

Page 7 of 19 Report Number: 612025-W

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

612025

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

HOLD CANCELLED Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

Sample Detail

pH (1:5 Aqueous extract at 25°C as rec.)

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB26/5.0 SB26/6.0 SB26/8.0

46

×

× ×

×

×

×

×

×

×

× ×

×

×

S18-Au16458 S18-Au16459 S18-Au16460 S18-Au16461 S18-Au16462 S18-Au16463

> Soil Soil Soil Soil Soil Soil Soil Soil Soil

Aug 10, 2018 Aug 10, 2018 Aug 08, 2018

SB26/1.5-2.0

SB27/0.2 SB27/0.5 SB27/1.0 SB27/1.5 SB27/3.8 SB27/5.0 SB27/6.0

47 48 49 50 51 52 53 54

Aug 10, 2018

S18-Au16457

× ×

 \times

×

× ×

×

 \times

×

S18-Au16464 S18-Au16465

Aug 08, 2018 Aug 08, 2018 Aug 08, 2018 Aug 08, 2018 Aug 10, 2018

55

QS1

Aug 08, 2018 Aug 08, 2018 S18-Au16466 S18-Au16467 S18-Au16468

×

×

×

× ×

×

×

Page 8 of 19 Report Number: 612025-W

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

612025

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

HOLD CANCELLED Asbestos - WA guidelines

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

Polycyclic Aromatic Hydrocarbons

pH (1:5 Aqueous extract at 25°C as rec.)

Sample Detail

×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 08, 2018

QS2 RB1

58

Aug 08, 2018 Aug 09, 2018

×

S18-Au16470

×

×

× ×

 \times

S18-Au16542 S18-Au16543 S18-Au16544 S18-Au16545 S18-Au16546 S18-Au16547 S18-Au16548 S18-Au16549 S18-Au16550

S18-Au16472

Water

Soil

Aug 09, 2018 Aug 09, 2018

> SB11/2.0 SB11/2.6 SB11/3.6

60 60 62 63 64 65 66

SB6/3.9

SB6/1.25

Soil

Soil Soil Soil

Aug 09, 2018 Aug 09, 2018 Soil Soil Soil

Aug 10, 2018 Aug 10, 2018

SB14/0.4 SB14/3.2 SB14/5.0

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

SB14/6.0

67

SB14/7.0

Soil

 \times × × × ×

S18-Au16551

×

×

Page 9 of 19

Report Number: 612025-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

612025

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

NEPM Screen for Soil Classification

Sample Detail

× Volatile Organics Eurofins | mgt Suite B15 × × Metals M8 × Polycyclic Aromatic Hydrocarbons × pH (1:5 Aqueous extract at 25°C as rec.) \times \times × × × × × HOLD × CANCELLED × Asbestos - WA guidelines S18-Au16554 S18-Au16555 S18-Au16556 S18-Au16557 S18-Au16558 S18-Au16552 S18-Au16553 Soil Soil Soil Soil Soil Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB14/9.0 SB17/0.2 SB17/1.3 SB17/1.6 SB17/1.6 SB17/1.9 SB17/3.8

70

71 72 73

Aug 10, 2018 Aug 10, 2018

Aug 10, 2018 Aug 10, 2018

× ×

×

×

×

×

× ×

S18-Au16559 S18-Au16560 S18-Au16561 S18-Au16562 S18-Au16563

Soil

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

SB17/10.0

SB19/0.2 SB19/3.2 SB20/2.4 SB26/1.0

77 79

Aug 10, 2018

74 75 76

Soil Soil Soil

> Aug 10, 2018 Aug 10, 2018

× × Page 10 of 19 Report Number: 612025-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Sile # 18277

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Received:

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Due: Priority: Contact Name:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Jack Ellis

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

Sample Detail

CANCELLED Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

pH (1:5 Aqueous extract at 25°C as rec.)

× ×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB26/7.0 SB26/9.0

Aug 10, 2018

Aug 08, 2018 Aug 10, 2018

Aug 10, 2018

SB26/10.0

82 83 84 85 86

SB14/8.0 SB27/3.1

Z <u>B</u>

Aug 09, 2018

Test Counts

Aug 09, 2018

×

× \times ×

S18-Au16565 S18-Au16566 S18-Au16567 S18-Au16609 S18-Au16645 S18-Au16646

> Soil Soil Soil Soil

Soil

S18-Au16564

×

×

× ×

× ×

×

× ×

×

×

× × 7

7

15

99

7

20

6

ω

2

56

4

Page 11 of 19 Report Number: 612025-W

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS
Laboratory Control Sample - reported as percent recovery.

CRM
Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotien

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

 Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
 Page 12 of 19

 Date Reported: Aug 21, 2018
 ABN : 50 005 085 521 Telephone: +61 2 9900 8400
 Report Number: 612025-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ons				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	1		, , , , , , , , , , , , , , , , , , , ,		
Phenois (Halogenated)					
2-Chlorophenol	mg/L	< 0.003	0.003	Pass	
2.4-Dichlorophenol	mg/L	< 0.003	0.003	Pass	
2.4.5-Trichlorophenol	mg/L	< 0.01	0.01	Pass	
2.4.6-Trichlorophenol	mg/L	< 0.01	0.01	Pass	
2.6-Dichlorophenol	mg/L	< 0.003	0.003	Pass	
4-Chloro-3-methylphenol	mg/L	< 0.01	0.01	Pass	
Pentachlorophenol	mg/L	< 0.01	0.01	Pass	
Tetrachlorophenols - Total	mg/L	< 0.03	0.03	Pass	
Method Blank	ı my/L	, 5.55	, 0.00	, . 400	
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	mg/L	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2-Methyl-4.6-dinitrophenol	mg/L	< 0.03	0.03	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.003	0.003	Pass	
2-Nitrophenol	mg/L	< 0.01	0.01	Pass	
2.4-Dimethylphenol	mg/L	< 0.003	0.003	Pass	
2.4-Dinitrophenol	mg/L	< 0.03	0.03	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.006	0.006	Pass	
4-Nitrophenol	mg/L	< 0.03	0.03	Pass	
Dinoseb	mg/L	< 0.1	0.1	Pass	
Phenol	mg/L	< 0.003	0.003	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	115	70-130	Pass	
TRH C10-C14	%	104	70-130	Pass	
LCS - % Recovery		1	T		
BTEX					
Benzene	%	117	70-130	Pass	
Toluene	%	105	70-130	Pass	
Ethylbenzene	%	98	70-130	Pass	
m&p-Xylenes	%	100	70-130	Pass	
Xylenes - Total	%	100	70-130	Pass	
LCS - % Recovery		1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	94	70-130	Pass	
TRH C6-C10	%	115	70-130	Pass	
TRH >C10-C16	%	104	70-130	Pass	
LCS - % Recovery			T		
Polycyclic Aromatic Hydrocarbons	1			_	
Acenaphthene	%	91	70-130	Pass	
Acenaphthylene	%	110	70-130	Pass	
Anthracene	%	110	70-130	Pass	
Benz(a)anthracene	%	108	70-130	Pass	
Benzo(a)pyrene	%	122	70-130	Pass	
Benzo(b&j)fluoranthene	%	115	70-130	Pass	
Benzo(g.h.i)perylene	%	107	70-130	Pass	
Benzo(k)fluoranthene	%	108	70-130	Pass	
Chrysene	%	105	70-130	Pass	
Dibenz(a.h)anthracene	%	96	70-130	Pass	
Fluoranthene	%	115	70-130	Pass	
Fluorene	%	101	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	114	70-130	Pass	
Naphthalene	%	104	70-130	Pass	
Phenanthrene Pyrene	%	102 116	70-130 70-130	Pass Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phenols (Halogenated)							
2-Chlorophenol			%	103	30-130	Pass	
2.4-Dichlorophenol			%	113	30-130	Pass	
2.4.5-Trichlorophenol			%	108	30-130	Pass	
2.4.6-Trichlorophenol			%	105	30-130	Pass	
2.6-Dichlorophenol			%	105	30-130	Pass	
4-Chloro-3-methylphenol			%	116	30-130	Pass	
Pentachlorophenol			%	71	30-130	Pass	
Tetrachlorophenols - Total			%	106	30-130	Pass	
LCS - % Recovery					 		
Phenols (non-Halogenated)							
2-Cyclohexyl-4.6-dinitrophenol			%	49	30-130	Pass	
2-Methyl-4.6-dinitrophenol			%	44	30-130	Pass	
2-Methylphenol (o-Cresol)			%	89	30-130	Pass	
2-Nitrophenol		%	112	30-130	Pass		
2.4-Dimethylphenol			%	73	30-130	Pass	
2.4-Dinitrophenol			%	34	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	96	30-130	Pass	
4-Nitrophenol			%	32	30-130	Pass	
Dinoseb			%	70	30-130	Pass	
Phenol			%	74	30-130	Pass	
LCS - % Recovery				•			
Heavy Metals							
Arsenic			%	99	80-120	Pass	
Cadmium			%	105	80-120	Pass	
Chromium			%	100	80-120	Pass	
Copper			%	99	80-120	Pass	
Lead			%	103	80-120	Pass	
Mercury			%	100	75-125	Pass	
Nickel			%	100	80-120	Pass	
Zinc			%	101	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1			
TRH C6-C9	M18-Au14209	NCP	%	113	70-130	Pass	
TRH C10-C14	M18-Au16008	NCP	%	130	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	M18-Au14209	NCP	%	119	70-130	Pass	
Toluene	M18-Au14209	NCP	%	112	70-130	Pass	
Ethylbenzene	M18-Au14209	NCP	%	106	70-130	Pass	
m&p-Xylenes	M18-Au14209	NCP	%	108	70-130	Pass	
o-Xylene	M18-Au14209	NCP	%	110	70-130	Pass	
Xylenes - Total	M18-Au14209	NCP	%	109	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Frac	tions		Result 1			
Naphthalene	M18-Au14209	NCP	%	92	70-130	Pass	
TRH C6-C10	M18-Au14209	NCP	%	114	70-130	Pass	
TRH >C10-C16	M18-Au16008	NCP	%	122	70-130	Pass	
Spike - % Recovery	,				,		
Polycyclic Aromatic Hydrocarbons				Result 1	T		
Acenaphthene	S18-Au14769	NCP	%	84	70-130	Pass	
Acenaphthylene	S18-Au14769	NCP	%	99	70-130	Pass	
Anthracene	S18-Au14769	NCP	%	87	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benz(a)anthracene	S18-Au14769	NCP	%	88			70-130	Pass	
Benzo(a)pyrene	S18-Au14769	NCP	%	103			70-130	Pass	
Benzo(b&j)fluoranthene	S18-Au14769	NCP	%	104			70-130	Pass	
Benzo(g.h.i)perylene	S18-Au14769	NCP	%	82			70-130	Pass	
Benzo(k)fluoranthene	S18-Au14769	NCP	%	109			70-130	Pass	
Chrysene	S18-Au14769	NCP	%	86			70-130	Pass	
Dibenz(a.h)anthracene	S18-Au14769	NCP	%	75			70-130	Pass	
Fluoranthene	S18-Au14769	NCP	%	91			70-130	Pass	
Fluorene	S18-Au14769	NCP	%	84			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au14769	NCP	%	86			70-130	Pass	
Naphthalene	M18-Au12301	NCP	%	79			70-130	Pass	
Phenanthrene	S18-Au14769	NCP	%	79			70-130	Pass	
Pyrene	S18-Au14769	NCP	%	92			70-130	Pass	
Spike - % Recovery									
Phenols (Halogenated)				Result 1					
2-Chlorophenol	B18-Au11132	NCP	%	102			30-130	Pass	
2.4-Dichlorophenol	B18-Au11132	NCP	%	111			30-130	Pass	
2.4.5-Trichlorophenol	B18-Au11132	NCP	%	104			30-130	Pass	
2.4.6-Trichlorophenol	B18-Au11132	NCP	%	101			30-130	Pass	
2.6-Dichlorophenol	B18-Au11132	NCP	%	99			30-130	Pass	
4-Chloro-3-methylphenol	B18-Au11132	NCP	%	123			30-130	Pass	
Pentachlorophenol	B18-Au11132	NCP	%	81			30-130	Pass	
Tetrachlorophenols - Total	B18-Au11132	NCP	%	109			30-130	Pass	
Spike - % Recovery									
Phenols (non-Halogenated)				Result 1					
2-Cyclohexyl-4.6-dinitrophenol	B18-Au11132	NCP	%	96			30-130	Pass	
2-Methyl-4.6-dinitrophenol	B18-Au11132	NCP	%	35			30-130	Pass	
2-Methylphenol (o-Cresol)	B18-Au11132	NCP	%	93			30-130	Pass	
2-Nitrophenol	B18-Au11132	NCP	%	110			30-130	Pass	
2.4-Dimethylphenol	B18-Au11132	NCP	%	111			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	B18-Au11132	NCP	%	98			30-130	Pass	
4-Nitrophenol	B18-Au11132	NCP	%	66			30-130	Pass	
Dinoseb	B18-Au11132	NCP	%	103			30-130	Pass	
Phenol	B18-Au11132	NCP	%	73			30-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M18-Au17325	NCP	%	78			75-125	Pass	
Cadmium	M18-Au17325	NCP	%	84			75-125	Pass	
Chromium	M18-Au17325	NCP	%	79			75-125	Pass	
Copper	M18-Au17325	NCP	 %	79			75-125	Pass	
Lead	M18-Au17325	NCP	 %	81			75-125	Pass	
Mercury	M18-Au17325	NCP	 %	79			70-130	Pass	
Nickel	M18-Au17325	NCP	<u> </u>	80			75-125	Pass	
Zinc	M18-Au17325	NCP	% %	81			75-125 75-125	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	Lab Gample ID	Source	Oille	INGSUIT I			Limits	Limits	Code
Duplicate	4000 NETT					DES			
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	M18-Au14195	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M18-Au19455	NCP	mg/L	0.28	0.31	9.0	30%	Pass	
TRH C15-C28	M18-Au19455	NCP	mg/L	0.4	0.5	33	30%	Fail	Q15
TRH C29-C36	M18-Au19455	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Dumlingto									
Duplicate				DIt 4	D# 0	DDD			
BTEX	1440 A 44405	NOD	,,	Result 1	Result 2	RPD	000/	_	
Benzene	M18-Au14195	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M18-Au14195	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M18-Au14195	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M18-Au14195	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M18-Au14195	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M18-Au14195	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate	2042 NEDM 5			D 11.4	D 110	DDD	I	I	
Total Recoverable Hydrocarbons			,,	Result 1	Result 2	RPD	000/	_	
Naphthalene	M18-Au14195	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M18-Au14195	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH > C10-C16	M18-Au19455	NCP	mg/L	0.37	0.45	18	30%	Pass	0.15
TRH > C16-C34	M18-Au19455	NCP	mg/L	0.2	0.3	40	30%	Fail	Q15
TRH > C34-C40	M18-Au19455	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				T			I		
Polycyclic Aromatic Hydrocarbon		Non		Result 1	Result 2	RPD	0001	+	
Acenaphthene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Acenaphthylene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Anthracene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Benz(a)anthracene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Benzo(a)pyrene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Benzo(k)fluoranthene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Chrysene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Fluoranthene	S18-Au14768	NCP	mg/L	0.013	0.013	1.0	30%	Pass	
Fluorene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Naphthalene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Phenanthrene	S18-Au14768	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Pyrene	S18-Au14768	NCP	mg/L	0.014	0.011	18	30%	Pass	
Duplicate				T					
Phenols (Halogenated)	T =			Result 1	Result 2	RPD	/	_	
2-Chlorophenol	B18-Au11131	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4-Dichlorophenol	B18-Au11131	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4.5-Trichlorophenol	B18-Au11131	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.4.6-Trichlorophenol	B18-Au11131	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.6-Dichlorophenol	B18-Au11131	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
4-Chloro-3-methylphenol	B18-Au11131	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Pentachlorophenol	B18-Au11131	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Tetrachlorophenols - Total	B18-Au11131	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
Duplicate									
Phenols (non-Halogenated)	D40 4 4::5:	1		Result 1	Result 2	RPD	222	+	
2-Cyclohexyl-4.6-dinitrophenol	B18-Au11131	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	B18-Au11131	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
2-Methylphenol (o-Cresol)	B18-Au11131	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2-Nitrophenol	B18-Au11131	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.4-Dimethylphenol	B18-Au11131	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4-Dinitrophenol	B18-Au11131	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	B18-Au11131	NCP	mg/L	< 0.006	< 0.006	<1	30%	Pass	
4-Nitrophenol	B18-Au11131	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
Dinoseb	B18-Au11131	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Phenol	B18-Au11131	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-Au17325	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	M18-Au17325	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M18-Au17325	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	M18-Au17325	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	M18-Au17325	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	M18-Au17325	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M18-Au17325	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	M18-Au17325	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Report Number: 612025-W

Comments

Sample Integrity

Custody Seals Intact (if used)

Altempt to Chill was evident

Yes

Sample correctly preserved

Appropriate sample containers have been used

Yes

Sample containers for volatile analysis received with minimal headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAGC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Harry Bacalis Senior Analyst-Volatile (VIC)
Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 612025-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Received: Due: Priority: Contact Name:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis

~
<u>ڏ</u>
.≌
a
>
ha
듣
豎
Z
╦.
_
₽
Ď
æ
⊆
<u></u>
≥
"
/ices
ၓ
÷
2
₽
Ś
_
ũ
.2
Ŧ
<u>ځ</u>
ā
Ĕ
⋖
ᆂ
ō
mgt
_
'n
ĕ
⋐
6
≗
.=
ш

BTEXN and Volatile TRH	×	×													
Eurofins mgt Suite B7A	×	×											×		×
Eurofins mgt Suite B7	×	×					×			×	×				
NEPM Screen for Soil Classification	×		×					×			×				
Moisture Set	×						×	×	×	×	×	×	×	×	×
Volatile Organics	×						×								
Eurofins mgt Suite B15	×							×	×			×		×	
Metals M8	×							×							
Polycyclic Aromatic Hydrocarbons	×							×							
pH (1:5 Aqueous extract at 25°C as rec.)	×														
HOLD	×														
CANCELLED		×													
Asbestos - WA guidelines				×				×	×						
						LAB ID	S18-Au16412	S18-Au16413	S18-Au16414	S18-Au16415	S18-Au16416	S18-Au16417	S18-Au16418	S18-Au16419	S18-Au16420
	171					Matrix	Soil								
Sample Detail	# 1254 & 1427	3217	20794	36		Sampling Time									
S	Melbourne Laboratory - NATA Site # 1254	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736		Sample Date	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
	ourne Laborato	ey Laboratory	ane Laboratory	Laboratory - N	External Laboratory	Sample ID	SB1/0.3	SB1/0.5	SB6/0.4	SB6/1.0	SB6/2.6	SB6/3.2	SB6/4.8	SB11/0.2	SB11/0.5
	Melb	Sydn	Brisb	Perth	Exter	8	1	2	3	4	5	9	7	8	6

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name:

Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Due: Priority: Contact Name:

Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH	×	×														
Eurofins mgt Suite B7A	×	×					×									
Eurofins mgt Suite B7	×	×				×			×					×		
NEPM Screen for Soil Classification	×		×								×					
Moisture Set	×				×	×	×	X	X	×	×	×	×	×		×
Volatile Organics	×					×						×				
Eurofins mgt Suite B15	×							X		×			×	×		×
Metals M8	×				X						×					×
Polycyclic Aromatic Hydrocarbons	×				×						×					
pH (1:5 Aqueous extract at 25°C as rec.)	×															×
HOLD	×															
CANCELLED		×														
Asbestos - WA guidelines				×	×				×			×			×	
					S18-Au16421	S18-Au16422	S18-Au16423	S18-Au16424	S18-Au16425	S18-Au16426	S18-Au16427	S18-Au16428	S18-Au16429	S18-Au16430	S18-Au16431	S18-Au16432
Detail	Site # 1254 & 14271		_		Soil											
Sample Detail		Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 10, 2018							
	Melbourne Laboratory - NATA	ey Laborato	ane Labora	Laboratory	SB11/1.2	SB11/1.6	SB11/4.4	SB11/5.0	SB14/0.2	SB14/0.5	SB14/1.2	SB14/2.5	SB14/3.8	SB14/10.0	SB10/0.3	SB10/0.5
	Melb	Sydn	Brisb	Perth	10	11	12	13	14	15	16	17	18	19	20	21

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Due: Priority: Contact Name: Received:

Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

CANCELLED

Asbestos - WA guidelines

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

Polycyclic Aromatic Hydrocarbons

pH (1:5 Aqueous extract at 25°C as rec.)

Sample Detail

×

× × ×

×

Soil Soil Soil Soil Soil Soil Soil Soil Soil

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 08, 2018

SB18/0.6 SB18/1.0

SB18/0.2

22 23 24 24 25 26 27 27 27 28 29 30

Aug 08, 2018 Aug 08, 2018 Aug 08, 2018

SB19/1.5 SB19/2.5

31

SB19/3.7

SB19/0.8

Aug 10, 2018

×

× ×

 \times

×

×

S18-Au16433 S18-Au16434 S18-Au16435 S18-Au16436 S18-Au16437 S18-Au16438 S18-Au16439 S18-Au16440 S18-Au16441 S18-Au16442 S18-Au16443 S18-Au16444

× ×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB17/0.5 SB17/1.0 SB17/6.0 SB17/7.5 SB17/9.0

Aug 10, 2018 Aug 10, 2018

×

×

×

× ×

×

×

×

×

× ×

×

×

×

× ×

×

×

×

×

×

× \times ×

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736 **Brisbane** 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

612025 02 8960 0555 Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis Due: Priority: Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH	×	×														
Eurofins mgt Suite B7A	×	×							×		×					
Eurofins mgt Suite B7	×	×				×						×				×
NEPM Screen for Soil Classification	×		X							X						
Moisture Set	×				×	×	X	X	X	X	×	X	×	×	×	×
Volatile Organics	×															
Eurofins mgt Suite B15	×				×			X					X		×	
Metals M8	×				X		X									
Polycyclic Aromatic Hydrocarbons	×				×					×						
pH (1:5 Aqueous extract at 25°C as rec.)	×													×		
HOLD	×															
CANCELLED		×														
Asbestos - WA guidelines				×		×						×				
					S18-Au16445	S18-Au16446	S18-Au16447	S18-Au16448	S18-Au16449	S18-Au16450	S18-Au16451	S18-Au16452	S18-Au16453	S18-Au16454	S18-Au16455	S18-Au16456
	4271				Soil											
Sample Detail	# 1254 & 1	18217	£ 20794	736												
Ö	ory - NATA Site	- NATA Site #	y - NATA Site #	VATA Site # 23	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 10, 2018				
	Melbourne Laboratory - NATA Site # 1254 & 1427	Sydney Laboratory - NATA Site # 18	Brisbane Laboratory - NATA Site #	Perth Laboratory - NATA Site # 237	SB20/0.3	SB20/1.0	SB20/1.5	SB20/3.0	SB20/3.8	SB20/9.0	SB20/12.0	SB26/0.2	SB26/0.5	SB26/2.0	SB26/3.0	SB26/4.0
	Melb	Sydn	Brisb	Perth	34	35	36	37	38	39	40	41	42	43	44	45

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH	×	×														
Eurofins mgt Suite B7A	×	×						×							×	
Eurofins mgt Suite B7	×	×				×							×			×
NEPM Screen for Soil Classification	×		×													
Moisture Set	×				×	×	×	×	×	×	×		×	×	×	×
Volatile Organics	×				×			×								
Eurofins mgt Suite B15	×						×		×							
Metals M8	×									X						
Polycyclic Aromatic Hydrocarbons	×										X					
pH (1:5 Aqueous extract at 25°C as rec.)	×													×		
HOLD	×															
CANCELLED		×														
Asbestos - WA guidelines				×					×			×				
					S18-Au16457	S18-Au16458	S18-Au16459	S18-Au16460	S18-Au16461	S18-Au16462	S18-Au16463	S18-Au16464	S18-Au16465	S18-Au16466	S18-Au16467	S18-Au16468
_	4271				Soil											
Sample Detai	# 1254 & 1427	18217	: 20794	1736												
ഗ്	ry - NATA Site	- NATA Site # 1	/ - NATA Site #	IATA Site # 23	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 08, 2018	Aug 10, 2018						
	Melbourne Laboratory - NATA Site	Sydney Laboratory - NATA Site #	Brisbane Laboratory - NATA Site #	Perth Laboratory - NATA Site #23	SB26/5.0	SB26/6.0	SB26/8.0	SB26/1.5-2.0	SB27/0.2	SB27/0.5	SB27/1.0	SB27/1.5	SB27/3.8	SB27/5.0	SB27/6.0	QS1
	Melb	Sydn	Brisk	Perth	46	47	48	49	20	51	52	53	54	55	26	22

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Due: Priority: Contact Name: Received:

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

BTEXN and Volatile TRH	×	×														
Eurofins mgt Suite B7A	×	×				X										
Eurofins mgt Suite B7	×	×			X											
NEPM Screen for Soil Classification	×		×													
Moisture Set	×				×											
Volatile Organics	×															
Eurofins mgt Suite B15	×															
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
pH (1:5 Aqueous extract at 25°C as rec.)	×															
HOLD	×						×	×	×	×	×	×	×	×	×	×
CANCELLED		×														
Asbestos - WA guidelines				×												
					S18-Au16470	S18-Au16472	S18-Au16542	S18-Au16543	S18-Au16544	S18-Au16545	S18-Au16546	S18-Au16547	S18-Au16548	S18-Au16549	S18-Au16550	S18-Au16551
	271				Soil	Water	Soil									
Sample Detail	A Site # 1254 & 14271	8217	Site # 20794	736												
S	Melbourne Laboratory - NATA Site	Sydney Laboratory - NATA Site # 18217		Perth Laboratory - NATA Site # 23736	Aug 08, 2018	Aug 08, 2018	Aug 09, 2018	Aug 10, 2018								
		ey Laboratory	Brisbane Laboratory - NATA	Laboratory - N	QS2	RB1	SB6/1.25	SB6/3.9	SB11/2.0	SB11/2.6	SB11/3.6	SB14/0.4	SB14/3.2	SB14/5.0	SB14/6.0	SB14/7.0
	Melb	Sydn	Brisb	Perth	28	29	09	61	62	63	64	65	99	29	68	69

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

BTEXN and Volatile TRH	×	×														
Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×														
NEPM Screen for Soil Classification	×		×													
Moisture Set	×															
Volatile Organics	×															
Eurofins mgt Suite B15	×															
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
pH (1:5 Aqueous extract at 25°C as rec.)	×															
HOLD	×				×	×	×	×		×	×	×	×	×	×	×
CANCELLED		×							×							
Asbestos - WA guidelines				×												
					S18-Au16552	S18-Au16553	S18-Au16554	S18-Au16555	S18-Au16556	S18-Au16557	S18-Au16558	S18-Au16559	S18-Au16560	S18-Au16561	S18-Au16562	S18-Au16563
Detail	e # 1254 & 14271		14		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sample Detail	Melbourne Laboratory - NATA Site # 125	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	Aug 10, 2018			Aug 10, 2018		Aug 10, 2018	Aug 10, 2018		Aug 10, 2018		Aug 10, 2018	Aug 10, 2018
	oourne Lab	ney Labora	bane Labo	h Laborato	SB14/9.0	SB17/0.2	SB17/1.3	SB17/1.6	SB17/1.6	SB17/1.9	SB17/3.8	SB17/10.0	SB19/0.2	SB19/3.2	SB20/2.4	SB26/1.0
	Melk	Syd	Bris	Pert	20	71	72	73	74	75	92	77	78	79	80	81

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Sile # 18277

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Received: Due: Priority: Contact Name:

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

BTEXN and Volatile TRH

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

CANCELLED

Asbestos - WA guidelines

Volatile Organics

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

Polycyclic Aromatic Hydrocarbons

pH (1:5 Aqueous extract at 25°C as rec.)

Sample Detail

× × 7

× ×

×

×

×

×

× ×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB26/7.0 SB26/9.0

Aug 10, 2018 Aug 10, 2018 Aug 08, 2018

SB26/10.0

82 83 84 85 86

SB27/3.1 SB14/8.0

× \times ×

S18-Au16565 S18-Au16566 S18-Au16567

> Soil Soil Soil Soil

Soil

S18-Au16564

×

×

×

7

15

99

7

20

6

ω

2

56

4

S18-Au16609

Aug 10, 2018

Aug 09, 2018 Aug 09, 2018

Test Counts

Z <u>B</u>

S18-Au16645 S18-Au16646

Aug 13, 2018 3:09 PM Aug 20, 2018 5 Day Jack Ellis

ighway 6105 3 9251 9600 NATA # 1261 Site # 23736

Perth	2/91 Leach Hig	Kewdale WA 6	Phone : +61 8	1001 T 4 H 4 1 4
	1 Place	172	3902 4600	

Melbourne National Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271 Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: Trace Environmental P/L

Contact name: Jack Ellis Project name: **MASCOT** Project ID: 1.16

COC number: Not provided

Turn around time: 5 Day

Aug 13, 2018 3:09 PM Date/Time received:

Eurofins | mgt reference: 612025

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \square Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 4.4 degrees Celsius.
- V All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{Z} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \square Appropriate sample containers have been used.
- \square Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Notes^{N/A} Custody Seals intact (if used).

Jars not received for SB10/0.3(only asbestos analysis conducted) & SB10/0.5 (analysis conducted from bag). Jar not received for SB17/1.6. Trip`spike and blank received and placed on hold.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Jack Ellis - jack@traceenviro.com.

Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Sydn tr3 - 6 Building t, 16 Mars Road, Lane Cove one: +612 9900 8400 ail: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

	mg	gt									C	HAIN	OF (cus	TOD	Y RE	COF	RD											
LIENT DETAILS																									F	Page	1	of 1	3/12
ompany Name : TRACE Env	rironmenta	Contac	ct Nam	ne:	Jac	W 4	ill	S								Purc	hase Ord	der:							COC Nu		- 1	0.6	6
ffice Address : 793-799 New	Sale State Sures	Projec		ger:	W.	on 1	Jene		200							PRO	JECT Nu	imber:	1-16						Eurofins	s mg	t quote	ID: 180	802TM4
anterbury Road, Dulwich Hi	II. NSW.	Email	for res	ults:	Ken	0	Tac			2.00	M					PRO	JECT Na	me :	Ma	SCO	1				Data ou				14
					1 10/1				VIII	7.00		Analytes							100			S	ome com	non hold	ing times	s (with	corre	ct preserva	ition).
pecial Directions ≀									10													٧	Vaters	or idiano	IIIOIIIIat	1011 00	indot ti	Soils	
ccounts@traceenviro.com & F	Proj								(1)												ВТ	EX, MA	H, VOC	14 day	BTE	X. MA	H. VOC)	14 days
lanager									2						11						TR	Н, РАН	, Phenols,	Pe 7 days					des 14 days
			~						3												He	avy Me	tals	6 mon	Hea	vy Met	tals		6 months
			20			00			10	-	5										Me	ercury, C	rVI	28 day	Merc	cury, C	CrVI		28 days
		4	87	5)	-			82	2	Spos												gical testin	-	111101	obiolo	gical te	sting	72 hours
		1	80	18		2	()		',	0	3							-			_		te, Nitrite,		Anio	ons			28 days
		8	0.1	1.2	-		Ŏ	Ha	OF		8						1 1				_		S, TDS et	7 days	SPC	CAS,	pH Fie	ld and FOX	, C 24 hours
urofins mgt DI water batch num	ber:	,d	7	Q	二	B	3	0	R	19	45,	- 4									Fe	rrous iro	on	7 days	ASL	P, TCI	LP		7 days
		Suita	urte	Sute	PAH	Surle			8	Sile	1									Q	Contai	iners:	_				_		40
Sample ID Date	Matrix	5	S	5		S			4	03										HOLD		250P	125P 1L	A IOmL vi	125ml	Jar	Bag	Samp	le comments:
1 581/03 9/8/18	SOIL						/									_					-	-					_	contact sa	mple
2 SBI 105 1	. 1		WA	/	1	AND				/	/														-	/		contact sa	mple
3 5136/0-4	10.7		100	/																						/			10
4 586/1-0		/			/					A	40															/			*
5 586/1.25											a.									/	1				-				130
6 506/2-0																													1
7 536/2.6		/																											740-
8 9 36/3.0.																													3
9 566/3.2				/																					-				
10 586/3.9																				/									100
11 S86/b.0																							_	-					
12 586/4.8			/																_	_	\vdash				1		-		480
13 686/5											_								_	-									77
14 381/0.7	_			1				_		_													_	-	-	-	/		19
15 SBIL/G.S	1			1100	1		-	-			-		-			-	-	-	-	-	-				-				-0.0
16 SON/1.2	~	\Box		HA			-			_					Turn	around t	ima			_	-			21211	علبط			Tomporati	re on arrival:
elinquishec	Receiv	red By:			Labo	oratory	Staff			_					rum	around t	iiile				-		Method	Of Shipr	nent		_	Temperati	ic off affival.
3ack Elly	necen	reu by.	E	Vie	5	8)							o DAY		2.044					/	Courie	er					te.	43
ate & Time:	Date 8	Time:		1	1	,	21		0			1 DAY		2 DAY		3 DAY						Hand	Delivered					Report nui	nber:
			13	8	118	5	3:	09.	for	4		5 DAY		10 DAY		Other	:					Posta						1.0	- 05
ignature:	Signat	ure:			4		2	_			4			3.50		2710					urier C	Consign	ment :					6120	025

Sydn t F3 - 6 Building F, 16 Mars Road, Lane Cove one: +612 9900 8400 ail: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

l m	CHAIN OF CUSTODY RECORD								
CLIENT DETAILS						Page	_	of 1	416
Company Name : TRACE Environmen	Contact Name: 5ack EUS Purchase Order:					COC Numbe		LOF	6
Office Address : 793-799 New	Project Manager: PROJECT Number:	1.6	6			Eurofins m	gt quot	e ID: See P	14
Canterbury Road, Dulwich Hill, NSW,	Email for results : PROJECT Name :	1 7			_	Data output	-	_	37
	Analytes		_					ct preservatio	n).
Special Directions (Analytes		+		r further	information c	ontact t		27
Please email invoices to accounts@traceenviro.com & Proj				Waters				Soils	1
Manager				BTEX, MAH, VOC	14 day	BTEX, M			14 days
				TRH, PAH, Phenols, P	-			nols, Pesticides	C 1/2
			_	Heavy Metals	6 mon	Heavy M			6 months
			_	Mercury, CrVI	28 day	Mercury,	CrVI		28 days
	はもいコゴハーガッパー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			Microbiological testing	24 hou	Microbiol	ogical te	-	72 hours
	SER A JOHO S		_	BOD, Nitrate, Nitrite, To	-	Anions			28 days
				Solids - TSS, TDS etc	7 days	SPOCAS	i, pH Fi	eld and FOX, C	24 hours
Eurofins mgt DI water batch number:	2 2 2 2 1 1 1 1 1	1 1	1	Ferrous iron	7 days	ASLP, TO	CLP		7 days
Euromis mgt bi water batch number.	Suite Suite								
Sample ID Date Matrix		HOLD	Con	tainers:				Sample c	comments:
Sample 15 Date Matrix		Ĭ	1LF	P 250P 125P 1LA	OmL via	25mL/ Jar	Bag		194
1 SBIL/1-6 918/18 SOIL								contact samp	ole
2 5611/2.01		/	1				/	contact samp	ole
3 5811/2.6	1	/		1-1		/			1968
4 SBI1/3.6		/	1			/			10/1/2
5 581 Vis.4									3
6 SBI/5 . Q									2
7 SB14/0.2 10/8/18							/		177
8 SBIU/O.W		/					/		A CONTRACTOR OF THE PARTY OF TH
9 SBI4/0.5									400
10 5514/1.2							/		
11 SBIV/2.5						/	/		300
12 51314/3.2	APPORT OF THE PROPERTY OF THE	/	4						340
13 SB14/3 8						/			W.
14 5814/5.0						/			1
15 SBJ416-0		1				/		1	UV-
16 SBIU/7-0	DAGI L	2				/	1	Ī	. 10
				Method C	of Shipm	ent		Temperature	on arrival:
Relinquished Elles Rece	Laboratory Staff Turn around time 1 DAY 2 DAY 3 DAY			Courier				Jr. his	SEE.
Date & Time: Date	Time: 3818 8:09 PM 5 DAY 10 DAY Other:			Hand Delivered Postal				Report numb	34
Signature: El a Sign	ure:		urie	r Consignment:				6126	226

Sydn tF3 - 6 Building F, 16 Mars Road, Lane Cove one: +612 9900 8400 ail: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

CHAIN	OF CUSTODY RE	CORD

CLIENT DETAILS			Page 1 of 1
Company Name : TRACE Environmen	nta Contact Name: Sack ELLIS	Purchase Order :	COC Number: 307 6
Office Address : 793-799 New Canterbury Road, Dulwich Hill, NSW,	Project Manager:	PROJECT Number :	Eurofins mgt quote ID : See La 1
Carterbury Road, Durwich Hill, NSW.	Email for results: See COC Jage	PROJECT Name :	Data output format:
	Analytes	Some	e common holding times (with correct preservation). For further information contact the lab
Special Directions (Wate	ers Soils
accounts@traceenviro.com & Proj Manager		BTEX, MAH, V	/OC 14 day BTEX, MAH, VOC 14 days
	1 1/ 14	TRH, PAH, Ph	enols, Pe 7 days TRH, PAH, Phenols, Pesticides 14 days
	7 1 2 1 2 2 2 2 1 2 1 2 1 1 1 1 1	Heavy Metals	6 mon Heavy Metals 6 months
		Mercury, CrVI	28 day Mercury, CrVI 28 days
	MANDE CISORDA	Microbiologica	This coloregion tooting
	MA JOIT QUA		Nitrite, To 2 days Anions 28 days
	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	Solids - TSS,	TDS etc 7 days SPOCAS, pH Field and FOX, Q24 hours
Eurofins mgt DI water batch number:		Ferrous iron	7 days ASLP, TCLP 7 days
Euromis mgt bi water batch number.			
Sample ID Date Matrix		Containers: 1LP 250P 125	Sample comments:
Sample 15 Bate Matrix		ゴ 1LP 250P 125	SP 1LA IOmL via 25mL / Jar Bag
1 SB14/8.0 10/8/18 Soi			contact sample
2 SBIU/9-0 1 1			contact sample
3 58 14/00			
4 5810/0.3			
5 580/0.5			
6 SB17/0.2			
7 5817/0.5			
8 SB17 /1.0			
9 SB17/1-3			260
10 5817/1.6			The state of the s
11 SB17/1-9			
12 5817/3.8			200
13 S.BI7/6.0			
14 SB17/7-5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 SB17/9.0			
16 SB17/10.0 V			
	Laboratory Stari	round time	Method Of Shipment Temperature on arrival:
Tachelly Reco	reived By:	3 DAY Courier	4.43
Date & Time: Date Date	e & Time: (3/8/18 3:09fm 5 DAY 10 DAY	Hand Deli Postal	
Signature: Sign	nature:	urier Consignme	612025

Sydn t F3 - 6 Building F, 16 Mars Road, Lane Cove one: +612 9900 8400

ail: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

Hand Delivered

Postal

urier Consignment

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

Report number:

					The state of
m	gt CHAIN OF CUSTOE	Y RECORD			
CLIENT DETAILS				Page 1 of 1	W-
Company Name : TRACE Environmen	Contact Name: Jack Elly	Purchase Order :		COC Number: 4 OF	6
Office Address : 793-799 New Canterbury Road, Dulwich Hill, NSW,	Project Manager:	PROJECT Number : 1. 6		Eurofins mgt quote ID : See y	21
Canterbury Road, Dulwich Hill, NSW,	Email for results: See WC Hace I	PROJECT Name :		Data output format:	
7	Analytes		Some common h For fur	olding times (with correct preservati ther information contact the lab	ion).
Special Directions (Waters	Soils	1
accounts@traceenviro.com & Proj Manager			BTEX, MAH, VOC 14	day BTEX, MAH, VOC	14 days
Manager	1		TRH, PAH, Phenols, Pe 7 o	days TRH, PAH, Phenols, Pesticide	s 14 days
			Heavy Metals 6 r	non Heavy Metals	6 months
			Mercury, CrVI 28	day Mercury, CrVI	28 days
	4-129		Microbiological testing 24	hou Microbiological testing	72 hours
	1012011011011		BOD, Nitrate, Nitrite, To 2 of	days Anions	28 days
	10 20 00 00 00 00 00 00 00 00 00 00 00 00		Solids - TSS, TDS etc 7 c	days SPOCAS, pH Field and FOX,	Q24 hours

Eurofins mgt DI water batch number:	B	Ul ta	Sub		OIL		6	52	Sul	to the									Fer	rous ir	on	7 da	ıys	ASLP	, TCLP		7 days
Sample ID Date Matrix	Sorta	S	S		S					1								HOLD	Contain 1LP		125P	1LA IOmL	via125	mL/ J	ar Bag	Samp	le comments:
1 SB18/6-2 10/8/18 Soil			/																					U		contact s	ample
2 5818/0.6 1				DAM		/																			//	contact s	ample
3 SB/8/1.0 1		/		1	•		MA																	-	//		A
4 589/0-2 8/8/18			1				-	1										/							//		18
5 5819/0.8			/							1														-	//		2.6
6 9Bq/1.5	/															17 10 11									//		41
7 SB19 / Z.5			/			-																			/		10.
8 SBA/3-2			-	W		-												/					\top		/		100
9 SB19/3.7		-	-	470						-													1				117
10 5820 6.3			/				-						-														100
	1	_								/		_		-									-		//		1/2
11 9820/1-0				-							-	_	1		1	+	_						_	-			N/n
12 5820/1.5			_					-		-		-	+		+ +	-	-	-		-			+				701 705
13 5520/2-4	-	_								-	-	-	+	_	++	+	-						+				7.72
14 3320/3.0	A A A A	_				_			-	_	-	-	-	_	-	_			\vdash	-		_	+	-	_		-10
	HW.	1	_							-	_	_	+		-			-		_		_	-	-			HI
16 SB20/9.0 V																		_	\vdash					1		T	The section to
				Labo	oratory	Staff								Turn	round time				_		Met	nod Of Shi	pmen	nt		Temperat	ure on arrival:
Pack Ells Received	ed By:	9	EI	vic		P					DAY		2 DAY		2 DAY					Couri	er					4.	43

2 DAY

10 DAY

3 DAY

Date & Time:

Signature:

3:09PM

Sydn tF3 - 6 Building F, 16 Mars Road, Lane Cove one: +612 9900 8400 ail: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

l n	ngt CHAIN OF CUS	STODY RECORD		
CLIENT DETAILS				Page 1 of 1
Company Name : TRACE Environme	Tackelles	Purchase Order :		COC Number: 5 of 6
Office Address : 793-799 New	Project Manager:	PROJECT Number : 6		Eurofins mgt quote ID : Soo Fg
Canterbury Road, Dulwich Hill, NSW,	Email for results: Seo COL Vage	PROJECT Name :		Data output format:
	Analytes		Some common hold	ling times (with correct preservation).
Special Directions (Allalytes			er information contact the lab
rease email invoices to accounts@traceenviro.com & Proj	1		Waters	Soils
Manager	1		BTEX, MAH, VOC 14 da	
			TRH, PAH, Phenols, Pe 7 days Heavy Metals 6 mor	
	1 4 1 1 2 1 2 1 1 1		Mercury, CrVI 28 da	
	12 12 20 2 2		Microbiological testing 24 ho	
	- E E S E S E S E S E S E S E S E S E S		BOD, Nitrate, Nitrite, To 2 day	
	10000000000000000000000000000000000000		Solids - TSS, TDS etc 7 day	
	1 1 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ferrous iron 7 day	
Eurofins mgt DI water batch number:	Scile Scile			36
Sample ID Date Matrix	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	НОГР	Containers:	Sample comments:
Sample ID Date Matrix		보	1LP 250P 125P 1LA 10mL vi	nat 25mL / Jar Bag
1 SB20/12.0 818/18 Soil				contact sample
2 5816/0-2 10/8/18				contact sample
3 5826/0.5				- Cert
4 5826/1-0				
5 SB26/2-0				
6 53%/3.0				
7 5826/6.0 8 5826/5.0				
9 SBS6/60				1 192
10 5826/7-0			1	
11 SBZ6/8-0				- A
12 826/9.0				
13 5826/10-0				7.0
14 5876/1.5-7.00				
15 5827 10.2 8/8/ 18				
16 5B27/0.5 +				
	Laboratory Staff	Turn around time	Method Of Ship	ment Temperature on arrival:
Relinquished EUS Rec	elived By: Elvis D	aniv.	Courier	4.43
CMUY	e & Time: 1 DAY 2 DAY	3 DAY	Hand Delivered	Report number:
13/8/18	13/8/18 3:09 Pm 5 DAY 10 DAY	Y Other:	Postal urier Consignment	6,2026
Signature: Sig			3	0(202)

Sydn t F3 - 6 Building F, 16 Mars Road, Lane Cove one: +612 9900 8400 ail: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

CHAIN OF CUSTODY RECORD

	m	gt									C	HAI	V OF	CL	JST	ODY	/ RE	COI	RD													
LIENT DETAILS																													Page	1	of 1	
ompany Name : TRACE E	nvironmen	ta Conta	ct Nam	ne: -	Ja	ck	CE	lu	3								Purch	ase Or	der:									COCN	umber	:	60	76
office Address : 793-799 N Canterbury Road, Dulwich		Projec	t Mana		0		1	1				1					PROJ	ECT N	umber :	1.	16	,						Eurofir	ns mg	t quote	ID: Sec	B(
anterbury noad, burwich	Tilli. (45W.	Email	for res	ults:	00	Q	0		Pa	29	2	1	-				PROJ	ECT Na	ame :									Data o	utput f	ormat:		0
									-	0		Analyt	es											5	Some co	ommor For	holdi further	ng time	s (with	corre	ct preserva	tion).
pecial Directions {																								1	Waters						Soils	1
ccounts@traceenviro.com & fanager	& Proj						1			V (ВТ	EX, MA	AH, VOC		14 day	ВТІ	EX, MA	H, VOC		14 days
		1		1)													TR	H, PAH	H, Phen	ols, Pe	7 days	TR	H, PAH	, Phen	ols, Pesticid	es 14 days
		1		\sim		\			5	-													He	avy Me	etals		6 mon	Hea	avy Me	tals		6 months
			5	M		8	1		4	N	n				- 1								_	rcury, (_	28 day	Me	rcury, C	CrVI		28 days
		4	83	1	5	2	0	HU	0	21	9												_		ogical te	_	24 hou	Mic	robiolo	gical te	sting	72 hours
		2	(A)	13	16	2	1	0	0	A	2												_		ate, Nitr	_	2 days	Ani	ons			28 days
			13	-	8	13			10	101	2												Sol	lids - T	SS, TDS	S etc	7 days	SP	OCAS,	pH Fie	ld and FOX,	C24 hours
urofins mgt DI water batch no	umber:	Sulte	5	3	0	(3)			35	71	en												Fer	rrous ir	on		7 days	AS	LP, TC	LP		7 days
		13	5			0,				3	2		- 1									Q	Contai	nore:				_	_		_	377
Sample ID Date	Matrix	1									1			- 8								НОГР		250P	125P	11 1	OmL via	125ml	Jar	Bag	Sample	e comments:
1 SB27 / 1-08/8/	8 50,0	-			/		_					-	_	_	_	_	-					-	ILF	2301	1231	ILA	OIIL VI	125IIIL A	Jai	_	contact sai	mple
2 5827 1.5	0 1010	+										_	_	+		_	+														contact sai	1000
3 SB27/31	-	\vdash						-					_	-			+					/										18
4 5627/3.8	-	1											_		_		1				_											1
5 5377/5-0	-							/						-	+	+	-				_											
6 5827/6.0		_	/									\rightarrow	\vdash		_						-							Tarrel and	/			-500
7 (35)		-																											/			An .
8 QS14 V			-																		-											- 4
9 QSZ 10/8/	8	1							7												-								/			O.
10 QSZA 1	1																												/			-142
11 RPI	hater	T	/																									-/				100
12	Vocated	\top													3																	79%
13		\vdash					=																									707
14																																1
15								-																								W.
16								(1)																								2
					Labo	oratory	Staff									Turn a	round ti	me							Met	hod Of	Shipm	ent			Temperatu	re on arrival:
Sack ally	Rece	eived By	E	IVI	6	P																		Couri	ier						H	43
Pate & Time:	Date	& Time:		1			,2	200	7.0	n		1 DAY		2 D	AY		3 DAY								Deliver	red				- 1	Report nun	nber:
73/8/18 Signature:	Sign	ature:	510	118	> .		>		()			5 DAY		10 1	DAY		Other:						urier C	Posta							61	2025
Con						_					_																					PIC

Alena Bounkeua

From: Nibha Vaidya

Sent: Tuesday, 14 August 2018 4:54 PM

To: Alena Bounkeua

Subject: FW: Eurofins | mgt - Report 612025 : Site MASCOT (1.16)

Attachments: 612025_COC.pdf; 612025_sample_receipt_coc.pdf; 612025_summary.pdf

Follow Up Flag: Follow up Flag Status: Flagged

From: Ken Henderson

Sent: Tuesday, 14 August 2018 4:52:53 PM (UTC+10:00) Canberra, Melbourne, Sydney

To: Nibha Vaidya **Cc:** Jack Ellis

Subject: FW: Eurofins | mgt - Report 612025 : Site MASCOT (1.16)

EXTERNAL EMAIL*

Hi Nibha,

Can I please amend a few things for this job:

- 1. For all samples in which we have requested asbestos, we would like the NEPM/WA quantification method.
- 2. Please analyse metals (M8) for samples SB1/0.5, SB10/0.5, SB11/1.2 and SB14/1.2;
- 3. Please analyse NEPM Screen for Soil Classification for sample SB6/2.6;
- 4. Please analyse metals (M8) and PAHs for samples SB18/0.2, SB19/0.8 and SB20/0.3;
- 5. Please analyse Suite B7 for sample SB26/0.2;
- 6. Please analyse the trip blank and trip spike samples for vTPH & BTEXN.

Please also HOLD the PFAS analysis for sample SB27/0.5.

Finally, please FORWARD samples QS1A and QS2A to ALS for analysis of BTEXN/TRH, PAHs, and 8 metals. These were meant to be the triplicate samples and should not be analysed by Eurofins.

Thank you, please ring if any questions/issues.

Regards,

Ken

NOTICE:

This e-mail and any files transmitted with it are the property of TRACE Environmental and Its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named ental and its affiliates. All rights, including without limitation copyright, are above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted.

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Tuesday, 14 August 2018 3:54 PM To: Jack Ellis < jack@traceenviro.com> Cc: Ken Henderson < ken@traceenviro.com>

Subject: Eurofins | mgt - Report 612025 : Site MASCOT (1.16)

Dear Valued Client,

Jars not received for SB10/0.3(only asbestos analysis conducted) & SB10/0.5 (analysis conducted from bag). Jar not received for SB17/1.6. Trip spike and blank received and placed on hold. Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chainof-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Elvis Dsouza Sample Receipt

Eurofins | mgt

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 **AUSTRALIA**

Phone: +61 29900 8492

Email: EnviroSampleNSW@eurofins.com Website:environment.eurofins.com.au

EnviroNote 1076 - PFAS Biota

EnviroNote 1077 - Soil Vapour Sampling - NATA Accreditation

Click <u>here</u> to report this email as spam.

ScannedByWebsenseForEurofins

WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any ttachments unless you trust the sender and know that the content is safe!	

Alena Bounkeua

From: Nibha Vaidya

Sent: Tuesday, 14 August 2018 4:54 PM

To: Alena Bounkeua

Subject: FW: Eurofins | mgt - Report 612025 : Site MASCOT (1.16)

Attachments: 612025_COC.pdf; 612025_sample_receipt_coc.pdf; 612025_summary.pdf

Follow Up Flag: Follow up Flag Status: Flagged

From: Ken Henderson

Sent: Tuesday, 14 August 2018 4:52:53 PM (UTC+10:00) Canberra, Melbourne, Sydney

To: Nibha Vaidya **Cc:** Jack Ellis

Subject: FW: Eurofins | mgt - Report 612025 : Site MASCOT (1.16)

EXTERNAL EMAIL*

Hi Nibha,

Can I please amend a few things for this job:

- 1. For all samples in which we have requested asbestos, we would like the NEPM/WA quantification method.
- 2. Please analyse metals (M8) for samples SB1/0.5, SB10/0.5, SB11/1.2 and SB14/1.2;
- 3. Please analyse NEPM Screen for Soil Classification for sample SB6/2.6;
- 4. Please analyse metals (M8) and PAHs for samples SB18/0.2, SB19/0.8 and SB20/0.3;
- 5. Please analyse Suite B7 for sample SB26/0.2;
- 6. Please analyse the trip blank and trip spike samples for vTPH & BTEXN.

Please also HOLD the PFAS analysis for sample SB27/0.5.

Finally, please FORWARD samples QS1A and QS2A to ALS for analysis of BTEXN/TRH, PAHs, and 8 metals. These were meant to be the triplicate samples and should not be analysed by Eurofins.

Thank you, please ring if any questions/issues.

Regards,

Ken

This e-mail and any files transmitted with it are the property of TRACE Environmental and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly profibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted.

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Tuesday, 14 August 2018 3:54 PM **To:** Jack Ellis <jack@traceenviro.com> **Cc:** Ken Henderson <ken@traceenviro.com>

Subject: Eurofins | mgt - Report 612025 : Site MASCOT (1.16)

Dear Valued Client,

Jars not received for SB10/0.3(only asbestos analysis conducted) & SB10/0.5 (analysis conducted from bag). Jar not received for SB17/1.6. Trip spike and blank received and placed on hold. Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Elvis Dsouza **Sample Receipt**

Eurofins | mgt

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 29900 8492

Email: <u>EnviroSampleNSW@eurofins.com</u> Website: <u>environment.eurofins.com.au</u>

EnviroNote 1076 - PFAS Biota

EnviroNote 1077 - Soil Vapour Sampling - NATA Accreditation

Click here to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Certificate of Analysis

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill NSW 2203 Ilac-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 — Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ken Henderson

 Report
 612428-S

 Project name
 MASCOT

 Project ID
 1.16

 Received Date
 Aug 15, 2018

Client Sample ID			SB6/2.0	SB6/4.0	SB6/5.0	SB13/0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18847	S18-Au18848	S18-Au18849	S18-Au18850
Date Sampled			Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 13, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·	•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	_	-	-	< 0.5
Chrysene	0.5	mg/kg	_	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	_	-	-	< 0.5
Fluoranthene	0.5	mg/kg	_	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	101
p-Terphenyl-d14 (surr.)	1	%	-	-	-	94
% Moisture	1	%	-	-	-	11
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)	0.1	pH Units	7.8	6.3	6.4	-
pH-FOX (Field pH Peroxide test)	0.1	pH Units	5.7	4.4	3.3	_
Reaction Ratings ^{S05}		comment	3.0	1.0	1.0	_

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	SB14/6.0 Soil S18-Au18852 Aug 10, 2018	SB14/8.0 Soil S18-Au18853 Aug 10, 2018	SB14/10.0 Soil S18-Au18854 Aug 10, 2018	SB17/3.8 Soil S18-Au18855 Aug 10, 2018
pH-F (Field pH test)	0.1	pH Units	6.9	6.4	6.6	8.2
pH-FOX (Field pH Peroxide test)	0.1	pH Units	4.4	2.9	3.2	6.7
Reaction Ratings ^{S05}		comment	1.0	3.0	3.0	3.0

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SB17/6.0 Soil S18-Au18856 Aug 10, 2018	SB17/8.0 Soil S18-Au18857 Aug 10, 2018	SB17/10.0 Soil S18-Au18858 Aug 10, 2018	SB20/5.0 Soil S18-Au18859 Aug 08, 2018
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)	0.1	pH Units	7.5	6.6	6.7	7.2
pH-FOX (Field pH Peroxide test)	0.1	pH Units	6.8	2.4	3.0	4.1
Reaction Ratings ^{S05}		comment	2.0	2.0	2.0	2.0

Client Sample ID Sample Matrix			SB20/8.0 Soil	SB20/10.0 Soil	SB20/12.0 Soil	SB21/0.15 Soil
Eurofins mgt Sample No.			S18-Au18860	S18-Au18861	S18-Au18862	S18-Au18863
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 13, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	-	-	-	< 20
TRH C10-C14	20	mg/kg	-	=	-	< 20
TRH C15-C28	50	mg/kg	-	-	-	< 50
TRH C29-C36	50	mg/kg	-	-	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	-	-	< 50
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	=	-	91
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 20
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	< 100
TRH >C34-C40	100	mg/kg	-	-	=	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	< 100

Client Sample ID			SB20/8.0	SB20/10.0	SB20/12.0	SB21/0.15
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18860	S18-Au18861	S18-Au18862	S18-Au18863
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 13, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	_	_	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	_	_	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	_	_	_	1.2
Acenaphthene	0.5	mg/kg	_	-	_	< 0.5
Acenaphthylene	0.5	mg/kg	_	-	_	< 0.5
Anthracene	0.5	mg/kg	_	_	_	< 0.5
Benz(a)anthracene	0.5	mg/kg	_	_	_	< 0.5
Benzo(a)pyrene	0.5	mg/kg	_	_	_	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	_	-	_	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	_	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	_	_	-	< 0.5
Naphthalene	0.5	mg/kg	_	_	-	< 0.5
Phenanthrene	0.5	mg/kg	-	_	-	< 0.5
Pyrene	0.5	mg/kg	-	_	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	114
p-Terphenyl-d14 (surr.)	1	%	-	-	-	88
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	-	-	-	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	_	-	-	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	-	-	-	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	-	-	-	< 1
2.6-Dichlorophenol	0.5	mg/kg	-	-	-	< 0.5
4-Chloro-3-methylphenol	1.0	mg/kg	-	-	-	< 1
Pentachlorophenol	1.0	mg/kg	-	-	-	< 1
Tetrachlorophenols - Total	1.0	mg/kg	-	-	-	< 1
Total Halogenated Phenol*	1	mg/kg	-	-	-	< 1
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	-	-	-	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	-	-	-	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	-	-	< 0.2
2-Nitrophenol	1.0	mg/kg	-	-	-	< 1
2.4-Dimethylphenol	0.5	mg/kg	-	-	-	< 0.5
2.4-Dinitrophenol	5	mg/kg	-	-	-	< 5
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	-	-	< 0.4
4-Nitrophenol	5	mg/kg	-	-	-	< 5
Dinoseb	20	mg/kg	-	-	-	< 20
Phenol	0.5	mg/kg	-	-	-	< 0.5
Total Non-Halogenated Phenol*	20	mg/kg	-	-	-	< 20
Phenol-d6 (surr.)	1	%	-	-	-	122
% Moisture	1	%	-	-	_	5.5

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SB20/8.0 Soil S18-Au18860 Aug 08, 2018	SB20/10.0 Soil S18-Au18861 Aug 08, 2018	SB20/12.0 Soil S18-Au18862 Aug 08, 2018	SB21/0.15 Soil S18-Au18863 Aug 13, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	-	-	-	4.8
Cadmium	0.4	mg/kg	-	-	-	< 0.4
Chromium	5	mg/kg	-	-	-	13
Copper	5	mg/kg	-	-	-	220
Lead	5	mg/kg	-	-	-	310
Mercury	0.1	mg/kg	-	-	-	0.2
Nickel	5	mg/kg	-	-	-	26
Zinc	5	mg/kg	-	-	-	570
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)	0.1	pH Units	6.1	6.2	6.1	-
pH-FOX (Field pH Peroxide test)	0.1	pH Units	2.2	3.2	2.8	-
Reaction Ratings ^{S05}		comment	1.0	1.0	3.0	-

Client Sample ID			SB22/0.1	SB22/1.3	SB22/3.0	SB22/5.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18865	S18-Au18866	S18-Au18867	S18-Au18868
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	< 50	-	-
TRH C10-36 (Total)	50	mg/kg	-	< 50	-	-
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	-	-
Toluene	0.1	mg/kg	-	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	-
o-Xylene	0.1	mg/kg	-	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	-	78	-	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-	-
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg	-	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg		< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	-
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg	_	< 0.5	-	-

Client Sample ID			SB22/0.1	SB22/1.3	SB22/3.0	SB22/5.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18865	S18-Au18866	S18-Au18867	S18-Au18868
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit	3	3 22, 2212	3 22, 2212	3 00, 200
Polycyclic Aromatic Hydrocarbons	LOIK	1 Onic				
Benz(a)anthracene	0.5	mg/kg	_	< 0.5	_	
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	_
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	_
Benzo(k)fluoranthene	0.5	mg/kg	_	< 0.5	_	_
Chrysene	0.5	mg/kg	_	< 0.5	-	_
Dibenz(a.h)anthracene	0.5	mg/kg		< 0.5	-	_
Fluoranthene	0.5	mg/kg	_	< 0.5	_	_
Fluorene	0.5	mg/kg	-	< 0.5	_	<u> </u>
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	_
Naphthalene	0.5	mg/kg	-	< 0.5	-	_
Phenanthrene	0.5	mg/kg	_	< 0.5	_	_
Pyrene	0.5	mg/kg	_	< 0.5	_	_
Total PAH*	0.5	mg/kg	_	< 0.5	_	_
2-Fluorobiphenyl (surr.)	1	%	_	101	_	_
p-Terphenyl-d14 (surr.)	1	%	_	80	-	_
Organochlorine Pesticides		,,,				
Chlordanes - Total	0.1	mg/kg	< 0.1	-	_	_
4.4'-DDD	0.05	mg/kg	< 0.05	_	_	_
4.4'-DDE	0.05	mg/kg	< 0.05	_	_	_
4.4'-DDT	0.05	mg/kg	< 0.05	_	_	_
a-BHC	0.05	mg/kg	< 0.05	_	_	_
Aldrin	0.05	mg/kg	< 0.05	-	_	_
b-BHC	0.05	mg/kg	< 0.05	_	-	_
d-BHC	0.05	mg/kg	< 0.05	_	_	_
Dieldrin	0.05	mg/kg	< 0.05	-	-	_
Endosulfan I	0.05	mg/kg	< 0.05	_	_	_
Endosulfan II	0.05	mg/kg	< 0.05	_	_	_
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	_	_
Endrin	0.05	mg/kg	< 0.05	_	_	_
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	_
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	=	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	=	-	-
Methoxychlor	0.05	mg/kg	< 0.05	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	71	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	101	-	-	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	-	-	-
Bolstar	0.2	mg/kg	< 0.2	-	-	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	-	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	_

Client Sample ID			SB22/0.1	SB22/1.3	SB22/3.0	SB22/5.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18865	S18-Au18866	S18-Au18867	S18-Au18868
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit	71.09 00, 2010	1 1.09 00, 2010	7 (12)	7.00 00, 2010
Organophosphorus Pesticides	LOIN	Onit				
<u> </u>	0.2	ma m/l cm	100		_	
Chlorpyrifos-methyl Coumaphos	2	mg/kg	< 0.2	-	-	-
Demeton-S	0.2	mg/kg	< 0.2			
		mg/kg		-	-	-
Demeton-O	0.2	mg/kg	< 0.2	-	-	-
Diazinon	0.2	mg/kg	< 0.2	-	-	-
Dichlorvos	0.2	mg/kg	< 0.2	-	-	-
Dimethoate	0.2	mg/kg	< 0.2	-	-	-
Disulfoton	0.2	mg/kg	< 0.2	-	-	-
EPN	0.2	mg/kg	< 0.2	-	-	-
Ethion	0.2	mg/kg	< 0.2	-	-	-
Ethoprop	0.2	mg/kg	< 0.2	-	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	-	-
Fenitrothion	0.2	mg/kg	< 0.2	-	-	-
Fensulfothion	0.2	mg/kg	< 0.2	-	-	-
Fenthion	0.2	mg/kg	< 0.2	-	-	-
Malathion	0.2	mg/kg	< 0.2	-	-	-
Merphos	0.2	mg/kg	< 0.2	-	-	-
Methyl parathion	0.2	mg/kg	< 0.2	-	-	-
Mevinphos	0.2	mg/kg	< 0.2	-	-	-
Monocrotophos	2	mg/kg	< 2	-	-	-
Naled	0.2	mg/kg	< 0.2	-	-	-
Omethoate	2	mg/kg	< 2	-	-	-
Phorate	0.2	mg/kg	< 0.2	-	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	-
Pyrazophos	0.2	mg/kg	< 0.2	-	-	-
Ronnel	0.2	mg/kg	< 0.2	-	-	-
Terbufos	0.2	mg/kg	< 0.2	-	-	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-	-
Tokuthion	0.2	mg/kg	< 0.2	-	-	-
Trichloronate	0.2	mg/kg	< 0.2	-	-	-
Triphenylphosphate (surr.)	1	%	106	-	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	_	_
Aroclor-1248	0.1	mg/kg	< 0.1	-	_	_
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	_
Aroclor-1260	0.1	mg/kg	< 0.1	-	_	_
Total PCB*	0.1	mg/kg	< 0.1	-	_	_
Dibutylchlorendate (surr.)	1	%	71	-	_	_
Tetrachloro-m-xylene (surr.)	1 1	%	101	_	_	_
Phenois (Halogenated)			1.01	1	1	1
2-Chlorophenol	0.5	mg/kg	_	< 0.5	_	_
2.4-Dichlorophenol	0.5	mg/kg	_	< 0.5	-	_
2.4.5-Trichlorophenol	1	mg/kg	_	< 1	-	_
2.4.6-Trichlorophenol	1.0	mg/kg		< 1	-	
2.6-Dichlorophenol	0.5	mg/kg	_	< 0.5	-	
12 6 Dichlorophonol				- NO		-

Client Sample ID			SB22/0.1	SB22/1.3	SB22/3.0	SB22/5.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18865	S18-Au18866	S18-Au18867	S18-Au18868
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Phenois (Halogenated)						
Pentachlorophenol	1.0	mg/kg	_	< 1	-	-
Tetrachlorophenols - Total	1.0	mg/kg	-	< 1	-	_
Total Halogenated Phenol*	1	mg/kg	-	< 1	-	-
Phenols (non-Halogenated)	•					
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	-	< 20	-	-
2-Methyl-4.6-dinitrophenol	5	mg/kg	-	< 5	-	-
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	< 0.2	-	-
2-Nitrophenol	1.0	mg/kg	-	< 1	-	-
2.4-Dimethylphenol	0.5	mg/kg	-	< 0.5	-	-
2.4-Dinitrophenol	5	mg/kg	-	< 5	-	-
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	< 0.4	-	-
4-Nitrophenol	5	mg/kg	-	< 5	-	-
Dinoseb	20	mg/kg	-	< 20	-	-
Phenol	0.5	mg/kg	-	< 0.5	-	-
Total Non-Halogenated Phenol*	20	mg/kg	-	< 20	-	-
Phenol-d6 (surr.)	1	%	-	112	-	-
% Clay	1	%	-	< 1	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	< 10	-	-
pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	0.1	pH Units	-	7.2	-	-
Total Organic Carbon	0.1	%	-	0.3	-	-
% Moisture	1	%	11	6.2	-	-
Heavy Metals						
Arsenic	2	mg/kg	-	< 2	-	-
Cadmium	0.4	mg/kg	-	< 0.4	-	-
Chromium	5	mg/kg	-	< 5	-	-
Copper .	5	mg/kg	-	9.9	-	-
Iron	20	mg/kg	-	2600	-	-
Lead	5	mg/kg	-	25	-	-
Mercury	0.1	mg/kg	-	< 0.1	-	-
Nickel	5	mg/kg	-	< 5	-	-
Zinc Heavy Metals	5	mg/kg	-	240	-	-
Heavy Metals	0.04	0/		0.00		
Iron (%) Cation Exchange Capacity	0.01	%	-	0.26	-	-
Cation Exchange Capacity	0.05	meq/100g	_	11	_	-
Acid Sulfate Soils Field pH Test	1 0.00	I med/ 100g	-		-	
pH-F (Field pH test)	0.1	pH Units	_	_	7.1	7.0
pH-FOX (Field pH Peroxide test)	0.1	pH Units		-	5.1	3.9
Reaction Ratings ^{S05}	0.1	comment		-	3.0	1.0
Noaciion Naiings		Louinneur	_		1 3.0	1.0

Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference			SB22/6.0 Soil	SB22/7.0 Soil		SB26/4.0
Eurofins mgt Sample No. Date Sampled				13011	Soil	Soil
Date Sampled			S18-Au18869	S18-Au18870	S18-Au18871	S18-Au18872
•			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
l est/Reterence	LOD	1.1	Aug 00, 2010	Aug 00, 2010	Aug 00, 2010	Aug 00, 2010
T / I D	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac		T .				
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	< 20	-	-	-
TRH C15-C28	50	mg/kg	< 50	-	-	-
TRH C29-C36	50	mg/kg	< 50	-	-	-
TRH C10-36 (Total)	50	mg/kg	< 50	-	-	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	=	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	79	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	_	_	_
TRH >C10-C16	50	mg/kg	< 50	-	_	_
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	_	_	-
TRH >C16-C34	100	mg/kg	< 100	_	_	_
TRH >C34-C40	100	mg/kg	< 100	_	_	_
TRH >C10-C40 (total)*	100	mg/kg	< 100	_	_	_
Polycyclic Aromatic Hydrocarbons		199				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	_	_	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.2	-		
Acenaphthene	0.5	mg/kg	< 0.5	-	-	
			1			
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene		mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-	-
2-Fluorobiphenyl (surr.)	1	%	96	-	-	-
p-Terphenyl-d14 (surr.)	1	%	110	-	-	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference Heavy Metals	LOR	Unit	SB22/6.0 Soil S18-Au18869 Aug 08, 2018	SB22/7.0 Soil S18-Au18870 Aug 08, 2018	SB26/2.0 Soil S18-Au18871 Aug 08, 2018	SB26/4.0 Soil S18-Au18872 Aug 08, 2018
Arsenic	2	mg/kg	< 2	-	-	-
Cadmium	0.4	mg/kg	< 0.4	-	-	-
Chromium	5	mg/kg	< 5	-	-	-
Copper	5	mg/kg	< 5	-	-	-
Lead	5	mg/kg	< 5	-	-	-
Mercury	0.1	mg/kg	< 0.1	-	-	-
Nickel	5	mg/kg	< 5	-	-	-
Zinc	5	mg/kg	9.1	-	-	-
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)	0.1	pH Units	-	6.9	9.1	7.7
pH-FOX (Field pH Peroxide test)	0.1	pH Units	-	4.5	6.9	5.1
Reaction Ratings ^{S05}		comment	-	1.0	1.0	1.0

Client Sample ID			SB26/6.0	SB26/8.0	SB26/10.0	QS3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18873	S18-Au18874	S18-Au18875	S18-Au18877
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 13, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	-	< 20
TRH C15-C28	50	mg/kg	-	-	-	< 50
TRH C29-C36	50	mg/kg	-	-	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	-	-	< 50
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	66
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 20
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	< 100
TRH >C34-C40	100	mg/kg	-	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg		-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	_	-	-	< 0.5

Client Sample ID			SB26/6.0	SB26/8.0	SB26/10.0	QS3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18873	S18-Au18874	S18-Au18875	S18-Au18877
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 13, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·					
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	_	-	-	94
p-Terphenyl-d14 (surr.)	1	%	-	-	-	112
% Moisture	1	%	-	-	-	17
Heavy Metals	·	•				
Arsenic	2	mg/kg	-	-	-	< 2
Cadmium	0.4	mg/kg	-	-	-	< 0.4
Chromium	5	mg/kg	-	-	-	< 5
Copper	5	mg/kg	-	-	-	< 5
Lead	5	mg/kg	-	-	-	< 5
Mercury	0.1	mg/kg	-	-	-	< 0.1
Nickel	5	mg/kg	-	-	-	< 5
Zinc	5	mg/kg	-	-	-	11
Acid Sulfate Soils Field pH Test	•					
pH-F (Field pH test)	0.1	pH Units	5.6	6.8	6.3	-
pH-FOX (Field pH Peroxide test)	0.1	pH Units	2.3	2.8	2.7	-
Reaction Ratings ^{S05}		comment	2.0	3.0	3.0	_

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SB4/0.2 Soil S18-Au18880 Aug 14, 2018	SB7/0.25 Soil S18-Au18881 Aug 14, 2018	SB8/0.15 Soil S18-Au18882 Aug 14, 2018	SB9/0.25 Soil S18-Au18883 Aug 14, 2018
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	120	22	< 20	< 20
TRH C15-C28	50	mg/kg	400	120	< 50	< 50
TRH C29-C36	50	mg/kg	310	140	< 50	57
TRH C10-36 (Total)	50	mg/kg	830	282	< 50	57
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	0.3	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			SB4/0.2	SB7/0.25	SB8/0.15	SB9/0.25
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18880	S18-Au18881	S18-Au18882	S18-Au18883
Date Sampled			Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 14, 2018
Test/Reference	LOR	Unit				
BTEX						1
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	91	89	84
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	130	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	130	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	680	240	< 100	< 100
TRH >C34-C40	100	mg/kg	150	110	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	960	350	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	0.8	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.1	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.3	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	0.8	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	1.0	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	1.1	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	5.8	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	80	123	122	114
p-Terphenyl-d14 (surr.)	1	%	81	116	129	113
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	1.0	mg/kg	< 1	< 1	< 1	< 1
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1

Client Sample ID Sample Matrix			SB4/0.2 Soil	SB7/0.25 Soil	SB8/0.15 Soil	SB9/0.25 Soil
Eurofins mgt Sample No.			S18-Au18880	S18-Au18881	S18-Au18882	S18-Au18883
Date Sampled			Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 14, 2018
Test/Reference	LOR	Unit				
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
2-Nitrophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Phenol-d6 (surr.)	1	%	72	119	120	107
% Moisture	1	%	16	6.1	2.7	11
Heavy Metals						
Arsenic	2	mg/kg	15	24	6.2	4.0
Cadmium	0.4	mg/kg	< 0.4	0.7	< 0.4	< 0.4
Chromium	5	mg/kg	19	120	7.5	12
Copper	5	mg/kg	64	65	16	18
Lead	5	mg/kg	84	270	77	26
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	8.5	140	13	11
Zinc	5	mg/kg	220	1400	230	61

Client Sample ID Sample Matrix			SB23/0.4 Soil	SB24/0.3 Soil	SB25/0.25 Soil	SB22/0.5 Soil
Eurofins mgt Sample No.			S18-Au18884	S18-Au18885	S18-Au18886	S18-Au20518
Date Sampled			Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 13, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	-
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	-
BTEX	_					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	78	77	86	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-

Client Sample ID			SB23/0.4	SB24/0.3	SB25/0.25	SB22/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au18884	S18-Au18885	S18-Au18886	S18-Au20518
Date Sampled			Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 13, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.9
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.9
2-Fluorobiphenyl (surr.)	1	%	100	113	113	105
p-Terphenyl-d14 (surr.)	1	%	105	123	128	121
Phenols (Halogenated)	0.5	1 "	.0.5	.05	.05	
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2.4.5-Trichlorophenol 2.4.6-Trichlorophenol	1.0	mg/kg mg/kg	< 1	< 1	<1	-
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
4-Chloro-3-methylphenol	1.0	mg/kg	< 1	< 1	< 1	
Pentachlorophenol	1.0	mg/kg	< 1	< 1	< 1	<u> </u>
Tetrachlorophenols - Total	1.0	mg/kg	< 1	< 1	< 1	_
Total Halogenated Phenol*	1.0	mg/kg	< 1	< 1	<1	_
Phenois (non-Halogenated)		i iiig/itg				
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	_
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	_
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	_
2-Nitrophenol	1.0	mg/kg	< 1	< 1	< 1	_
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	-
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	-
Dinoseb	20	mg/kg	< 20	< 20	< 20	-
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	-
Phenol-d6 (surr.)	1	%	95	107	111	_

Client Sample ID Sample Matrix			SB23/0.4 Soil	SB24/0.3 Soil	SB25/0.25 Soil	SB22/0.5 Soil
Eurofins mgt Sample No.			S18-Au18884	S18-Au18885	S18-Au18886	S18-Au20518
Date Sampled			Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 13, 2018
Test/Reference	LOR	Unit				
% Moisture	1	%	6.4	6.1	7.3	6.5
Heavy Metals						
Arsenic	2	mg/kg	2.0	2.7	3.9	3.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	0.7
Chromium	5	mg/kg	< 5	12	17	13
Copper	5	mg/kg	13	10	12	32
Lead	5	mg/kg	33	50	43	150
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	7.1	14	12	12
Zinc	5	ma/ka	200	190	520	910

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7A	•		•
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Aug 21, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C36		-	
BTEX	Melbourne	Aug 21, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 21, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 21, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 21, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (Halogenated)	Melbourne	Aug 21, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Melbourne	Aug 21, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Melbourne	Aug 21, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins mgt Suite B15			
Organochlorine Pesticides	Melbourne	Aug 20, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Melbourne	Aug 20, 2018	14 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Melbourne	Aug 20, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
NEPM Screen for Soil Classification			
% Clay	Brisbane	Aug 20, 2018	6 Day
- Method: LTM-GEN-7040			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Aug 20, 2018	7 Day
- Method: LTM-INO-4030 Conductivity			
pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	Melbourne	Aug 20, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Aug 21, 2018	28 Day
- Method: APHA 5310B Total Organic Carbon			
Heavy Metals	Melbourne	Aug 20, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			100 B
Cation Exchange Capacity	Melbourne	Aug 21, 2018	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage	N.4. II	40.0040	44.5
% Moisture	Melbourne	Aug 16, 2018	14 Day
- Method: LTM-GEN-7080 Moisture	Duighana	A 20, 2010	7 Day
Acid Sulfate Soils Field pH Test	Brisbane	Aug 20, 2018	7 Day
- Method: LTM-GEN-7060			

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Received:

Due: Priority: Contact Name:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name:

Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eur Eur

NEI Acid Moi

Eur Met

Pol НО

но CAI Asb

ofins mgt Suite B
tals M8
ycyclic Aromatic H
LD
LD
NCELLED
estos - WA guideli
•

Sample Detail 1. NATA Site # 1254 & 14271 1. NATA Site # 20794 2. NATA Site # 20794 2. NATA Site # 20794 2. NATA Site # 20794 3. NATA Site # 2078 4. NATA Site # 20798 4. NATA Site # 2078 5. NATA Site # 20798 4. NATA Site # 20798 5. NATA Site # 20798 4. NATA Site # 20798 5. NATA Site # 20798 4. NATA Site # 20798 5. NATA Site # 20798 6. NATA Site # 20798 8. NATA Site # 20798 9.	Sample S
--	--

Page 16 of 35

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Order No.: Report #: Phone: Fax:

612428

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

02 8960 0555

Aug 15, 2018 5:41 PM Aug 23, 2018 Due: Priority: Contact Name:

Received:

5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

HOLD

HOLD

Eurofins | mgt Suite B7A × Eurofins | mgt Suite B7 × NEPM Screen for Soil Classification Acid Sulfate Soils Field pH Test × Moisture Set Eurofins | mgt Suite B15 × × Metals M8 × Polycyclic Aromatic Hydrocarbons CANCELLED Asbestos - WA guidelines Melbourne Laboratory - NATA Site # 1254 & 14271 Sample Detail

×

×

×

×

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB17/6.0 SB17/8.0

10

Aug 10, 2018 Aug 10, 2018

SB17/10.0

12 13 4 15

SB20/5.0 SB20/8.0

×

×

× × × × × ×

×

S18-Au18856

S18-Au18858 S18-Au18859 S18-Au18860 S18-Au18861 S18-Au18862 S18-Au18863 S18-Au18864 S18-Au18865 S18-Au18866 S18-Au18867

Soil Soil Soil Soil Soil Soil Soil Soil Soil

Aug 08, 2018 Aug 08, 2018

Aug 08, 2018 Aug 08, 2018

SB20/10.0 SB20/12.0

Aug 13, 2018 Aug 08, 2018

SB21/0.15

17 16

SB21/0.4

18 19

Aug 08, 2018 Aug 08, 2018 Aug 08, 2018

SB22/1.3 SB22/0.1

SB22/3.0

S18-Au18857

×

×

×

×

×

×

×

×

Page 17 of 35 Report Number: 612428-S

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

612428

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

Polycyclic Aromatic Hydrocarbons HOLD HOLD CANCELLED Asbestos - WA guidelines

Eurofins | mgt Suite B15

Moisture Set

Metals M8

Acid Sulfate Soils Field pH Test

NEPM Screen for Soil Classification

Eurofins | mgt Suite B7A Eurofins | mgt Suite B7

×

×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 08, 2018

SB22/5.0 SB22/6.0 SB22/7.0

Aug 08, 2018 Aug 08, 2018

×

×

×

×

×

S18-Au18868

S18-Au18870 S18-Au18871 S18-Au18872 S18-Au18873 S18-Au18874 S18-Au18875

Soil Soil Soil Soil Soil Soil Soi Soil

> Aug 08, 2018 Aug 08, 2018

SB26/2.0 SB26/4.0

22 23 24 25 26 26 27 27 28 29 30

Aug 10, 2018 Aug 10, 2018

SB26/6.0

S18-Au18869

× × × × × ×

×

S18-Au18876

Aug 10, 2018 Aug 13, 2018

SB26/10.0

Q A QS3 RB2 RB3

SB26/8.0

Aug 13, 2018 Aug 13, 2018 Aug 14, 2018

S18-Au18877 S18-Au18878 S18-Au18879

Water

×

 \times

Page 18 of 35 Report Number: 612428-S

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Order No.:

612428

Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

02 8960 0555

Received:

Due: Priority: Contact Name:

Aug 15, 2018 5:41 PM Aug 23, 2018

5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

HOLD HOLD CANCELLED Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons

Eurofins | mgt Suite B15

Acid Sulfate Soils Field pH Test

NEPM Screen for Soil Classification

Eurofins | mgt Suite B7

Eurofins | mgt Suite B7A

Moisture Set

Metals M8

×

×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 14, 2018

×

×

× × × × × × ×

× ×

×

S18-Au18880 S18-Au18881 S18-Au18882 S18-Au18883 S18-Au18884 S18-Au18885 S18-Au18886 S18-Au18887 S18-Au18888 S18-Au18889 S18-Au18890 S18-Au18891

×

× ×

Soil Soil

Aug 14, 2018 Aug 14, 2018 Aug 14, 2018

Aug 14, 2018

SB7/0.25 SB8/0.15 SB9/0.25

35 36 37 38

SB4/0.2

34

× × ×

Soil Soil Soil

> Aug 14, 2018 Aug 14, 2018 Aug 14, 2018

SB25/0.25

QA2 RB4

SB24/0.3 SB23/0.4

> 39 40 4 42 43 44

Aug 14, 2018

Soil

× × × × × ×

× ×

×

Water

Soil

Aug 09, 2018 Aug 09, 2018 Aug 09, 2018

SB1/0.5

SB6/3.0 SB6/0.4

45

Soil

Page 19 of 35

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

612428

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 15, 2018 5:41 PM Aug 23, 2018

5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

CANCELLED Asbestos - WA guidelines

Sample Detail

Polycyclic Aromatic Hydrocarbons

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

HOLD

Acid Sulfate Soils Field pH Test

×

×

×

×

× × × × × × ×

S18-Au18894 S18-Au18895 S18-Au18896 S18-Au18897 S18-Au18898 S18-Au18899 S18-Au18900 S18-Au18901 S18-Au18902 S18-Au18903

Soil Soil Soil Soil Soil Soil Soil Soil Soil

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

SB17/0.5

55

SB17/5.0

Aug 10, 2018

SB14/2.0

47 48 49 50 51 52 53 53

SB14/1.2

SB14/5.0

SB14/7.0 SB14/9.0

SB14/3.0

S18-Au18893

× ×

S18-Au18892

× ×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB10/0.5 SB11/0.5 SB11/4.8 SB14/0.5

46

Aug 09, 2018 Aug 09, 2018

×

×

Page 20 of 35

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Order No.: Report #: Phone: Fax:

612428

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 15, 2018 5:41 PM Aug 23, 2018

5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

Metals M8 Polycyclic Aromatic Hydrocarbons HOLD HOLD CANCELLED Asbestos - WA guidelines

Moisture Set

Eurofins | mgt Suite B15

Acid Sulfate Soils Field pH Test

NEPM Screen for Soil Classification

Eurofins | mgt Suite B7A Eurofins | mgt Suite B7

×

×

×

× × × × × × ×

Soil Soil Soil Soil Soil Soil Soil Soil Soil

Aug 08, 2018 Aug 08, 2018

SB20/1.0 SB20/2.2 Aug 08, 2018 Aug 08, 2018

SB20/2.6

59 60 62 62 63 64 65 66

Aug 08, 2018 Aug 08, 2018

SB20/7.0

SB20/9.0

SB20/6.0

Aug 08, 2018 Aug 13, 2018 Aug 13, 2018

SB20/11.0

29

SB21/0.5

SB21/0.8

×

S18-Au18904 S18-Au18905 S18-Au18906 S18-Au18907 S18-Au18908 S18-Au18909 S18-Au18910 S18-Au18911 S18-Au18912 S18-Au18913 S18-Au18914

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB17/7.0 SB17/9.0 SB20/0.3

58

Aug 10, 2018 Aug 08, 2018

Page 21 of 35

×

S18-Au18915

×

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×														
NEPM Screen for Soil Classification	×		×													
Acid Sulfate Soils Field pH Test			×													
Moisture Set	×															
Eurofins mgt Suite B15	×															
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
HOLD			×			×				X	X	×	×	×	×	×
HOLD	×				×		X	X	X							
CANCELLED		×														
Asbestos - WA guidelines		×														
Sample Detail					S18-Au18916	S18-Au18917	S18-Au18918	S18-Au18919	S18-Au18920	S18-Au18921	S18-Au18922	S18-Au18923	S18-Au18924	S18-Au18925	S18-Au18926	S18-Au18927
	34 & 14271		4		Soil											
	- NATA Site # 1254 & 1427	NATA Site # 18217	- NATA Site # 20794	TA Site # 23736	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 10, 2018	Aug 10, 2018	Aug 08, 2018
	Melbourne Laboratory - NA	Sydney Laboratory - NATA	Brisbane Laboratory - NAT	Perth Laboratory - NATA S	8B22/0.9 d		SB22/2.0	SB22/2.6	SB22/4.0	SB26/0.2	SB26/1.0	SB26/3.0	SB26/5.0	SB26/7.0	SB26/9.0	SB27/0.2
		Sydn	Brisb	Perth	20	71	72	73	74	75	92	77	78	79	80	81

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Due: Priority: Contact Name: Received:

02 8960 0555

612428

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

Polycyclic Aromatic Hydrocarbons Asbestos - WA guidelines

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 08, 2018

SB27/1.0

SB27/5.0

SB27/6.0 SB23/0.2

82 83 84 85 86 87 88

SB27/3.1

Aug 08, 2018 Aug 08, 2018

× × × ×

S18-Au18928 S18-Au18929 S18-Au18930 S18-Au18931 S18-Au18932 S18-Au20518

> Soil Soil Soil Soil Soil

> > Aug 08, 2018 Aug 14, 2018

Soil

×

×

×

×

×

×

Page 23 of 35 Report Number: 612428-S

9

7

22

4

က

7

47

47

7

12

×

×

×

× ×

S18-Au20519

S18-Au20522 S18-Au20523 S18-Au20524

Soil Soil Soil

Aug 14, 2018 Aug 10, 2018 Aug 08, 2018

Aug 08, 2018

SB20/3.8

Test Counts

SB17/1.2 SB20/3.0

89

SB8/0.3

Aug 13, 2018

SB22/0.5

× × ×

NEPM Screen for Soil Classification Acid Sulfate Soils Field pH Test

Moisture Set

Metals M8

HOLD

HOLD

CANCELLED

Eurofins | mgt Suite B15

Eurofins | mgt Suite B7A Eurofins | mgt Suite B7

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS
Laboratory Control Sample - reported as percent recovery.

CRM
Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotien

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

Date Reported: Aug 27, 2018

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 24 of 35

ABN : 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 612428-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank				•	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Lituosundii II		` 0.03	0.00	1 455	L

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton		< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg				
	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	-
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	-
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	-
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank			1		
Polychlorinated Biphenyls	T				
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1260	mg/kg	< 0.1		0.1	Pass	
Total PCB*	mg/kg	< 0.1		0.1	Pass	
Method Blank						
Phenols (Halogenated)						
2-Chlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 1		1	Pass	
2.4.6-Trichlorophenol	mg/kg	< 1		1.0	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 1		1.0	Pass	
Pentachlorophenol	mg/kg	< 1		1.0	Pass	
Tetrachlorophenols - Total	mg/kg	< 1		1.0	Pass	
Method Blank						
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	mg/kg	< 20		20	Pass	
2-Methyl-4.6-dinitrophenol	mg/kg	< 5		5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2		0.2	Pass	
2-Nitrophenol	mg/kg	< 1		1.0	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5		5	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4		0.4	Pass	
4-Nitrophenol	mg/kg	< 5		5	Pass	
Dinoseb	mg/kg	< 20		20	Pass	
Phenol	mg/kg	< 0.5		0.5	Pass	
Method Blank		0.0		0.0		
% Clay	%	< 1		1	Pass	
Total Organic Carbon	%	< 0.1		0.1	Pass	
Method Blank	70	- 0.1		0.1	1 455	
Heavy Metals				T		
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Iron	mg/kg	< 20		20	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc				5		
Method Blank	mg/kg	< 5		1 5	Pass	
			T T	Τ		
Cation Exchange Capacity	mag/100g	< 0.05		0.05	Pass	
Cation Exchange Capacity	meq/100g	< 0.05		0.05	Pass	
LCS - % Recovery				T		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	0/	0.5		70.420	Dana	
TRH C6-C9	%	85		70-130	Pass	
TRH C10-C14	%	110		70-130	Pass	
LCS - % Recovery			1	T		
BTEX	0,	00		70.400	D-	
Benzene	%	88		70-130	Pass	
Toluene	%	95	 	70-130	Pass	
Ethylbenzene	%	100		70-130	Pass	
m&p-Xylenes	%	95		70-130	Pass	
Xylenes - Total	%	96		70-130	Pass	
LCS - % Recovery						I

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene	%	76	70-130	Pass	
TRH C6-C10	%	81	70-130	Pass	
TRH >C10-C16	%	124	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	90	70-130	Pass	
Acenaphthylene	%	90	70-130	Pass	
Anthracene	%	86	70-130	Pass	
Benz(a)anthracene	%	85	70-130	Pass	
Benzo(a)pyrene	%	90	70-130	Pass	
Benzo(b&j)fluoranthene	%	101	70-130	Pass	
Benzo(g.h.i)perylene	%	88	70-130	Pass	
Benzo(k)fluoranthene	%	99	70-130	Pass	
Chrysene	%	91	70-130	Pass	
Dibenz(a.h)anthracene	%	79	70-130	Pass	
Fluoranthene	%	102	70-130	Pass	
Fluorene	%	90	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	97	70-130	Pass	
Naphthalene	%	94	70-130	Pass	
Phenanthrene	%	97	70-130	Pass	
Pyrene	%	100	70-130	Pass	
LCS - % Recovery			<u> </u>		
Organochlorine Pesticides					
4.4'-DDD	%	103	70-130	Pass	
4.4'-DDE	%	112	70-130	Pass	
4.4'-DDT	%	92	70-130	Pass	
a-BHC	%	103	70-130	Pass	
Aldrin	%	115	70-130	Pass	
b-BHC	%	112	70-130	Pass	
d-BHC	%	103	70-130	Pass	
Dieldrin	%	117	70-130	Pass	
Endosulfan I	%	115	70-130	Pass	
Endosulfan II	%	105	70-130	Pass	
Endosulfan sulphate	%	103	70-130	Pass	
Endrin	%	120	70-130	Pass	
Endrin aldehyde	%	107	70-130	Pass	
Endrin ketone	%	102	70-130	Pass	
g-BHC (Lindane)	%	114	70-130	Pass	
Heptachlor	%	107	70-130	Pass	
Heptachlor epoxide	%	115	70-130	Pass	
Hexachlorobenzene	%	116	70-130	Pass	
Methoxychlor	%	86	70-130		
LCS - % Recovery	70	00	10-130	Pass	
		T	T		
Organophosphorus Pesticides	%	100	70.400	Dess	
Diazinon	% %	108	70-130	Pass	
Dimethoate		97	70-130	Pass	
Ethion	%	123	70-130	Pass	
Fenitrothion	%	102	70-130	Pass	
Methyl parathion	%	113	70-130	Pass	
Mevinphos	<u> </u>	125	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls		+		_	
Aroclor-1260	%	100	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Phenols (Halogenated)								
2-Chlorophenol			%	93		30-130	Pass	
2.4-Dichlorophenol			%	73		30-130	Pass	
2.4.5-Trichlorophenol			%	76		30-130	Pass	
2.4.6-Trichlorophenol			%	75		30-130	Pass	
2.6-Dichlorophenol			%	82		30-130	Pass	
4-Chloro-3-methylphenol			%	78		30-130	Pass	
Pentachlorophenol			%	53		30-130	Pass	
Tetrachlorophenols - Total			%	67		30-130	Pass	
LCS - % Recovery								
Phenols (non-Halogenated)								
2-Methyl-4.6-dinitrophenol			%	33		30-130	Pass	
2-Methylphenol (o-Cresol)			%	84		30-130	Pass	
2-Nitrophenol			%	68		30-130	Pass	
2.4-Dimethylphenol			%	77		30-130	Pass	
2.4-Dinitrophenol			%	61		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	82		30-130	Pass	
4-Nitrophenol			%	52		30-130	Pass	
Dinoseb			%	39		30-130	Pass	
Phenol			%	88		30-130	Pass	
LCS - % Recovery								
% Clay			%	86		70-130	Pass	
Total Organic Carbon			%	101		70-130	Pass	
LCS - % Recovery					<u>'</u>			
Heavy Metals								
Arsenic			%	112		80-120	Pass	
Cadmium			%	101		80-120	Pass	
Chromium			%	100		80-120	Pass	
Copper			%	117		80-120	Pass	
Lead			%	117		80-120	Pass	
Mercury			%	106		75-125	Pass	
Nickel			%	117		80-120	Pass	
Zinc			%	111		80-120	Pass	
		QA				Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1		Limits	Limits	Code
Spike - % Recovery				T	T I		Ι	
Polycyclic Aromatic Hydrocarbons				Result 1				
Acenaphthene	S18-Au23923	NCP	%	87		70-130	Pass	
Acenaphthylene	S18-Au23923	NCP	%	89		70-130	Pass	
Anthracene	S18-Au23923	NCP	%	89		70-130	Pass	
Benz(a)anthracene	S18-Au23923	NCP	%	86		70-130	Pass	
Benzo(a)pyrene	S18-Au23923	NCP	%	79		70-130	Pass	
Benzo(b&j)fluoranthene	S18-Au23923	NCP	%	73		70-130	Pass	
Benzo(g.h.i)perylene	S18-Au23923	NCP	%	91		70-130	Pass	
Benzo(k)fluoranthene	S18-Au23923	NCP	%	87		70-130	Pass	
Chrysene	S18-Au23923	NCP	%	87		70-130	Pass	
Dibenz(a.h)anthracene	S18-Au23923	NCP	%	85		70-130	Pass	
Fluoranthene	S18-Au23923	NCP	%	76		70-130	Pass	
Fluorene	S18-Au23923	NCP	%	92		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au23923	NCP	%	91		70-130	Pass	
Naphthalene	S18-Au23923	NCP	%	86		70-130	Pass	
Phenanthrene	S18-Au23923	NCP	%	91		70-130	Pass	
Pyrene	S18-Au23923	NCP	%	75		70-130	Pass	
Spike - % Recovery								
Cpc /6:100010.j								

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9	M18-Au22780	NCP	%	81		70-130	Pass	
TRH C10-C14	S18-Au18863	CP	%	105		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	M18-Au22780	NCP	%	77		70-130	Pass	
Toluene	M18-Au22780	NCP	%	85		70-130	Pass	
Ethylbenzene	M18-Au22780	NCP	%	84		70-130	Pass	
m&p-Xylenes	M18-Au22780	NCP	%	91		70-130	Pass	
o-Xylene	M18-Au22780	NCP	%	93		70-130	Pass	
Xylenes - Total	M18-Au22780	NCP	%	91		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1				
Naphthalene	M18-Au22780	NCP	%	79		70-130	Pass	
TRH C6-C10	M18-Au22780	NCP	%	78		70-130	Pass	
TRH >C10-C16	S18-Au18863	CP	%	128		70-130	Pass	
Spike - % Recovery				1	T T			
Phenols (Halogenated)				Result 1				
2-Chlorophenol	M18-Au22243	NCP	%	91		30-130	Pass	
2.4-Dichlorophenol	M18-Au22243	NCP	%	82		30-130	Pass	
2.4.5-Trichlorophenol	M18-Au22243	NCP	%	86		30-130	Pass	
2.4.6-Trichlorophenol	M18-Au22243	NCP	%	81		30-130	Pass	
2.6-Dichlorophenol	M18-Au22243	NCP	%	84		30-130	Pass	
4-Chloro-3-methylphenol	M18-Au22243	NCP	%	84		30-130	Pass	
Pentachlorophenol	M18-Au22243	NCP	%	62		30-130	Pass	
Tetrachlorophenols - Total	M18-Au22243	NCP	%	78		30-130	Pass	
Spike - % Recovery				Ι	Г			
Phenois (non-Halogenated)	T	T		Result 1				
2-Methyl-4.6-dinitrophenol	M18-Au22497	NCP	<u>%</u>	42		30-130	Pass	
2-Methylphenol (o-Cresol)	M18-Au22243	NCP	%	82		30-130	Pass	
2-Nitrophenol	M18-Au22243	NCP	<u>%</u>	72		30-130	Pass	
2.4-Dimethylphenol	M18-Au22243	NCP	%	71		30-130	Pass	
2.4-Dinitrophenol	M18-Au22243	NCP	%	53		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M18-Au22243	NCP	%	84		30-130	Pass	
4-Nitrophenol	M18-Au22243	NCP	%	65		30-130	Pass	
Dinoseb	M18-Au22243	NCP	%	35		30-130	Pass	
Phenol Spike - % Recovery	M18-Au22243	NCP	%	122		30-130	Pass	
Heavy Metals				Result 1				
Arsenic	M18-Au21417	NCP	%	89		75-125	Pass	
Cadmium	M18-Au21417	NCP	<u> </u>	100		75-125 75-125	Pass	
Chromium	M18-Au23129	NCP	%	107		75-125 75-125	Pass	
	M18-Au21417	NCP	% %	111		75-125 75-125	Pass	
Copper Lead	M18-Au21417	NCP	<u>%</u> %	109		75-125 75-125	Pass	
Mercury	M18-Au21417	NCP	%	109		70-120	Pass	
Nickel	M18-Au23129	NCP	%	100		75-130 75-125	Pass	
Zinc	M18-Au21417	NCP	% %	122		75-125 75-125	Pass	
Spike - % Recovery	W 10-Auz 14 17	INOF	/0	144		10-120	1 433	
Organochlorine Pesticides				Result 1				
4.4'-DDD	S18-Au23985	NCP	%	97		70-130	Pass	
4.4'-DDE	S18-Au23985	NCP	 %	98		70-130	Pass	
4.4'-DDT	S18-Au23985	NCP	% %	82		70-130	Pass	
a-BHC	S18-Au23985	NCP	% %	86		70-130	Pass	
Aldrin	S18-Au23985	NCP	 %	102		70-130	Pass	
b-BHC	S18-Au23985	NCP	// 0	93		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
d-BHC	S18-Au23985	NCP	%	87			70-130	Pass	
Dieldrin	S18-Au23985	NCP	%	100			70-130	Pass	
Endosulfan I	S18-Au23985	NCP	%	99			70-130	Pass	
Endosulfan II	S18-Au23985	NCP	%	89			70-130	Pass	
Endosulfan sulphate	S18-Au23985	NCP	%	86			70-130	Pass	
Endrin	S18-Au23985	NCP	%	128			70-130	Pass	
Endrin aldehyde	S18-Au23985	NCP	%	85			70-130	Pass	
Endrin ketone	S18-Au23985	NCP	%	86			70-130	Pass	
g-BHC (Lindane)	S18-Au23985	NCP	%	94			70-130	Pass	
Heptachlor	S18-Au23985	NCP	%	94			70-130	Pass	
Heptachlor epoxide	S18-Au23985	NCP	%	98			70-130	Pass	
Hexachlorobenzene	S18-Au23985	NCP	%	100			70-130	Pass	
Methoxychlor	S18-Au23985	NCP	%	73			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	1999 NEPM Fract	ions		Result 1					
TRH C10-C14	S18-Au18869	CP	%	80			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	S18-Au18869	СР	%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)	S18-Au18847	CP	pH Units	7.8	7.7	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)	S18-Au18847	CP	pH Units	5.7	5.9	pass	30%	Pass	
Reaction Ratings	S18-Au18847	CP	comment	3.0	3.0	pass	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD			
Acenaphthene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-Au23922	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)	S18-Au18859	CP	pH Units	7.2	7.3	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)	S18-Au18859	CP	pH Units	4.1	4.2	pass	30%	Pass	
Reaction Ratings	S18-Au18859	CP	comment	2.0	2.0	pass	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	M18-Au22555	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
	1								
TRH C15-C28	M18-Au22555	NCP	mg/kg	110	140	20	30%	Pass	

m	n	c	٧	۰
ш		2	•	
-		c	"	_

Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M18-Au22555	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Au22555	NCP	mg/kg	210	250	17	30%	Pass	
TRH >C34-C40	M18-Au22555	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	M18-Au22253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	M18-Au22253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	M18-Au22253	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	M18-Au22253	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	M18-Au22253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	M18-Au22253	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	M18-Au22253	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	M18-Au22253	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	M18-Au22253	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	M18-Au22253	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	M18-Au22253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
2-Nitrophenol	M18-Au22253	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	M18-Au22253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	M18-Au22253	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	M18-Au22253	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	M18-Au22253	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	M18-Au22253	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	M18-Au22253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides			ı	Result 1	Result 2	RPD			
Chlordanes - Total	S18-Au18865	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-Au18865	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S18-Au18865	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				1					
Polychlorinated Biphenyls	046			Result 1	Result 2	RPD		 _ 	
Aroclor-1016	S18-Au18865	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S18-Au18865	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Au18865	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S18-Au18865	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

				ı
- 11	n	C	1	r
		=		L

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1248	S18-Au18865	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S18-Au18865	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S18-Au18865	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S18-Au18865	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	3 10-Au 10003	L CF	i iig/kg	<u> </u>	_ \ 0.1		30 /6	Fass	
Duplicate				Result 1	Result 2	RPD			
% Clay	S18-Au16416	NCP	%	< 1	< 1	<1	30%	Pass	
Conductivity (1:5 aqueous extract	310-Au10410	NO	70				30 /0	1 455	
at 25°C as rec.)	M18-Au22905	NCP	uS/cm	410	400	26	30%	Pass	
Total Organic Carbon	M18-Au19674	NCP	%	3.6	3.4	6.3	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Iron	M18-Au23139	NCP	mg/kg	37000	37000	<1	30%	Pass	
Duplicate									
•				Result 1	Result 2	RPD			
% Moisture	S18-Au18869	СР	%	18	18	2.0	30%	Pass	
Duplicate						=:-			
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)	S18-Au18874	СР	pH Units	6.8	6.7	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)	S18-Au18874	CP	pH Units	2.8	2.6	pass	30%	Pass	
Reaction Ratings	S18-Au18874	CP	comment	3.0	3.0	pass	30%	Pass	
Duplicate	010710071	<u> </u>	COMMINION	0.0	0.0	pacc	0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Au18881	СР	mg/kg	24	24	<1	30%	Pass	
Cadmium	S18-Au18881	CP	mg/kg	0.7	0.7	<1	30%	Pass	
Chromium	S18-Au18881	CP	mg/kg	120	120	2.0	30%	Pass	
Copper	S18-Au18881	CP	mg/kg	65	65	1.0	30%	Pass	
Lead	S18-Au18881	CP	mg/kg	270	270	<1	30%	Pass	
Mercury	S18-Au18881	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Au18881	CP	mg/kg	140	140	1.0	30%	Pass	
Zinc	S18-Au18881	CP	mg/kg	1400	1400	<1	30%	Pass	
Duplicate	010-Au10001	01	i iig/kg	1400	1 1 400		3070	1 433	
Total Recoverable Hydrocarbons -	1999 NEDM Fract	ione		Result 1	Result 2	RPD			
TRH C6-C9	S18-Au18883	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	01071010000	<u> </u>	ilig/kg	120	120	*1	0070	1 433	
BTEX				Result 1	Result 2	RPD			
Benzene	S18-Au18883	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-Au18883	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-Au18883	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-Au18883	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	S18-Au18883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total	S18-Au18883	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	3 10-Au 10003	L OF	i iig/kg	` 0.0	\ 0.0	-1	JU /0	rass	
Total Recoverable Hydrocarbons -	2013 NEDM Eract	ione		Result 1	Result 2	RPD			
Naphthalene	S18-Au18883	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-Au18883	CP			†	<1	30%	Pass	
	310-AU10003	LOP	mg/kg	< 20	< 20	<u> </u>	J 30%	Fa55	
Duplicate Total Bassyarable Hydroserbana	4000 NEDM F===4	iono		Dogult 1	Dog::lt 0	DDD			
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD	200/	Dest	
TRH C6-C9	S18-Au18886	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S18-Au18886	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-Au18886	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-Au18886	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-Au18886	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S18-Au18886	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S18-Au18886	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrod	arbons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-Au18886	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-Au18886	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAGC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
S05	Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction.

Authorised By

Nibha Vaidya Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Harry Bacalis Senior Analyst-Volatile (VIC)
Jonathon Angell Senior Analyst-Inorganic (QLD)
Joseph Edouard Senior Analyst-Organic (VIC)
Michael Brancati Senior Analyst-Inorganic (VIC)
Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the cient, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road **Dulwich Hill NSW 2203**

Attention: Ken Henderson 612428-AID Report **Project Name** MASCOT **Project ID** 1.16

Received Date Aug 15, 2018 Aug 24, 2018 **Date Reported**

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as

Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an

independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-

sampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be subsampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Project Name MAS
Project ID 1.16
Date Sampled Aug (

Report

MASCOT 1.16 Aug 08, 2018 to Aug 14, 2018 612428-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SB13/0.3	18-Au18850	Aug 13, 2018	Approximate Sample 493g Sample consisted of: Brown fine-grained sandy soil	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB21/0.4	18-Au18864	Aug 08, 2018	Approximate Sample 679g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
QA1	18-Au18876	Aug 13, 2018	Approximate Sample 728g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB4/0.2	18-Au18880	Aug 14, 2018	Approximate Sample 251g Sample consisted of: Brown coarse-grained soil and organic debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB7/0.25	18-Au18881	Aug 14, 2018	Approximate Sample 714g Sample consisted of: Brwon coarse-grained sandy soil and rocks	FA: Chrysotile asbestos detected in weathered fibre cement fragments. Approximate raw weight of FA = $0.035g$ Estimated asbestos content in FA = $0.032g^*$ Total estimated asbestos concentration in FA = 0.0044% w/w*
				Organic fibre detected. No respirable fibres detected.
SB9/0.25	18-Au18883	Aug 14, 2018	Approximate Sample 594g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB23/0.4	18-Au18884	Aug 14, 2018	Approximate Sample 488g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB24/0.3	18-Au18885	Aug 14, 2018	Approximate Sample 659g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB25/0.25	18-Au18886	Aug 14, 2018	Approximate Sample 727g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
QA2	18-Au18887	Aug 14, 2018	Approximate Sample 667g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB22/0.5	18-Au20518	Aug 13, 2018	Aug 13, 2018 Approximate Sample 598g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SB8/0.3	18-Au20519	Aug 14, 2018	Approximate Sample 608g Sample consisted of: Brown coarse-grained sandy soil and rocks	AF: Chrysotile asbestos detected in the form of loose fibre bundles. Approximate raw weight of AF = 0.00549* Estimated asbestos content in AF = 0.00539* Total estimated asbestos concentration in AF = 0.00087% w/w* No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Page 3 of 14 Report Number: 612428-AID

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyAug 16, 2018Indefinite

Report Number: 612428-AID

Melbourne
3-5 Kingston Town Close
Cakkings VIC 3166
Phone: +613 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
6/wdale WA 6/105
Phone : +6/1 8 925/1 9600
NATA # 126/1
Site # 23736

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofins mgt Suite B7A	×	×													
Eurofins mgt Suite B7	×	×													
NEPM Screen for Soil Classification	×		×												
Acid Sulfate Soils Field pH Test			×				×	×	X			×	×	×	×
Moisture Set	×									×					
Eurofins mgt Suite B15	×														
Metals M8	×														
Polycyclic Aromatic Hydrocarbons	×									×					
HOLD			×												
HOLD	×														
CANCELLED		×								×	×				
Asbestos - WA guidelines		×								×					
						LAB ID	S18-Au18847	S18-Au18848	S18-Au18849	S18-Au18850	S18-Au18851	S18-Au18852	S18-Au18853	S18-Au18854	S18-Au18855
	71					Matrix	Soil								
Sample Detail	NATA Site # 1254 & 1427	8217	20794	36		Sampling Time									
S.		NATA Site # 18217	- NATA Site #	ATA Site # 23736		Sample Date	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 13, 2018	Aug 10, 2018				
	Melbourne Laboratory -	Sydney Laboratory - NAT	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA	External Laboratory		SB6/2.0	SB6/4.0	SB6/5.0	SB13/0.3	SB14/4.0	SB14/6.0	SB14/8.0	SB14/10.0	SB17/3.8
	Melb	Sydn	Brisb	Perth	Exter	N _o	_	2	3	4	5	9	7	8	6

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone - +613 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261

Site # 23736

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Aug 15, 2018 5:41 PM Aug 23, 2018 Due: Priority: Contact Name:

02 8960 0555

612428

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

Eurofins | mgt Suite B15 Metals M8 Polycyclic Aromatic Hydrocarbons HOLD HOLD CANCELLED Asbestos - WA guidelines

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB17/6.0 SB17/8.0

10

Moisture Set

Acid Sulfate Soils Field pH Test

Eurofins | mgt Suite B7 NEPM Screen for Soil Classification

Eurofins | mgt Suite B7A

×

×

×

×

×

× × × × × ×

> S18-Au18858 S18-Au18859 S18-Au18860 S18-Au18861

> > Soil

Soil

Aug 10, 2018 Aug 08, 2018 Aug 08, 2018 Aug 08, 2018

SB17/10.0

12

SB20/5.0 SB20/8.0

13 4 15 16 17 18 19

Aug 10, 2018

Soil

Soil

S18-Au18857

S18-Au18856

×

×

×

×

×

×

×

×

×

S18-Au18863 S18-Au18864 S18-Au18865 S18-Au18866

Soil

Aug 13, 2018 Aug 08, 2018 Aug 08, 2018 Aug 08, 2018 Aug 08, 2018

SB22/1.3

SB22/3.0

SB21/0.4

SB22/0.1

Aug 08, 2018

SB20/10.0 SB20/12.0 SB21/0.15 Soi Soil Soil

Soil

S18-Au18862

×

×

× ×

×

×

S18-Au18867

Page 6 of 14

Report Number: 612428-AID

Melbourne
3-5 Kingston Town Close
Cakkings VIC 3166
Phone: +613 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
6/wdale WA 6/105
Phone: +6/18 925/1 9600
NATA # 126/1
Site # 237/36

Received:

Due:

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson

Priority: Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×				×								×		
NEPM Screen for Soil Classification	×		×													
Acid Sulfate Soils Field pH Test			×		×		×	×	×	×	×	×				
Moisture Set	×					×								×		
Eurofins mgt Suite B15	×														×	×
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
HOLD			×													
HOLD	×															
CANCELLED		×														
Asbestos - WA guidelines		×											×			
					S18-Au18868	S18-Au18869	S18-Au18870	S18-Au18871	S18-Au18872	S18-Au18873	S18-Au18874	S18-Au18875	S18-Au18876	S18-Au18877	S18-Au18878	S18-Au18879
Sample Detail	54 & 14271		94		Soil	Water	Water									
Sample	Welbourne Laboratory - NATA Site # 1254 & 14271	- NATA Site # 18217	y - NATA Site # 20794	VATA Site # 23736	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 14, 2018
	Sourne Laborate	ney Laboratory	Brisbane Laboratory	Perth Laboratory - N	SB22/5.0		SB22/7.0	SB26/2.0	SB26/4.0	SB26/6.0	SB26/8.0	SB26/10.0	QA1	QS3	RB2	RB3
	Melk	Syd	Bris	Pert	22	23	24	25	56	27	28	59	30	31	32	33

Page 7 of 14

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone - +613 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Site # 23736

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day

02 8960 0555

612428

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Received:

Ken Henderson

Due: Priority: Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Moisture Set Eurofins | mgt Suite B15 Metals M8 Polycyclic Aromatic Hydrocarbons HOLD Asbestos - WA guidelines Sample Detail

HOLD CANCELLED

Acid Sulfate Soils Field pH Test

NEPM Screen for Soil Classification

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

×

×

×

×

×

×

× × × × × × ×

× × × × × × ×

× ×

S18-Au18880 S18-Au18881 S18-Au18882 S18-Au18883 S18-Au18884 S18-Au18885 S18-Au18886 S18-Au18887 S18-Au18888 S18-Au18889 S18-Au18890

Soil

SB9/0.25

36 37 38

Soil

Aug 14, 2018 Aug 14, 2018 Aug 14, 2018 Aug 14, 2018 Aug 14, 2018

SB7/0.25 SB8/0.15

35

SB4/0.2

34

Aug 14, 2018

Soil Soil

Soil

×

× ×

Water

Soil Soil

> Aug 09, 2018 Aug 09, 2018

SB1/0.5

SB6/3.0 SB6/0.4

45 44

Soil

Aug 14, 2018 Aug 14, 2018 Aug 09, 2018

Aug 14, 2018

SB25/0.25

QA2 RB4

SB24/0.3

39 40 4 42 43

SB23/0.4

×

× ×

S18-Au18891

Page 8 of 14

Report Number: 612428-AID

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone - +613 8564 5000 NATA # 1261 Site # 1254 & 14271

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261

Site # 23736

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Due: Priority: Contact Name: Received:

02 8960 0555

612428

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Aug 15, 2018 5:41 PM Aug 23, 2018

5 Day

Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

HOLD

HOLD CANCELLED Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons

Eurofins | mgt Suite B15

Acid Sulfate Soils Field pH Test

NEPM Screen for Soil Classification

Eurofins | mgt Suite B7A

Moisture Set

Metals M8

Eurofins | mgt Suite B7

×

×

×

× × ×

S18-Au18894 S18-Au18895 S18-Au18896 S18-Au18897 S18-Au18898 S18-Au18899 S18-Au18900 S18-Au18901 S18-Au18902 S18-Au18903

Soil

Soil

Aug 09, 2018 Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

Aug 09, 2018

Soil

Soil

Soil

Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

Aug 10, 2018 Aug 10, 2018

SB17/0.5 SB14/9.0

SB17/5.0

Aug 10, 2018

SB14/2.0

SB14/3.0 SB14/5.0 SB14/7.0

51

53 22

SB14/0.5 SB14/1.2

48 49 50

Soi Soil Soil

Soil

S18-Au18892 S18-Au18893

×

× × ×

×

× ×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB10/0.5 SB11/0.5 SB11/4.8

46

47

Page 9 of 14 Report Number: 612428-AID

First Reported: Aug 24, 2018 Date Reported: Aug 27, 2018

Melbourne
3-5 Kingston Town Close
Cakkings VIC 3166
Phone: +613 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth2/91 Leach Highway
6/wdale WA 6/105
Phone: +6/18 925/1 9600
NATA # 126/1
Site # 237/36

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Ken Henderson

Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×														
NEPM Screen for Soil Classification	×		×													
Acid Sulfate Soils Field pH Test			×													
Moisture Set	×															
Eurofins mgt Suite B15	×															
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	X															
HOLD			X		×	×	×	×	×	×	×	×	×	×		
HOLD	×														×	×
CANCELLED		×														
Asbestos - WA guidelines		×														
					S18-Au18904	S18-Au18905	S18-Au18906	S18-Au18907	S18-Au18908	S18-Au18909	S18-Au18910	S18-Au18911	S18-Au18912	S18-Au18913	S18-Au18914	S18-Au18915
- E	14271				Soil											
Sample Detail	s # 1254 &	18217	# 20794	736												
Ø	ry - NATA Site	- NATA Site #	/ - NATA Site	IATA Site #23	Aug 10, 2018	Aug 10, 2018	Aug 08, 2018	Aug 13, 2018	Aug 13, 2018							
	Melbourne Laboratory - NATA Site # 1254 & 1427	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	SB17/7.0	SB17/9.0	SB20/0.3	SB20/1.0	SB20/2.2	SB20/2.6	SB20/6.0	SB20/7.0	SB20/9.0	SB20/11.0	SB21/0.5	SB21/0.8
	Melb	Sydn	Brisb	Perth	28	29	09	61	62	63	64	65	99	29	89	69

Melbourne
3-5 Kingston Town Close
Cakkings VIC 3166
Phone: +613 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
6/wdale WA 6/105
Phone: +6/18 925/1 9600
NATA # 126/1
Site # 237/36

Due: Priority: Contact Name: Received:

Report #: Phone: Fax: Order No.:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson

Sample Detail Sample Detai	Eurofins mgt Suite B7A	×	X														
Sample Detail Sample Detai	Eurofins mgt Suite B7	×	X														
Polytochic Laboratory - NATA Site # 1254 & 14271	NEPM Screen for Soil Classification	×		×													
Polymer Laboratory - NATA Site # 1254 & 14271	Acid Sulfate Soils Field pH Test			×													
Sample Detail Sample Detai	Moisture Set	×															
Sample Detail Sample Detai	Eurofins mgt Suite B15	×															
Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Laboratory - NATA Site # 1254 & 14271 X X X X X X X X X X X X X X X X X X	Metals M8	×															
Sample Detail Sample Detai	Polycyclic Aromatic Hydrocarbons	×															
Sample Detail Sample Detai	HOLD			×			×				×	×	×	×	×	×	×
Sample Detail Sample Detai	HOLD	×				×		×	×	×							
Sample Detail Sample Detai	CANCELLED		×														
Sample Detail Sample Detail	Asbestos - WA guidelines		×														
Sample Detail Sample Detail Ibourne Laboratory - NATA Site # 1254 & 142 dney Laboratory - NATA Site # 1254 & 142 sbane Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 rth Laboratory - NATA Site # 20794 sB22/1.0 Aug 13, 2018 sB26/1.0 Aug 13, 2018 sB26/3.0 Aug 13, 2018 sB26/7.0 Aug 10, 2018 sB26/7.0 Aug 10, 2018 sB26/9.0 Aug 10, 2018						S18-Au18916	S18-Au18917	S18-Au18918	S18-Au18919	S18-Au18920	S18-Au18921	S18-Au18922	S18-Au18923	S18-Au18924	S18-Au18925	S18-Au18926	S18-Au18927
Nelbourne Laboratory - NATA Site # 182 Sydney Laboratory - NATA Site # 182 Brisbane Laboratory - NATA Site # 23736 Perth Laboratory - NATA Site # 23736 Perth Laboratory - NATA Site # 23736 To SB22/0.9 Aug 13, 2018 To SB22/2.0 Aug 13, 2018 To SB22/2.0 Aug 13, 2018 To SB26/0.2 Aug 13, 2018 To SB26/1.0 Aug 13, 2018 To SB26/1.0 Aug 13, 2018 To SB26/1.0 Aug 13, 2018 To SB26/2.0 Aug 13	ole Detail	1254 & 14271	17	794		Soil											
Melboun Sydney Brisbane Perth La Perth La T SB T T T T T T T T T	Samp	ne Laboratory - NATA Site # 1	Laboratory - NATA Site # 1821	B Laboratory - NATA Site # 20	boratory - NATA Site # 23736												
		Melbour	Sydney	Brisbane	Perth La		71 SB;										\neg

Melbourne
3-5 Kingston Town Close
Cakkings VIC 3166
Phone: +613 8564 5000
NATA # 1261
Site # 1254 & 14271

Perth2/91 Leach Highway
6/wdale WA 6/105
Phone : +6/1 8 925/1 9600
NATA # 126/1
Site # 23736

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Aug 15, 2018 5:41 PM Aug 23, 2018 Priority: Contact Name: Received: Due:

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

5 Day Ken Henderson

Eurofins mgt Suite B7A Eurofins mgt Suite B7 NEPM Screen for Soil Classification Acid Sulfate Soils Field pH Test Moisture Set Eurofins mgt Suite B15 Metals M8 Polycyclic Aromatic Hydrocarbons HOLD HOLD CANCELLED	× × × × × × ×	×	×		×	×	×	×	×	×	×	×	×	×	
										×					;
	×									×					
Polycyclic Aromatic Hydrocarbons	×									×					,
HOLD			×		×	×	×	×	×			×	×	×	į
HOLD	×														ļ
CANCELLED		×													(
Asbestos - WA guidelines		×								×	×				,
					S18-Au18928	S18-Au18929						S18-Au20522	S18-Au20523	S18-Au20524	
Sample Detail	- NATA Site # 1254 & 14271	e # 18217	ite # 20794	‡ 23736	118 Soil	Soil Soil		118 Soil	Soil Soil		Soil Soil	118 Soil	118 Soil		
	Melbourne Laboratory - NATA	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	SB27/1.0 Aug 08, 2018			SB27/6.0 Aug 08, 2018	SB23/0.2 Aug 14, 2018	SB22/0.5 Aug 13, 2018		SB17/1.2 Aug 10, 2018	SB20/3.0 Aug 08, 2018	SB20/3.8 Aug 08, 2018	
	Melbourn	Sydney L	Brisbane	Perth Lak	82 SB2	83 SB2	84 SB2	85 SB2	86 SB2	87 SB2	88 SB8/0.3	89 SB1	90 SB2	91 SB2	

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

AF Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substatntial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Report Number: 612428-AID

Comments

Samples Au18850, Au18880 and Au18884 received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins, Impl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company in resulting from the use of any information or interpretation given in this report. In occase shall Eurofins, Impl be liable for consequential damages including, but not limited to, lost profess, damages for shall result on sheet designations and lost production arising from the lises included except in full and relates only be the lems tested. Unless indicated betherwise, the testes were performed on the samples as received.

Report Number: 612428-AID

Certificate of Analysis

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill NSW 2203 Iac-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 — Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ken Henderson

 Report
 612428-W

 Project name
 MASCOT

 Project ID
 1.16

 Received Date
 Aug 15, 2018

Client Sample ID			RB2	RB3	RB4
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S18-Au18878	S18-Au18879	S18-Au18888
Date Sampled			Aug 13, 2018	Aug 14, 2018	Aug 14, 2018
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	•			
TRH C6-C9	0.02	mg/L	-	-	< 0.02
TRH C10-C14	0.05	mg/L	-	-	< 0.05
TRH C15-C28	0.1	mg/L	-	=	< 0.1
TRH C29-C36	0.1	mg/L	-	=	< 0.1
TRH C10-36 (Total)	0.1	mg/L	-	=	< 0.1
BTEX	•				
Benzene	0.001	mg/L	-	-	< 0.001
Toluene	0.001	mg/L	-	-	< 0.001
Ethylbenzene	0.001	mg/L	-	-	< 0.001
m&p-Xylenes	0.002	mg/L	-	-	< 0.002
o-Xylene	0.001	mg/L	-	-	< 0.001
Xylenes - Total	0.003	mg/L	-	-	< 0.003
4-Bromofluorobenzene (surr.)	1	%	-	-	111
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.01	mg/L	-	-	< 0.01
TRH C6-C10	0.02	mg/L	-	-	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	-	< 0.02
TRH >C10-C16	0.05	mg/L	-	-	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	=	< 0.05
TRH >C16-C34	0.1	mg/L	-	=	< 0.1
TRH >C34-C40	0.1	mg/L	-	=	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	-	-	< 0.1
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	-	-	< 0.001
Acenaphthylene	0.001	mg/L	-	-	< 0.001
Anthracene	0.001	mg/L	-	=	< 0.001
Benz(a)anthracene	0.001	mg/L	-	-	< 0.001
Benzo(a)pyrene	0.001	mg/L	-	-	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	-	-	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	-	-	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	-	-	< 0.001
Chrysene	0.001	mg/L	-	-	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	-	-	< 0.001
Fluoranthene	0.001	mg/L	-	-	< 0.001
Fluorene	0.001	mg/L	_	_	< 0.001

Client Sample ID			RB2	RB3	RB4
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S18-Au18878	S18-Au18879	S18-Au18888
Date Sampled			Aug 13, 2018	Aug 14, 2018	Aug 14, 2018
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Indeno(1.2.3-cd)pyrene	0.001	mg/L	-	-	< 0.001
Naphthalene	0.001	mg/L	-	-	< 0.001
Phenanthrene	0.001	mg/L	-	-	< 0.001
Pyrene	0.001	mg/L	_	-	< 0.001
Total PAH*	0.001	mg/L	-	-	< 0.001
2-Fluorobiphenyl (surr.)	1	%	-	-	80
p-Terphenyl-d14 (surr.)	1	%	-	-	91
Organochlorine Pesticides	·				
Chlordanes - Total	0.001	mg/L	< 0.001	< 0.001	-
4.4'-DDD	0.0001	mg/L	< 0.0001	< 0.0001	-
4.4'-DDE	0.0001	mg/L	< 0.0001	< 0.0001	-
4.4'-DDT	0.0001	mg/L	< 0.0001	< 0.0001	-
a-BHC	0.0001	mg/L	< 0.0001	< 0.0001	-
Aldrin	0.0001	mg/L	< 0.0001	< 0.0001	-
b-BHC	0.0001	mg/L	< 0.0001	< 0.0001	-
d-BHC	0.0001	mg/L	< 0.0001	< 0.0001	-
Dieldrin	0.0001	mg/L	< 0.0001	< 0.0001	-
Endosulfan I	0.0001	mg/L	< 0.0001	< 0.0001	-
Endosulfan II	0.0001	mg/L	< 0.0001	< 0.0001	-
Endosulfan sulphate	0.0001	mg/L	< 0.0001	< 0.0001	-
Endrin	0.0001	mg/L	< 0.0001	< 0.0001	-
Endrin aldehyde	0.0001	mg/L	< 0.0001	< 0.0001	-
Endrin ketone	0.0001	mg/L	< 0.0001	< 0.0001	-
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	< 0.0001	-
Heptachlor	0.0001	mg/L	< 0.0001	< 0.0001	-
Heptachlor epoxide	0.0001	mg/L	< 0.0001	< 0.0001	-
Hexachlorobenzene	0.0001	mg/L	< 0.0001	< 0.0001	-
Methoxychlor	0.0001	mg/L	< 0.0001	< 0.0001	-
Toxaphene	0.01	mg/L	< 0.01	< 0.01	-
Aldrin and Dieldrin (Total)*	0.0001	mg/L	< 0.0001	< 0.0001	-
DDT + DDE + DDD (Total)*	0.0001	mg/L	< 0.0001	< 0.0001	-
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	< 0.001	< 0.001	-
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	< 0.001	< 0.001	-
Dibutylchlorendate (surr.)	1	%	81	74	-
Tetrachloro-m-xylene (surr.)	1	%	91	102	-
Organophosphorus Pesticides					
Azinphos-methyl	0.002	mg/L	< 0.002	< 0.002	-
Bolstar	0.002	mg/L	< 0.002	< 0.002	-
Chlorfenvinphos	0.002	mg/L	< 0.002	< 0.002	-
Chlorpyrifos	0.02	mg/L	< 0.02	< 0.02	-
Chlorpyrifos-methyl	0.002	mg/L	< 0.002	< 0.002	-
Coumaphos	0.02	mg/L	< 0.02	< 0.02	-
Demeton-S	0.02	mg/L	< 0.02	< 0.02	-
Demeton-O	0.002	mg/L	< 0.002	< 0.002	-
Diazinon	0.002	mg/L	< 0.002	< 0.002	-
Dichlorvos	0.002	mg/L	< 0.002	< 0.002	-
Dimethoate	0.002	mg/L	< 0.002	< 0.002	-
Disulfoton	0.002	mg/L	< 0.002	< 0.002	-

Report Number: 612428-W

Client Sample ID			RB2	RB3	RB4
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S18-Au18878	S18-Au18879	S18-Au18888
Date Sampled			Aug 13, 2018	Aug 14, 2018	Aug 14, 2018
Test/Reference	LOR	Unit			
Organophosphorus Pesticides					
Ethion	0.002	mg/L	< 0.002	< 0.002	_
Ethoprop	0.002	mg/L	< 0.002	< 0.002	_
Ethyl parathion	0.002	mg/L	< 0.002	< 0.002	_
Fenitrothion	0.002	mg/L	< 0.002	< 0.002	_
Fensulfothion	0.002	mg/L	< 0.002	< 0.002	_
Fenthion	0.002	mg/L	< 0.002	< 0.002	_
Malathion	0.002	mg/L	< 0.002	< 0.002	-
Merphos	0.002	mg/L	< 0.002	< 0.002	-
Methyl parathion	0.002	mg/L	< 0.002	< 0.002	-
Mevinphos	0.002	mg/L	< 0.002	< 0.002	-
Monocrotophos	0.002	mg/L	< 0.002	< 0.002	-
Naled	0.002	mg/L	< 0.002	< 0.002	-
Omethoate	0.002	mg/L	< 0.002	< 0.002	-
Phorate	0.002	mg/L	< 0.002	< 0.002	-
Pirimiphos-methyl	0.02	mg/L	< 0.02	< 0.02	-
Pyrazophos	0.002	mg/L	< 0.002	< 0.002	-
Ronnel	0.002	mg/L	< 0.002	< 0.002	-
Terbufos	0.002	mg/L	< 0.002	< 0.002	-
Tetrachlorvinphos	0.002	mg/L	< 0.002	< 0.002	-
Tokuthion	0.002	mg/L	< 0.002	< 0.002	-
Trichloronate	0.002	mg/L	< 0.002	< 0.002	-
Triphenylphosphate (surr.)	1	%	87	89	-
Polychlorinated Biphenyls					
Aroclor-1016	0.001	mg/L	< 0.001	< 0.001	-
Aroclor-1221	0.001	mg/L	< 0.001	< 0.001	-
Aroclor-1232	0.001	mg/L	< 0.001	< 0.001	-
Aroclor-1242	0.001	mg/L	< 0.001	< 0.001	-
Aroclor-1248	0.001	mg/L	< 0.001	< 0.001	-
Aroclor-1254	0.001	mg/L	< 0.001	< 0.001	-
Aroclor-1260	0.001	mg/L	< 0.001	< 0.001	_
Total PCB*	0.001	mg/L	< 0.001	< 0.001	-
Dibutylchlorendate (surr.)	1	%	81	74	-
Tetrachloro-m-xylene (surr.)	1	%	91	102	-
Phenols (Halogenated)					
2-Chlorophenol	0.003	mg/L	-	-	< 0.003
2.4-Dichlorophenol	0.003	mg/L	-	-	< 0.003
2.4.5-Trichlorophenol	0.01	mg/L	-	-	< 0.01
2.4.6-Trichlorophenol	0.01	mg/L	-	-	< 0.01
2.6-Dichlorophenol	0.003	mg/L	-	-	< 0.003
4-Chloro-3-methylphenol	0.01	mg/L	-	-	< 0.01
Pentachlorophenol	0.01	mg/L	-	-	< 0.01
Tetrachlorophenols - Total	0.03	mg/L	-	-	< 0.03
Total Halogenated Phenol*	0.01	mg/L	-	-	< 0.01
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	-	-	< 0.1
2-Methyl-4.6-dinitrophenol	0.03	mg/L	-	-	< 0.03
2-Methylphenol (o-Cresol)	0.003	mg/L	-	-	< 0.003
2-Nitrophenol	0.01	mg/L	-	-	< 0.01
2.4-Dimethylphenol	0.003	mg/L	-	-	< 0.003

Client Sample ID			RB2	RB3	RB4
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S18-Au18878	S18-Au18879	S18-Au18888
Date Sampled			Aug 13, 2018	Aug 14, 2018	Aug 14, 2018
Test/Reference	LOR	Unit			
Phenols (non-Halogenated)					
2.4-Dinitrophenol	0.03	mg/L	-	-	< 0.03
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	-	-	< 0.006
4-Nitrophenol	0.03	mg/L	-	-	< 0.03
Dinoseb	0.1	mg/L	-	-	< 0.1
Phenol	0.003	mg/L	-	-	< 0.003
Total Non-Halogenated Phenol*	0.1	mg/L	-	-	< 0.1
Phenol-d6 (surr.)	1	%	-	-	40
Heavy Metals					
Arsenic	0.001	mg/L	-	-	< 0.001
Cadmium	0.0002	mg/L	-	-	< 0.0002
Chromium	0.001	mg/L	-	-	< 0.001
Copper	0.001	mg/L	-	-	< 0.001
Lead	0.001	mg/L	-	-	< 0.001
Mercury	0.0001	mg/L	-	-	< 0.0001
Nickel	0.001	mg/L	-	-	< 0.001
Zinc	0.005	mg/L	-	-	< 0.005

Report Number: 612428-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7A			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Aug 18, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 18, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 21, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (Halogenated)	Melbourne	Aug 21, 2018	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Melbourne	Aug 18, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins mgt Suite B15			
Organochlorine Pesticides	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Melbourne	Aug 21, 2018	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA# 1261 Sile # 18217

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Aug 15, 2018 5:41 PM Aug 23, 2018 Due: Priority: Contact Name: Received:

02 8960 0555

612428

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Acid Sulfate Soils Field pH Test Moisture Set Eurofins | mgt Suite B15 Metals M8 Polycyclic Aromatic Hydrocarbons HOLD HOLD CANCELLED Asbestos - WA guidelines

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Sample Detail

NEPM Screen for Soil Classification

× ×

×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

External Laboratory Sample ID

ŝ

× × ×

×

×

× ×

S18-Au18848 S18-Au18849 S18-Au18850 S18-Au18851 S18-Au18852 S18-Au18853

> Soil Soil Soil

Soil Soil Soil Soil

> Aug 10, 2018 Aug 10, 2018 Aug 10, 2018

SB14/10.0 SB14/8.0

SB17/3.8

Soil

Aug 09, 2018

Aug 09, 2018

Aug 13, 2018 Aug 10, 2018 Aug 10, 2018

SB13/0.3 SB14/4.0 SB14/6.0

4 0 9

SB6/5.0 SB6/4.0 SB6/2.0

Aug 09, 2018

S18-Au18847 LAB ID

Matrix

Sampling Time

Sample Date

× × × ×

Report Number: 612428-W

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

S18-Au18855 S18-Au18854

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

Due: Priority: Contact Name: Received:

Aug 15, 2018 5:41 PM Aug 23, 2018

5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Moisture Set Eurofins | mgt Suite B15 Metals M8 Polycyclic Aromatic Hydrocarbons Asbestos - WA guidelines

HOLD HOLD CANCELLED

Sample Detail

Acid Sulfate Soils Field pH Test

Eurofins | mgt Suite B7 NEPM Screen for Soil Classification

Eurofins | mgt Suite B7A

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB17/6.0 SB17/8.0

10

Aug 10, 2018 Aug 10, 2018

SB17/10.0

12 13 4 15

SB20/5.0 SB20/8.0

× × × × × ×

×

S18-Au18856

S18-Au18858 S18-Au18859 S18-Au18860 S18-Au18861 S18-Au18862 S18-Au18863 S18-Au18864 S18-Au18865 S18-Au18866 S18-Au18867

Soil Soil Soil Soil Soil Soil Soil Soil Soil

Aug 08, 2018 Aug 08, 2018

Aug 08, 2018 Aug 08, 2018

SB20/10.0 SB20/12.0

Aug 13, 2018 Aug 08, 2018

SB21/0.15

17 16

SB21/0.4

18 19

Aug 08, 2018 Aug 08, 2018 Aug 08, 2018

SB22/1.3 SB22/0.1

SB22/3.0

S18-Au18857

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Page 7 of 24 Report Number: 612428-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Order No.: Report #: Phone: Fax:

Due: Priority: Contact Name: Received:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

Polycyclic Aromatic Hydrocarbons HOLD HOLD CANCELLED Asbestos - WA guidelines

Moisture Set

Metals M8

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification Acid Sulfate Soils Field pH Test

Eurofins | mgt Suite B7A Eurofins | mgt Suite B7

×

×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 08, 2018

SB22/5.0 SB22/6.0 SB22/7.0

Aug 08, 2018 Aug 08, 2018

×

×

×

×

×

S18-Au18868

S18-Au18870 S18-Au18871 S18-Au18872 S18-Au18873 S18-Au18874 S18-Au18875

Soil Soil Soil Soil Soil Soil Soi Soil

> Aug 08, 2018 Aug 08, 2018

SB26/2.0 SB26/4.0

22 23 24 25 26 26 27 27 28 29 30

Aug 10, 2018 Aug 10, 2018

SB26/6.0

S18-Au18869

× × × × × ×

×

S18-Au18876

Aug 10, 2018 Aug 13, 2018

SB26/10.0

Q A QS3 RB2 RB3

SB26/8.0

Aug 13, 2018 Aug 13, 2018 Aug 14, 2018

S18-Au18877 S18-Au18878 S18-Au18879

Water

×

 \times

Page 8 of 24

Report Number: 612428-W

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

612428

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

02 8960 0555

Received:

5 Day Ken Henderson Due: Priority: Contact Name:

Aug 15, 2018 5:41 PM Aug 23, 2018

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

HOLD CANCELLED Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons

Eurofins | mgt Suite B15

NEPM Screen for Soil Classification Acid Sulfate Soils Field pH Test

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

×

×

×

×

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 14, 2018

×

×

× × × × × × ×

× ×

×

S18-Au18880 S18-Au18881 S18-Au18882 S18-Au18883 S18-Au18884 S18-Au18885 S18-Au18886 S18-Au18887 S18-Au18888 S18-Au18889 S18-Au18890 S18-Au18891

×

× ×

Soil Soil

Aug 14, 2018 Aug 14, 2018 Aug 14, 2018

Aug 14, 2018

SB7/0.25 SB8/0.15 SB9/0.25

35 36 37 38

SB4/0.2

34

× × ×

Soil Soil Soil

> Aug 14, 2018 Aug 14, 2018 Aug 14, 2018

SB25/0.25

QA2 RB4

SB24/0.3 SB23/0.4

> 39 40 4 42 43 44

Aug 14, 2018

Soil

× × × × ×

×

× ×

×

Water

Soil

Aug 09, 2018 Aug 09, 2018 Aug 09, 2018

SB1/0.5

SB6/3.0 SB6/0.4

45

Soil

Page 9 of 24 Report Number: 612428-W

Brisbane 1/21 Smallwood Place Murarine QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 2900 8400 NATA# 1261 Sile# 18277

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name:

Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Due: Priority: Contact Name: Received:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson

Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×														
NEPM Screen for Soil Classification	×		×													
Acid Sulfate Soils Field pH Test			×													
Moisture Set	×															
Eurofins mgt Suite B15	×															
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
HOLD			×		×	×	×	×	×	×	×	×	×	×	×	×
HOLD	×															
CANCELLED		×														
Asbestos - WA guidelines		×														
Sample Detail	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794		S18-Au18892	S18-Au18893	S18-Au18894	S18-Au18895	S18-Au18896	S18-Au18897	S18-Au18898	S18-Au18899	S18-Au18900	S18-Au18901	S18-Au18902	S18-Au18903
					Soil											
				736												
				VATA Site # 23736	Aug 10, 2018	Aug 09, 2018	Aug 09, 2018	Aug 10, 2018								
				Perth Laboratory - NATA Site	SB10/0.5	SB11/0.5	SB11/4.8	SB14/0.5	SB14/1.2	SB14/2.0	SB14/3.0	SB14/5.0	SB14/7.0	SB14/9.0	SB17/0.5	SB17/5.0
	Melb		Brisb	Perth	46	47	48	49	20	51	52		54	55	99	22

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Order No.:

612428

Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

02 8960 0555

Due: Priority: Contact Name: Received:

Aug 15, 2018 5:41 PM Aug 23, 2018

5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

HOLD HOLD CANCELLED

Asbestos - WA guidelines

Sample Detail

Polycyclic Aromatic Hydrocarbons

Eurofins | mgt Suite B15

Acid Sulfate Soils Field pH Test

NEPM Screen for Soil Classification

Eurofins | mgt Suite B7

Eurofins | mgt Suite B7A

Moisture Set

Metals M8

×

×

×

× × × × × × ×

Soil Soil Soil Soil Soil Soil Soil Soil Soil

Aug 08, 2018 Aug 08, 2018

SB20/1.0 SB20/2.2 Aug 08, 2018 Aug 08, 2018

SB20/2.6

59 60 62 63 63 64 65 66

Aug 08, 2018 Aug 08, 2018

SB20/7.0

SB20/9.0

SB20/6.0

Aug 08, 2018 Aug 13, 2018 Aug 13, 2018

SB20/11.0

29

SB21/0.5

SB21/0.8

×

S18-Au18904 S18-Au18905 S18-Au18906 S18-Au18907 S18-Au18908 S18-Au18909 S18-Au18910 S18-Au18911 S18-Au18912 S18-Au18913 S18-Au18914

×

×

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 10, 2018

SB17/7.0 SB17/9.0 SB20/0.3

58

Aug 10, 2018 Aug 08, 2018

×

S18-Au18915

×

Page 11 of 24

Report Number: 612428-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Due: Priority: Contact Name: Received:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofins | mgt Suite B7A

Eurofins | mgt Suite B7

Eurofins | mgt Suite B15

Moisture Set

Metals M8

HOLD

HOLD

CANCELLED

Asbestos - WA guidelines

Sample Detail

NEPM Screen for Soil Classification

Acid Sulfate Soils Field pH Test

Polycyclic Aromatic Hydrocarbons

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 13, 2018

SB22/0.9 SB22/1.0 SB22/2.0 SB22/2.6

70

71 72 73

Aug 13, 2018 Aug 13, 2018

×

S18-Au18916 S18-Au18917 S18-Au18918 S18-Au18919 S18-Au18920 S18-Au18921 S18-Au18922 S18-Au18923 S18-Au18924 S18-Au18925 S18-Au18926 S18-Au18927

×

 \times

Soil Soil Soil Soil Soil Soil Soil Soil Soil

Aug 13, 2018 Aug 13, 2018

> SB22/4.0 SB26/0.2 SB26/1.0

74 75 76

Aug 13, 2018 Aug 13, 2018

Aug 13, 2018 Aug 13, 2018

SB26/3.0 SB26/5.0 SB26/7.0 SB26/9.0

77 79

Aug 10, 2018 Aug 10, 2018 Aug 08, 2018

SB27/0.2

× × × × × ×

×

×

×

×

×

×

×

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson

Page 12 of 24

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Due: Priority: Contact Name:

02 8960 0555

612428

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Received:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

Asbestos - WA guidelines

Polycyclic Aromatic Hydrocarbons

Eurofins | mgt Suite B15

Acid Sulfate Soils Field pH Test

NEPM Screen for Soil Classification

Eurofins | mgt Suite B7A Eurofins | mgt Suite B7

Moisture Set

Metals M8

HOLD

HOLD

CANCELLED

×

×

×

×

×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 23736

Aug 08, 2018

SB27/1.0

SB27/5.0

SB27/6.0 SB23/0.2

82 83 84 85 86 87 88

SB27/3.1

Aug 08, 2018 Aug 08, 2018

× × × ×

S18-Au18928 S18-Au18929 S18-Au18930 S18-Au18931 S18-Au18932 S18-Au20518

> Soil Soil Soil Soil Soil

> > Aug 08, 2018 Aug 14, 2018

Soil

×

×

×

×

×

×

9

7

22

4

က

7

47

47

7

12

×

×

×

× ×

S18-Au20519

S18-Au20522 S18-Au20523 S18-Au20524

Soil Soil Soil

Aug 14, 2018 Aug 10, 2018 Aug 08, 2018

Aug 08, 2018

SB20/3.8

Test Counts

SB17/1.2 SB20/3.0

89

SB8/0.3

Aug 13, 2018

SB22/0.5

× × × Page 13 of 24 Report Number: 612428-W

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotien

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

Date Reported: Aug 27, 2018

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 14 of 24

ABN : 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 612428-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank	<u> </u>			•	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank	1g/ =	J			
Polycyclic Aromatic Hydrocarbons				Τ	
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene		< 0.001	0.001	Pass	
	mg/L				
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		T T		T	
Organochlorine Pesticides		10.004	0.004	D	
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/L	< 0.002	0.002	Pass	
Bolstar	mg/L	< 0.002	0.002	Pass	
Chlorfenvinphos	mg/L	< 0.002	0.002	Pass	
Chlorpyrifos	mg/L	< 0.02	0.02	Pass	
Chlorpyrifos-methyl	mg/L	< 0.002	0.002	Pass	
Coumaphos	mg/L	< 0.02	0.02	Pass	
Demeton-S	mg/L	< 0.02	0.02	Pass	
Demeton-O	mg/L	< 0.002	0.002	Pass	
Diazinon	mg/L	< 0.002	0.002	Pass	
Dichlorvos	mg/L	< 0.002	0.002	Pass	
Dimethoate	mg/L	< 0.002	0.002	Pass	
Disulfoton	mg/L	< 0.002	0.002	Pass	
EPN	mg/L	< 0.002	0.002	Pass	
Ethion	mg/L	< 0.002	0.002	Pass	
Ethoprop	mg/L	< 0.002	0.002	Pass	
Ethyl parathion	mg/L	< 0.002	0.002	Pass	
Fenitrothion	mg/L	< 0.002	0.002	Pass	
Fensulfothion	mg/L	< 0.002	0.002	Pass	
Fenthion	mg/L	< 0.002	0.002	Pass	
Malathion	mg/L	< 0.002	0.002	Pass	
Merphos	mg/L	< 0.002	0.002	Pass	
Methyl parathion	mg/L	< 0.002	0.002	Pass	
Mevinphos	mg/L	< 0.002	0.002	Pass	
Monocrotophos	mg/L	< 0.002	0.002	Pass	
Naled	mg/L	< 0.002	0.002	Pass	
Omethoate	mg/L	< 0.002	0.002	Pass	
Phorate	mg/L	< 0.002	0.002	Pass	
Pirimiphos-methyl	mg/L	< 0.02	0.02	Pass	
Pyrazophos	mg/L	< 0.002	0.002	Pass	
Ronnel	mg/L	< 0.002	0.002	Pass	
Terbufos	mg/L	< 0.002	0.002	Pass	
Tetrachlorvinphos	mg/L	< 0.002	0.002	Pass	
Tokuthion	mg/L	< 0.002	0.002	Pass	
Trichloronate	mg/L	< 0.002	0.002	Pass	
Method Blank		1			
Polychlorinated Biphenyls	T				
Aroclor-1016	mg/L	< 0.001	0.001	Pass	
Aroclor-1221	mg/L	< 0.001	0.001	Pass	
Aroclor-1232	mg/L	< 0.001	0.001	Pass	
Aroclor-1242	mg/L	< 0.001	0.001	Pass	
Aroclor-1248	mg/L	< 0.001	0.001	Pass	
Aroclor-1254	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1260	mg/L	< 0.001	0.001	Pass	
Total PCB*	mg/L	< 0.001	0.001	Pass	
Method Blank					
Phenois (Halogenated)					
2-Chlorophenol	mg/L	< 0.003	0.003	Pass	
2.4-Dichlorophenol	mg/L	< 0.003	0.003	Pass	
2.4.5-Trichlorophenol	mg/L	< 0.01	0.01	Pass	
2.4.6-Trichlorophenol	mg/L	< 0.01	0.01	Pass	
2.6-Dichlorophenol	mg/L	< 0.003	0.003	Pass	
4-Chloro-3-methylphenol	mg/L	< 0.01	0.01	Pass	
Pentachlorophenol	mg/L	< 0.01	0.01	Pass	
Tetrachlorophenols - Total	mg/L	< 0.03	0.03	Pass	
Method Blank					
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	mg/L	< 0.1	0.1	Pass	
2-Methyl-4.6-dinitrophenol	mg/L	< 0.03	0.03	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.003	0.003	Pass	
2-Nitrophenol	mg/L	< 0.01	0.01	Pass	
2.4-Dimethylphenol	mg/L	< 0.003	0.003	Pass	
2.4-Dinitrophenol	mg/L	< 0.03	0.03	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.006	0.006	Pass	
4-Nitrophenol	mg/L	< 0.03	0.03	Pass	
Dinoseb	mg/L	< 0.1	0.1	Pass	
Phenol	mg/L	< 0.003	0.003	Pass	
Method Blank	1 3				
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery			1 2.000	1	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	110	70-130	Pass	
TRH C10-C14	%	112	70-130	Pass	
LCS - % Recovery		, :: = ,		1	
BTEX					
Benzene	%	104	70-130	Pass	
Toluene	%	106	70-130	Pass	
Ethylbenzene	%	106	70-130	Pass	
m&p-Xylenes	%	110	70-130	Pass	
Xylenes - Total	%	109	70-130	Pass	
LCS - % Recovery			, , , , , , , ,		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	120	70-130	Pass	
TRH C6-C10	%	112	70-130	Pass	
TRH >C10-C16	%	116	70-130	Pass	
LCS - % Recovery	,,,		1 10 100	. 300	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	101	70-130	Pass	
Acenaphthylene	%	98	70-130	Pass	
			, , , , , , , , , , , ,	, . 400	1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Anthracene	%	104	70-130	Pass	
Benz(a)anthracene	%	100	70-130	Pass	
Benzo(a)pyrene	%	110	70-130	Pass	
Benzo(b&j)fluoranthene	%	118	70-130	Pass	
Benzo(g.h.i)perylene	%	114	70-130	Pass	
Benzo(k)fluoranthene	%	112	70-130	Pass	
Chrysene	%	118	70-130	Pass	
Dibenz(a.h)anthracene	%	90	70-130	Pass	
Fluoranthene	%	122	70-130	Pass	
Fluorene	%	105	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	87	70-130	Pass	
Naphthalene	%	94	70-130	Pass	
Phenanthrene	%	107	70-130	Pass	
Pyrene	%	123	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	101	70-130	Pass	
4.4'-DDD	%	99	70-130	Pass	
4.4'-DDE	%	106	70-130	Pass	
4.4'-DDT	%	73	70-130	Pass	
a-BHC	%	108	70-130	Pass	
Aldrin	%	103	70-130	Pass	
b-BHC	%	102	70-130	Pass	
d-BHC	%	87	70-130	Pass	
Dieldrin	%	110	70-130	Pass	
Endosulfan I	%	83	70-130	Pass	
Endosulfan II	%	98	70-130	Pass	
Endosulfan sulphate	%	83	70-130	Pass	
Endrin	%	76	70-130	Pass	
Endrin aldehyde	%	91	70-130	Pass	
Endrin ketone	%	75	70-130	Pass	
g-BHC (Lindane)	%	110	70-130	Pass	
Heptachlor	%	85	70-130	Pass	
Heptachlor epoxide	%	100	70-130	Pass	
Hexachlorobenzene	%	96	70-130	Pass	
Methoxychlor	%	87	70-130	Pass	
LCS - % Recovery	/0	01	70-130	<u> </u>	
Organophosphorus Pesticides		1			
Diazinon	%	111	70-130	Pass	
Dimethoate	%	92	70-130	Pass	
	%		70-130		
Ethion	%	107		Pass	
Fenitrothion		77	70-130	Pass	
Methyl parathion	%	76	70-130	Pass	
Mevinphos	%	89	70-130	Pass	
LCS - % Recovery					
Phenois (Halogenated)	%	04	00.400	Dari	
2-Chlorophenol		84	30-130	Pass	
2.4-Dichlorophenol	%	79	30-130	Pass	
2.4.5-Trichlorophenol	%	94	30-130	Pass	
2.4.6-Trichlorophenol	%	84	30-130	Pass	
2.6-Dichlorophenol	%	90	30-130	Pass	
4-Chloro-3-methylphenol	%	76	30-130	Pass	
Pentachlorophenol	%	73	30-130	Pass	
Tetrachlorophenols - Total	%	90	30-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							
Phenols (non-Halogenated)							
2-Cyclohexyl-4.6-dinitrophenol			%	77	30-130	Pass	
2-Methyl-4.6-dinitrophenol			%	48	30-130	Pass	
2-Methylphenol (o-Cresol)			%	79	30-130	Pass	
2-Nitrophenol			%	63	30-130	Pass	
2.4-Dimethylphenol			%	79	30-130	Pass	
2.4-Dinitrophenol			%	31	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	79	30-130	Pass	
Dinoseb			%	78	30-130	Pass	
Phenol			%	62	30-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	117	80-120	Pass	
Cadmium			%	110	80-120	Pass	
Chromium			%	112	80-120	Pass	
Copper			%	116	80-120	Pass	
Lead			%	115	80-120	Pass	
Mercury			%	114	75-125	Pass	
Nickel			%	117	80-120	Pass	
Zinc			%	117	80-120	Pass	
ZIIIC		04	70	117		Pass	Qualifying
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Limits	Code
Spike - % Recovery					 1		
Organochlorine Pesticides				Result 1			
Chlordanes - Total	M18-Au22564	NCP	%	98	70-130	Pass	
4.4'-DDD	M18-Au22564	NCP	%	82	70-130	Pass	
4.4'-DDE	M18-Au22564	NCP	%	96	70-130	Pass	
4.4'-DDT	M18-Au22564	NCP	%	84	70-130	Pass	
a-BHC	M18-Au22564	NCP	%	92	70-130	Pass	
Aldrin	M18-Au22564	NCP	%	85	70-130	Pass	
b-BHC	M18-Au22564	NCP	%	92	70-130	Pass	
d-BHC	M18-Au22564	NCP	%	92	70-130	Pass	
Dieldrin	M18-Au22564	NCP	%	104	70-130	Pass	
Endosulfan I	M18-Au22564	NCP	%	88	70-130	Pass	
Endosulfan II	M18-Au22564	NCP	%	98	70-130	Pass	
Endosulfan sulphate	M18-Au22564	NCP	%	75	70-130	Pass	
Endrin	M18-Au22564	NCP	%	88	70-130	Pass	
Endrin aldehyde	M18-Au22564	NCP	%	88	70-130	Pass	
Endrin ketone	M18-Au22564	NCP	%	93	70-130	Pass	
g-BHC (Lindane)	M18-Au22564	NCP	%	98	70-130	Pass	
Heptachlor	M18-Au22564	NCP	%	74	70-130	Pass	
Heptachlor epoxide	M18-Au22564	NCP	%	91	70-130	Pass	
		NCP	%	91	70-130	Pass	
	M18-Au22564			01	70 100	1 455	
Hexachlorobenzene	M18-Au22564 M18-Au22564			129	70-130	Page	
	M18-Au22564 M18-Au22564	NCP	%	129	70-130	Pass	
Hexachlorobenzene Methoxychlor				129 Result 1	70-130	Pass	
Hexachlorobenzene Methoxychlor Spike - % Recovery					70-130	Pass	
Hexachlorobenzene Methoxychlor Spike - % Recovery Organophosphorus Pesticides Diazinon	M18-Au22564 M18-Au11671	NCP	%	Result 1	70-130	Pass	
Hexachlorobenzene Methoxychlor Spike - % Recovery Organophosphorus Pesticides Diazinon Dimethoate	M18-Au11671 M18-Au11671	NCP NCP	% % %	Result 1 109 82	70-130 70-130	Pass Pass	
Hexachlorobenzene Methoxychlor Spike - % Recovery Organophosphorus Pesticides Diazinon Dimethoate Ethion	M18-Au11671 M18-Au11671 M18-Au11671 M18-Au11671	NCP NCP NCP	% % % %	Result 1 109 82 110	70-130 70-130 70-130	Pass Pass Pass	
Hexachlorobenzene Methoxychlor Spike - % Recovery Organophosphorus Pesticides Diazinon Dimethoate Ethion Fenitrothion	M18-Au11671 M18-Au11671 M18-Au11671 M18-Au11671 M18-Au11671	NCP NCP NCP NCP	% % % %	Result 1 109 82 110 90	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Hexachlorobenzene Methoxychlor Spike - % Recovery Organophosphorus Pesticides Diazinon Dimethoate Ethion Fenitrothion Methyl parathion	M18-Au11671 M18-Au11671 M18-Au11671 M18-Au11671 M18-Au11671 M18-Au11671	NCP NCP NCP NCP NCP	% % % % %	Result 1 109 82 110 90 83	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Hexachlorobenzene Methoxychlor Spike - % Recovery Organophosphorus Pesticides Diazinon Dimethoate Ethion Fenitrothion	M18-Au11671 M18-Au11671 M18-Au11671 M18-Au11671 M18-Au11671	NCP NCP NCP NCP	% % % %	Result 1 109 82 110 90	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14	M18-Au21208	NCP	%	110	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Frac	tions		Result 1			
TRH >C10-C16	M18-Au21208	NCP	%	104	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbon	ıs			Result 1			
Acenaphthene	M18-Au20509	NCP	%	116	70-130	Pass	
Acenaphthylene	M18-Au20509	NCP	%	116	70-130	Pass	
Anthracene	M18-Au20509	NCP	%	123	70-130	Pass	
Benz(a)anthracene	M18-Au20509	NCP	%	99	70-130	Pass	
Benzo(a)pyrene	M18-Au20509	NCP	%	101	70-130	Pass	
Benzo(b&j)fluoranthene	M18-Au20509	NCP	%	101	70-130	Pass	
Benzo(g.h.i)perylene	M18-Au20509	NCP	%	104	70-130	Pass	
Benzo(k)fluoranthene	M18-Au20509	NCP	%	124	70-130	Pass	
Chrysene	M18-Au20509	NCP	%	111	70-130	Pass	
Dibenz(a.h)anthracene	M18-Au20509	NCP	%	84	70-130	Pass	
Fluoranthene	M18-Au20509	NCP	%	114	70-130	Pass	
Fluorene	M18-Au20509	NCP	%	121	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-Au20509	NCP	%	83	70-130	Pass	
Naphthalene	M18-Au20509	NCP	%	103	70-130	Pass	
Phenanthrene	M18-Au20509	NCP	%	124	70-130	Pass	
Pyrene	M18-Au20509	NCP	%	114	70-130	Pass	
Spike - % Recovery							
Phenols (Halogenated)				Result 1			
2-Chlorophenol	M18-Au20509	NCP	%	92	30-130	Pass	
2.4-Dichlorophenol	M18-Au20509	NCP	%	89	30-130	Pass	
2.4.5-Trichlorophenol	M18-Au20509	NCP	%	96	30-130	Pass	
2.4.6-Trichlorophenol	M18-Au20509	NCP	%	77	30-130	Pass	
2.6-Dichlorophenol	M18-Au20509	NCP	%	85	30-130	Pass	
4-Chloro-3-methylphenol	M18-Au20509	NCP	%	85	30-130	Pass	
Pentachlorophenol	M18-Au20509	NCP	%	63	30-130	Pass	
Tetrachlorophenols - Total	M18-Au20509	NCP	%	75	30-130	Pass	
Spike - % Recovery				1		ı	
Phenols (non-Halogenated)				Result 1			
2-Cyclohexyl-4.6-dinitrophenol	M18-Au20509	NCP	%	98	30-130	Pass	
2-Methylphenol (o-Cresol)	M18-Au20509	NCP	%	89	30-130	Pass	
2-Nitrophenol	M18-Au20509	NCP	%	75	30-130	Pass	
2.4-Dimethylphenol	M18-Au20509	NCP	%	85	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M18-Au20509	NCP	%	81	30-130	Pass	
Dinoseb	M18-Au20509	NCP	%	89	30-130	Pass	
Phenol	M18-Au20509	NCP	%	64	30-130	Pass	
Spike - % Recovery				T		I	
Heavy Metals				Result 1			
Arsenic	M18-Au18211	NCP	%	110	75-125	Pass	
Cadmium	M18-Au18211	NCP	%	97	75-125	Pass	
Chromium	M18-Au18211	NCP	%	100	75-125	Pass	
Copper	M18-Au18211	NCP	%	99	75-125	Pass	
Lead	M18-Au18211	NCP	%	98	75-125	Pass	
Mercury	M18-Au18211	NCP	%	99	70-130	Pass	
Nickel	M18-Au18211	NCP	%	100	75-125	Pass	
Zinc	M18-Au18211	NCP	%	104	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4.4'-DDD	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDE	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDT	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
a-BHC	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Aldrin	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
b-BHC	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
d-BHC	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Dieldrin	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan I	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan II	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan sulphate	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin aldehyde	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin ketone	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<u></u>	30%	Pass	
g-BHC (Lindane)	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor epoxide	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Hexachlorobenzene	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Methoxychlor	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Duplicate	010-Au14011	1401	mg/L	V 0.0001	(0.0001		3070	1 433	
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Bolstar	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorfenvinphos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorpyrifos	S18-Au14877	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Chlorpyrifos-methyl	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Coumaphos	S18-Au14877	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Demeton-S	S18-Au14877	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Demeton-O	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Diazinon	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dichlorvos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dimethoate	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Disulfoton	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
EPN	S18-Au14877	NCP	ma/L	< 0.002	< 0.002	<1	30%	Pass	
Ethion	S18-Au14877	NCP		< 0.002	< 0.002	<1	30%	Pass	
		NCP	mg/L	< 0.002	< 0.002				
Ethoprop Ethyl parathian	S18-Au14877		mg/L			<1	30%	Pass	
Ethyl parathion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenitrothion	S18-Au14877	NCP NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fensulfothion	S18-Au14877		mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenthion Molathian	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Malathion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Merphos Methyl perethien	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methyl parathion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Mevinphos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Monocrotophos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Naled	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Omethoate	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Phorate	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Pirimiphos-methyl	S18-Au14877	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Pyrazophos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	

D !! (
Duplicate				T	I I				
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Terbufos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tetrachlorvinphos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tokuthion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Trichloronate	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Duplicate	4000 NEDME			D 11.4	I D	DDD			
Total Recoverable Hydrocarbo				Result 1	Result 2	RPD	000/		
TRH C6-C9	S18-Au18888	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M18-Au21207	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M18-Au21207	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M18-Au21207	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				D 11.4	I D	DDD	1		
BTEX	040 4::40000	OD	//	Result 1	Result 2	RPD	200/	D	
Benzene	S18-Au18888	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S18-Au18888	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S18-Au18888	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S18-Au18888	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S18-Au18888	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S18-Au18888	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate	2010 NEDME			D 11.4	I D	DDD	1	T	
Total Recoverable Hydrocarbo			,,	Result 1	Result 2	RPD	000/	 	
Naphthalene	S18-Au18888	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S18-Au18888	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH > C10-C16	M18-Au21207	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M18-Au21207	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M18-Au21207	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				D 11.4	I D	DDD	1		
Polycyclic Aromatic Hydrocart		NOD	//	Result 1	Result 2	RPD	200/	D	
Acenaphthene	M18-Au20508	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M18-Au20508	NCP NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M18-Au20508		mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M18-Au20508	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M18-Au20508	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-Au20508	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Au20508	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Au20508	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene Dihanz/a h)anthrasana	M18-Au20508	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	N440 AOOEOO	NCD	me/l	- 0.004	-0.004	_1			
Dibenz(a.h)anthracene	M18-Au20508	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M18-Au20508	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene Fluorene	M18-Au20508 M18-Au20508	NCP NCP	mg/L mg/L	< 0.001 < 0.001	< 0.001 < 0.001	<1 <1	30% 30%	Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP	mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP	mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP	mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Phenols (Halogenated)	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 1	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Phenols (Halogenated) 2-Chlorophenol	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 1 < 0.003	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 2 < 0.003	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Phenols (Halogenated) 2-Chlorophenol 2.4-Dichlorophenol	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 1 < 0.003	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 2 < 0.003	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Phenols (Halogenated) 2-Chlorophenol 2.4-Dichlorophenol 2.4.5-Trichlorophenol	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 1 < 0.003 < 0.003	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 2 < 0.003 < 0.003 < 0.01	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Phenols (Halogenated) 2-Chlorophenol 2.4-Dichlorophenol 2.4.5-Trichlorophenol 2.4.6-Trichlorophenol	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 < 0.003 < 0.01 < 0.01	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 2 < 0.003 < 0.003 < 0.01 < 0.01	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Phenols (Halogenated) 2-Chlorophenol 2.4-Dichlorophenol 2.4.5-Trichlorophenol 2.4.6-Trichlorophenol 2.6-Dichlorophenol	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 < 0.003 < 0.01 < 0.003 < 0.01 < 0.003 	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 Result 2 < 0.003 < 0.003 < 0.01 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Phenols (Halogenated) 2-Chlorophenol 2.4-Dichlorophenol 2.4.5-Trichlorophenol 2.4.6-Trichlorophenol	M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508 M18-Au20508	NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 < 0.003 < 0.01 < 0.01	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 2 < 0.003 < 0.003 < 0.01 < 0.01	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Dunlingto									
Duplicate Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	M18-Au20508	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	M18-Au20508	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
2-Methylphenol (o-Cresol)	M18-Au20508	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2-Nitrophenol	M18-Au20508	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.4-Dimethylphenol	M18-Au20508	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4-Dinitrophenol	M18-Au20508	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	M18-Au20508	NCP	mg/L	< 0.006	< 0.006	<1	30%	Pass	
4-Nitrophenol	M18-Au20508	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
Dinoseb	M18-Au20508	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Phenol	M18-Au20508	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-Au18211	NCP	mg/L	0.001	0.001	8.0	30%	Pass	
Cadmium	M18-Au18211	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M18-Au18211	NCP	mg/L	0.002	0.002	2.0	30%	Pass	
Copper	M18-Au18211	NCP	mg/L	0.003	0.004	12	30%	Pass	
Lead	M18-Au18211	NCP	mg/L	0.002	0.002	3.0	30%	Pass	
Mercury	M18-Au18211	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M18-Au18211	NCP	mg/L	0.004	0.004	4.0	30%	Pass	
Zinc	M18-Au18211	NCP	mg/L	0.035	0.035	2.0	30%	Pass	

Report Number: 612428-W

Comments

Sample Integrity

•	· · ·	
Custody Seals	als Intact (if used)	N/A
Attempt to Chill	hill was evident	Yes
Sample correct	ectly preserved	Yes
Appropriate sa	sample containers have been used	Yes
Sample contain	ainers for volatile analysis received with minimal headspace	Yes
Samples receive	eived within HoldingTime	Yes
Some samples	es have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAGC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Joseph Edouard Senior Analyst-Organic (VIC)
Harry Bacalis Senior Analyst-Volatile (VIC)

Glenn Jackson

National Operations Manager

Final report \cdot this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarine QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Received: Due: Priority: Contact Name:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

-																
	Eurofins mgt Suite B7A	×	×													
	Eurofins mgt Suite B7	×	×													
	NEPM Screen for Soil Classification	×		×												
	Acid Sulfate Soils Field pH Test			×				×	×	X			X	X	×	×
	Moisture Set	×									×					
	Eurofins mgt Suite B15	×														
	Metals M8	×														
	Polycyclic Aromatic Hydrocarbons	×									×					
	HOLD			×												
	HOLD	X														
	CANCELLED		×								X	×				
	Asbestos - WA guidelines		×								×					
							LABID	S18-Au18847	S18-Au18848	S18-Au18849	S18-Au18850	S18-Au18851	S18-Au18852	S18-Au18853	S18-Au18854	S18-Au18855
		171					Matrix	Soil								
	Sample Detail	Site # 1254 & 14271	8217	20794	36		Sampling Time									
			NATA Site # 18217	- NATA Site #	ATA Site # 237		Sample Date	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018	Aug 13, 2018	Aug 10, 2018				
			Sydney Laboratory - NATA Sit	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	External Laboratory	Sample ID	SB6/2.0	SB6/4.0	SB6/5.0	SB13/0.3	SB14/4.0	SB14/6.0	SB14/8.0	SB14/10.0	SB17/3.8
		Melbourne Laboratory - NATA	Sydne	Brisb	Perth	Exter	ON	1	2	3	4	2	9	7	8	6

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

612428 02 8960 0555 Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Received: Due: Priority: Contact Name:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

																_
Eurofins mgt Suite B7A	×	×										×			×	
Eurofins mgt Suite B7	×	×														
NEPM Screen for Soil Classification	×		×												×	
Acid Sulfate Soils Field pH Test			×		×	×	×	×	×	×	×					×
Moisture Set	×											×		×	×	
Eurofins mgt Suite B15	×													×		
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
HOLD			×													
HOLD	×															
CANCELLED		×														
Asbestos - WA guidelines		×											×			
					S18-Au18856	S18-Au18857	S18-Au18858	S18-Au18859	S18-Au18860	S18-Au18861	S18-Au18862	S18-Au18863	S18-Au18864	S18-Au18865	S18-Au18866	S18-Au18867
	:71				Soil											
Sample Detail	# 1254 & 142	8217	20794	'36												
S.	ry - NATA Site	NATA Site #1	r - NATA Site#	NATA Site # 23736	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 13, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
	ourne Laborato	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - N	SB17/6.0	SB17/8.0	SB17/10.0	SB20/5.0	SB20/8.0	SB20/10.0	SB20/12.0	SB21/0.15	SB21/0.4	SB22/0.1	SB22/1.3	SB22/3.0
	Melb	Sydn	Brisb	Perth	10	7	12	13	14	15	16	17	18	19	20	21

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Jack Ellis

Due: Priority: Contact Name:

Received:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×				×								×		
NEPM Screen for Soil Classification	×		×													
Acid Sulfate Soils Field pH Test			×		×		×	×	×	×	×	×				
Moisture Set	×					×								×		
Eurofins mgt Suite B15	×														×	×
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
HOLD			×													
HOLD	×															
CANCELLED		×														
Asbestos - WA guidelines		×											×			
					S18-Au18868	S18-Au18869	S18-Au18870	S18-Au18871	S18-Au18872	S18-Au18873	S18-Au18874	S18-Au18875	S18-Au18876	S18-Au18877	S18-Au18878	S18-Au18879
	171				Soil Soil	Water	Water									
Sample Detail	# 1254 & 142	8217	Site # 20794	736												
ชั	ry - NATA Site	- NATA Site # 18217	/ - NATA Site #	IATA Site # 23	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018		Aug 13, 2018		Aug 14, 2018
	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA S	Brisbane Laboratory - NATA	Perth Laboratory - NATA Site # 23736	SB22/5.0	SB22/6.0	SB22/7.0	SB26/2.0	SB26/4.0	SB26/6.0	SB26/8.0	SB26/10.0	QA1	QS3	RB2	RB3
	Melb	Sydn	Brisb	Perth	22	23	24	25	56	27	28		30	31	32	33

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Received: Due: Priority: Contact Name:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

## 1254 & 14271 ## 20794 ## 20794 ## 20794 ## 20796 ## 2001 ##						_	_		_	_	_	_	_				_
NEPM Screen for Soil Classification	Eurofins mgt Suite B7A	×	×			×	×	×	×	×	×	×		×			
Acid Sulfate Soils Field pH Test Moisture Set Eurofins mgt Suite B15 Metals M8 Polycyclic Aromatic Hydrocarbons HOLD CANCELLED Asbestos - WA guidelines Asbestos - WA guidelines Asbestos - WA guidelines Asign Marter Eurofins mgt Suite B7	×	×															
Moisture Set	NEPM Screen for Soil Classification	×		X													
Eurofins mgt Suite B15	Acid Sulfate Soils Field pH Test			X													
Metals M8	Moisture Set	×				×	×	×	×	×	×	×					
Polycyclic Aromatic Hydrocarbons	Eurofins mgt Suite B15	×															
HOLD CANCELLED Aspestos - MA Gnidelines X X X X X X X X X X X X X	Metals M8	×															
Poetail Soil	Polycyclic Aromatic Hydrocarbons	×															
CANCELLED X X X X X X X X X	HOLD			×											×	×	×
Soil Soil	HOLD	×															
Detail	CANCELLED		×														
Detail Detail	Asbestos - WA guidelines		×			×	×		×	×	×	×	×				
Detail 14 8 142						S18-Au18880	S18-Au18881	S18-Au18882	S18-Au18883	S18-Au18884	S18-Au18885	S18-Au18886	S18-Au18887	S18-Au18888	S18-Au18889	S18-Au18890	S18-Au18891
Sample Detail ttory - NATA Site # 1254 & 1 y - NATA Site # 20794 - NATA Site # 23736 Aug 14, 2018 Aug 19, 2018		4271				Soil	Water	Soil	Soil	Soil							
NATA Site # 707 - NATA Site # 707 - NATA Site # 707 - NATA Site # 23 - NATA Site # 23 - NATA Site # 23 - NATA Site # 23 - NATA Site # 23 - NATA Site # 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 14, 2018 - Aug 19, 2018	ımple Detail	# 1254 & 14	18217	20794	736												
	ů Ö	ry - NATA Site	NATA Site # 1	' - NATA Site#	ATA Site # 23.	Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 14, 2018	Aug 09, 2018	Aug 09, 2018	Aug 09, 2018
ey Laborator ley Laborator laborator Laboratory Laboratory SB4/0.2 SB7/0.25 SB8/0.15 SB23/0.4 SB23/0.4 SB23/0.4 SB23/0.4 SB25/0.25 SB23/0.4 SB25/0.25 SB26/0.3 SB26/0.4		ourne Laborato	ey Laboratory -	ane Laboratory	Laboratory - N				SB9/0.25	SB23/0.4	SB24/0.3	SB25/0.25	QA2	RB4	SB1/0.5	SB6/0.4	SB6/3.0
Melbo Sydn Brisb B		Melba	Sydn	Brisb	Perth												45

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name:

Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Received:

Due: Priority: Contact Name:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×														\dashv
NEPM Screen for Soil Classification	×		×													
Acid Sulfate Soils Field pH Test			×													
Moisture Set	×															
Eurofins mgt Suite B15	×															
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
HOLD			×		×	×	×	×	×	×	×	×	×	×	×	×
HOLD	×															
CANCELLED		×														
Asbestos - WA guidelines		×														
					S18-Au18892	S18-Au18893	S18-Au18894	S18-Au18895	S18-Au18896	S18-Au18897	S18-Au18898	S18-Au18899	S18-Au18900	S18-Au18901	S18-Au18902	S18-Au18903
	1271				Soil											
Sample Detail	# 1254 & 14	8217	20794	736												
S	ry - NATA Site # 1254 & 14271	- NATA Site # 18217	/ - NATA Site # 20794	IATA Site # 237	Aug 10, 2018	Aug 09, 2018	Aug 09, 2018	Aug 10, 2018								
	Melbourne Laborator	Sydney Laboratory -	Brisbane Laboratory	Perth Laboratory - NATA Site # 23736	SB10/0.5	SB11/0.5	SB11/4.8	SB14/0.5	SB14/1.2	SB14/2.0	SB14/3.0	SB14/5.0	SB14/7.0	SB14/9.0	SB17/0.5	SB17/5.0
	Melb	Sydn	Brisk	Perth	46	47	48	49	20	51	52	53	54	22	56	22

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Received: Due: Priority: Contact Name:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×														
NEPM Screen for Soil Classification	×		×													
Acid Sulfate Soils Field pH Test			×													
Moisture Set	×															
Eurofins mgt Suite B15	×															
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
HOLD			×		×	×	×	×	×	×	×	×	×	×		
HOLD	×														×	×
CANCELLED		×														
Asbestos - WA guidelines		×														
					S18-Au18904	S18-Au18905	S18-Au18906	S18-Au18907	S18-Au18908	S18-Au18909	S18-Au18910	S18-Au18911	S18-Au18912	S18-Au18913	S18-Au18914	S18-Au18915
Sample Detail	1254 & 14271	17	794		Soil											
Samp	ite #	# 182	e # 20	23736	8	8	8	8	8	8	8	8	8	8	ω	- 8
	ory - NATA S	- NATA Site	y - NATA Sit	ATA Site #	Aug 10, 2018	Aug 10, 2018	Aug 08, 2018	Aug 13, 2018	Aug 13, 2018							
	Melbourne Laboratory - NATA Site # 1254 & 1427	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	SB17/7.0	SB17/9.0	SB20/0.3	SB20/1.0	SB20/2.2	SB20/2.6	SB20/6.0	SB20/7.0	SB20/9.0	SB20/11.0	SB21/0.5	SB21/0.8
	Melb	Sydn	Brisk	Pert	58	29	09	61	62	63	64	65	99	29	89	69

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Jack Ellis Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name:

Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

Eurofins mgt Suite B7A	×	×														
Eurofins mgt Suite B7	×	×														
NEPM Screen for Soil Classification	×		×													
Acid Sulfate Soils Field pH Test			×													
Moisture Set	×															
Eurofins mgt Suite B15	×															
Metals M8	×															
Polycyclic Aromatic Hydrocarbons	×															
HOLD			×			×				×	×	×	×	×	×	×
HOLD	×				×		×	×	×							
CANCELLED		×														
Asbestos - WA guidelines		×														
					S18-Au18916	S18-Au18917	S18-Au18918	S18-Au18919	S18-Au18920	S18-Au18921	S18-Au18922	S18-Au18923	S18-Au18924	S18-Au18925	S18-Au18926	S18-Au18927
Sample Detail	1254 & 14271	117	1794	•	Soil											
Sam	oratory - NATA Site # 1254 & 1427	Sydney Laboratory - NATA Site # 18217	atory - NATA Site # 20794	ry - NATA Site # 23736	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 13, 2018	Aug 10, 2018	Aug 10, 2018	Aug 08, 2018
	Melbourne Laboratory	ney Laborat	Brisbane Laboratory -	Perth Laboratory - NAT	SB22/0.9	SB22/1.0	SB22/2.0	SB22/2.6	SB22/4.0	SB26/0.2	SB26/1.0	SB26/3.0	SB26/5.0	SB26/7.0	SB26/9.0	SB27/0.2
	Melb	Sydr	Brist	Pert	20	71	72	73	74	75	92	77	78	19	80	81

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Aug 15, 2018 5:41 PM Aug 23, 2018 5 Day Jack Ellis

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofins mgt Suite B7A	×	×													10
Eurofins mgt Suite B7	×	×													2
NEPM Screen for Soil Classification	×		×												-
Acid Sulfate Soils Field pH Test			×												22
Moisture Set	×									X					14
Eurofins mgt Suite B15	×														3
Metals M8	×									×					-
Polycyclic Aromatic Hydrocarbons	×									×					2
HOLD			×		×	×	×	×	×			×	×	×	47
HOLD	×														47
CANCELLED		×													2
Asbestos - WA guidelines		×								×	×				12
					S18-Au18928	S18-Au18929	S18-Au18930	S18-Au18931	S18-Au18932	S18-Au20518	S18-Au20519	S18-Au20522	S18-Au20523	S18-Au20524	
Sample Detail	ATA Site # 1254 & 14271	7	794		Soil										
ampl	t # 1	1821	# 201	3736	_			_	_						
3	ory - NATA Sit	- NATA Site # 18217	y - NATA Site	NATA Site # 2:	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 14, 2018	Aug 13, 2018	Aug 14, 2018	Aug 10, 2018	Aug 08, 2018	Aug 08, 2018	
	Melbourne Laboratory - N	Sydney Laboratory - NATA	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	SB27/1.0	SB27/3.1	SB27/5.0	SB27/6.0	SB23/0.2	SB22/0.5	SB8/0.3	SB17/1.2	SB20/3.0	SB20/3.8	Test Counts
	Melb	Sydn	Brisk	Pert	82	83	84	85	98	87	88	89	90	91	Test

Melbourne National Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271 Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: Trace Environmental P/L

Contact name: Jack Ellis Project name: **MASCOT** Project ID: 1.16

COC number: Not provided

Turn around time: 5 Day

Date/Time received: Aug 15, 2018 5:41 PM

Eurofins | mgt reference: 612428

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \square Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 2.6 degrees Celsius.
- V All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{Z} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \square Appropriate sample containers have been used.
- \square Sample containers for volatile analysis received with zero headspace.
- \mathbf{V} Split sample sent to requested external lab.
- XSome samples have been subcontracted.

Notes^{N/A} Custody Seals intact (if used).

QA1A, QA2A & QS3A Forwarded to ALS for analysis. Additional ASSpH bags for SB20/3.0 & SB20/3.8 placed on hold. ASSpH bag not received for SB22/2.0, SB13/0.3(ASSpH analysis cancelled) & SB14/4.0((ASSpH analysis cancelled).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Jack Ellis - jack@traceenviro.com.

Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

	CI
	eurofins
00	CMIOIIII

Sydn t F3 - 6 Building F, 16 Mars Road, Lane Cove one: +612 9900 8400 ail: EnviroSampleNSW@eurofins.com.au

R	ri	S	h	a	n	e	
u		J	v	a		C	

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au

Melbourn	ie
----------	----

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

1	IIIgt									U	TAIN	OF	CU	5101	א זע	IEC	Un	ע											
CLIENT DETAILS																										Page	1	of 1	A. Carrier
Company Name : TRACE Enviror	nmenta Cont	act Nar	ne: T	sech	CE	MI	5								P	urchas	e Orde	er:							C	OC Numb	er: 1 8	10802	TRAan
Office Address : 793-799 New Canterbury Road, Dulwich Hill, N		ect Man		Ke	Ma	Her	der	son							P	ROJEC	T Num	ber:	1.16						E	urofins r	ngt quot	eID: 10	260
Odinerbary Flood, Daiwien Fills, N	Emai	il for re	sults :	Kon	(a)		cec		iro	·co	m				P	ROJEC	T Nam	ne:	Masi	col	_				D	ata outpu	t format		1,00
	2	3		, Cr							Analyte	s											Some co	nmon h For fu	nolding rther in	g times (w nformation	ith corre contact t	ct preservat he lab	ion),
Special Directions & Please email invoices to	100/					1	30	K														1	Waters					Soils	
accounts@traceenviro.com & Proj Manager						80		(Cox			- 1			1 1							ВТ	EX, MA	H, VOC	14	4 day	BTEX, N	MAH, VO	С	14 days
Manage	13					8		=													TR	H, PAH	l, Phenol	s, Pe 7	days	TRH, P	AH, Pher	ols, Pesticide	14 days
	.3		0	1		2		I						1 1							He	avy Me	etals	6	mon	Heavy M	Netals		6 months
			1	5		2	.)	×	1 8	N						- 1					Me	rcury,	CrVI	28	3 day	Mercury	, CrVI		28 days
	- to	1	4	5		-13	0	4	- 1					1 1							Mid	crobiolo	gical tes	ing 24	1 hou	Microbi	ological to	esting	72 hours
	1	10	00	100	7	Sula	0	H	0	2				1 1							ВС	D, Nitr	ate, Nitrit	e, To 2	days	Anions			28 days
	6	00		W	4	100	>	0	4	N				1 1									SS, TDS		days	SPOCA	S. pH Fie	eld and FOX,	7.2.2
	0	Suite	Sit	Svile	0	The state of		2		B				1 1							Fe	rrous ir	on	7	days	ASLP, T			7 days
Eurofins mgt DI water batch number:	10	T	5	2	0	B		Srew	B	3				1 1					- 1						,	AUL!	OLI		7 days
	4	100	S	0		4		50		V)				1 1						2	Conta	iners:							1
Sample ID Date Mai	trix	1						Fred	28											НОГР	1LP	250P	125P	1LA Ion	nL via12	5mL Jar	Bag	Sample	comments:
1 531/0-5418/18 5	Soil																											contact sam	ple
2 586 /0-4 1	1																										1	contact sam	ple
3 586/2.0								/																			/		100
4 536/3 0				-							- 1																/		1.04
5 986/4-0								/																			/		(2)4
6 586/5.0								/																	3		/		177
7 5B10/0.5 10/0/18																											/		-780
8 SBN/0-5 9/0/18																											/		75
9 SB11/4.8																											/		as l
10 SB13/0-3 13/8/16		1		-	/								1	1												1			- 5
11 3B14/0.5 10/8/15		1							1	\neg		1	1				-										1		120
12 SBIY/1.2		1																									/		1975
13 3B4/2-0							4	2				_	-			\neg	_									- 10	1		12
14 SBJU/3-0		_					-1	-									\neg										/		1
15 5B14/4.0.1		+						/		1			-			-								_			/		1
16 SB14 /5.0		-			-		- 1		-				-							1				+			/		6,4
10 DOIA 12. DI		i		Labo	oratory	Staff								Tu	rn arour	nd time				_			Meth	od Of S	hipme	ent		Temperatur	e on arrival:
Relinquishec	Received B	v:	1/1/	/ /	/atory	Jun				\dashv			_			-	_				+		metti	0,0	прине		_		143
Jack Elle	7	10	ll	10	V					- 1												Couri	ier						100
00000	Date & Time	e:/	1	1						1	DAY		2 DAY		3	DAY						Hand	Delivere	d				Report num	ber:
Jells		5	Va	3/18		:4	PN	1			DAY		10 D/	v		ther:						Posta						116	19195
Signature 18/18	Signature:	K	le	1	1					5	DAT		10 07			mer:					urier C	onsig	nment :					#10	12720

QS3009_R1

Issue Date: 22 August 2013

Page 1 of 1

* pH cox only [SPOCAS ASS Method) "Field test" - ASS PH (NATA Method-ASSNATA PH)
All ASS bags have been Grozen.

Sydn t F3 - 6 Building F, 16 Mars Road, Lane Cove one: +612 9900 8400 ail: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au

	//	al	h	0	11	r	ne
- 1	٧ı		v	v	u		

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

1	liigt CHAIN OF	COSTODI ILCOMB		
CLIENT DETAILS			Page 1	of 1
Company Name : TRACE Environn	nenta Contact Name: Sack Elly	Purchase Order :	COC Number : 7	-06 6
Office Address : 793-799 New	Project Manager:	PROJECT Number:)-16	Eurofins mgt quo	te ID: See Pa 1
Canterbury Road, Dulwich Hill, NS	Email for results:	PROJECT Name : Masca	Data output format	Ċ
	Analytes		Some common holding times (with corre For further information contact	ect preservation). the lab
Special Directions (Waters	Soils
Please email invoices to accounts@traceenviro.com & Proj			BTEX, MAH, VOC 14 day BTEX, MAH, VC	C 14 days
Manager				nols, Pesticides 14 days
			Heavy Metals 6 mon Heavy Metals	6 months
	1 1 1 1 1 1 1 1 1 1		Mercury, CrVI 28 day Mercury, CrVI	28 days
			Microbiological testing 24 hou Microbiological t	2,443
			BOD, Nitrate, Nitrite, To 2 days Anions	28 days
	2 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			eld and FOX, C24 hours
			Ferrous iron 7 days ASLP, TCLP	7 days
Eurofins mgt DI water batch number:	Surte B Surte B Surte B Surte B Norte Norte Surte Surte Surte Surte Surte Surte			- 5
		НОГР	Containers:	2
Sample ID Date Matr	x 5		1LP 250P 125P 1LA lomL via125mL Jar Bag	Sample comments:
1 SBN-16-0 1018 18 50				contact sample
2 5814/2-01				contact sample
3 5Bili/8:0				nd d
4 SBILL/9.0				
5 SB14/10.0				
6 SBI7/0.5				
7 SBI7/1-2				1
8 SB/7/3:8				20
9 SBA/5.0				13
10 2817/6-0				79
11 5817/7-0				W)
12 SBI7/8.0				(1)
13 SB17/40				3/6
14 SBI7/10.0				- M.
15 SB20/0-3 8/9/18				No.
16 5820/1-0				274
(024) 1.0	/ Laboratory Staff	Turn around time	Method Of Shipment	Temperature on arrival:
	Received By:			
Jack Ells	JULIU V	2 DAY 3 DAY	Courier	100
	Date & Time: 1560/65 5,4/DM		Hand Delivered	Report number:
14/8/18	5 DAY	10 DAY Other:	Postal urier Consignment	
Signature:	Signature:		uner Consignment	

CHAIN OF CUSTODY PECOPD

* PH POX Only (Spocks ass Method) "Field lest" - As Page (

Sydn t F3 - 6 Building F, 16 Mars Road, Lane Cove one: +612 9900 8400 ail: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

			mgt									CH	IAIN	OF	CU	STO	DY F	REC	OR	D									J.		
CLIENT DETAILS																												Page	1	of 1	791
Company Name :	TRACE	Environr	nenta Cor	tact Na	ame:	-	Sal	ck	6	elle	5						P	urchas	e Orde	er:							coc	Number	: 2	30%	6
Office Address : 7				ect Ma	nager :				0	20	6	$\overline{}$		1			P	ROJEC	CT Nun	nber:	1-11	6					Euro	ofins mg	t quote	D: See	Paj
Canterbury Road,	Dulwich	Hill, NS	W. Em	ail for r	esults :	,	200	2	U	X	1	ác	00.				P	ROJE	CT Nan	ne :	Ma	311	ah				Data	output f	ormat:		
				_						_	V	_	Analyte	es				_			19	2)0		S	ome com	non hole	ding tir	mes (with	n corre	ct preservat	ion).
Special Directions	1			J	T						T	4	T	T	T							T		1	Vaters	or rurar	T	THE COUNTY OF	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Soils	14
rlease email invoic accounts@traceen		& Proj	35	5						×													ВТ	EX, MA	H, VOC	14 da	ay F	BTEX, MA	H. VO	2	14 days
Manager	_		37	2						×						1 1	1						TF	H, PAF	I, Phenols,	_	-			ols, Pesticide	
			1	3		1		1		PHE	5	_											-	avy Me		6 mc	_	Heavy Me		0.011 00.00.00	6 months
			- 5	7	4	1		00		8	4	2											Me	ercury, (OrVI	28 d	-	Mercury, (28 days
			5	5	100	10	1	2	-	3	U	2										1	Mi	crobiolo	gical testin	g 24 h		Microbiolo		estina	72 hours
			- 1	315	1	100		~	()	PHE	a					1 1			- 1		- 1		ВС	DD, Nitra	ate, Nitrite,			Anions	giodi te		28 days
			-	7 0	20)	T	2	0	4	7	10												_	SS, TDS et		_		pH Fie	ld and FOX,	
			- 1	3 15	3 =	10	1	-p	2	2	.\0	5						- 1						rrous in		7 da	-	ASLP, TO	-	no uno i ori,	7 days
Eurofins mgt DI wat	er batch r	umber:	ix x	0 1	200	Sit	PA	Surte	1	held Snam	50	5											-	11000 11	911	, 00	9 /	ASLP, TO	LF		17 days
_	_	_	- 8	3 (7	300	S		2		2	4											9	Conta	iners:		_	_	_			511
Sample ID	Date	Matr	ix 🗵	1						3												HOLD		_	125P 1L	A IOmL		l lor	Bag	Sample	comments:
10076/7	o lest	1.2 /		_	-	-				25			-	_	-	-		-	-	-	_	-	ILF	2501	1237 11	A POILL	nai 23iiii	LA Jai		contact san	nnle
1 2850/2:	- Industrial Property	18 So	rif	-	-	-				_	-	-	-	-		+	_	-	-		-	+				+	+	17 70	_	contact san	
2 5820/7.6			-	+	_	-	-	-			-			-	_	-	-	-	-	-	_	-	-			+	+	1	/	Contact sun	picc
3 SB20/50			\vdash	_		-	-	-			-		-	-	-	-	-	-	-	-	_	-	-			-	+-				- 4
4 3820/6:0			1		-						-					-		-	-	-	_	-	-			_	+	-	/		30-
5 582017-0														_				_		-	_	-	-	_		_	+	-			1
6 SBZ0/8.0										/									-	_	_		-			-	+	-	/		
7 5820/9.									1										_		_		-			-	-		/		7
8 SBZONO.																			_	_			-			_	-	-	/,		7337
9 5320/11.0																							_			_	1		/		1157
10 5820/12-	0 1									/																	_		/		35
11 5B21/0-19		118			/																							/	/		114
12 5821/0.4			1																	-									/		100
13 SB21 10:																												/			24
14 5821 10-8																															Rit.
15 5822/0.						1																							/		13/4
16 SBZZ/0.1			111				1	/														1		721				/	/		3
10 00 - 10				_		Lab	oratory	Staff								To	urn arou	nd time	е						Method	Of Ship	oment			Temperatur	e on arrival:
Relinquished Jack	elly	F	Received	By:	kee	1	N						DAY		2 D/	ΛY	3	DAY						Couri	er						
	8		Date & Tir	(5	5/0	3/1	5	51	4/4	m			DAY		10 0			Other:						Posta						Report nun	iber:
Signature: 1	1 .	5	Signature	. /	1	1																	urier	Consign	nment						100

QS3009_R1

Issue Date: 22 August 2013 Page 1 of 1

PH COX ONLY (Spocas ass Method) "Field best" - As Page 1

eurofins

Sydn t F3 - 6 Building F, 16 Mars Road, Lane Cove one: +612 9900 8400

ail: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

1				- 111	gı	/								C	ПАІ	IA C	T	,03	IOL		LU	Un					1.0				-				
CLIEN	T DETAI	LS						_																								Page	1	of 1	199
Compa	iny Nam	ne : TF	RACEE	nvironmen	ta Conta	ct Nam	ne:	Da-1	W	-6	th	1								P	ırchase	Orde	r:								COC Nu			1 of	- 6
	Address			ew Hill, NSW.	Projec	t Mana	ager:	6	-		1	01/	7				X	7		P	ROJEC	T Num	ber:								Eurofins	s mg	t quote	ID: Se	2 Pg 1
Canter	bury Ho	oad, D	uiwich	HIII. NSW.	Email	for res	ults:	0	E	1		F		DO	Cos	,				P	ROJEC	T Nam	e :								Data ou	tput fo	ormat:		
														V -	Anal					_								Some co	ommon For f	holdir urther	ng times informat	(with	correct ntact th	et preservat e lab	ion).
	l Directi		10		-	>						松																Waters						Soils	
accour	ts@trace			& Proj	Nepm							TX														ВТ	EX, M	AH, VOC		4 day	BTE	EX, MA	H, VOC)	14 days
Manan	er	_			10							2								- 1						TF	RH, PAI	H, Pheno	ols, Pe	days	TRH	I, PAH	, Phene	ols, Pesticide	s 14 days
					<							PH														He	avy Me	etals	(mon	Hea	avy Met	tals		6 months
					#	1	2	(1		-	3	-												Me	ercury,	CrVI	2	8 day	Men	cury, C	CrVI		28 days
					3	8	15	\sim	š	50	1.	08	ci	22												Mi	crobiol	ogical te	sting 2	4 hou	Micr	robiolo	gical te	sting	72 hours
_					-	-	8	00	_	I	3	P. He	0	Z										1		ВС	DD, Nitr	ate, Nitr	ite, To	days	Anio	ons			28 days
					3	RX	100	(-)	7	n	5		1	10)								- 1				Sc	olids - T	SS, TDS	S etc	days	SPC	OCAS,	pH Fie	d and FOX,	24 hours
			_		35	7	71	73	T	7	1	2	00	7		1										Fe	errous in	ron		days	ASL	P, TCI	LP		7 days
Eurofin	s mgt DI	water	batch n	umber:	Asbestus	2	Sult	Soil	0	5		Judsbeen	1	Suite			1																		
				5.5	15	0	2- 2	5		~)		3	,	0											HOLD	Conta	iners:							Comple	comments:
	Sampl	le ID	Date	Matrix	K						113	3													모	1LP	250P	125P	1LA	mL via	25mL	Jar	Bag	Sample	comments:
1	3801/0	0.01	13/0	18 501								-																			pro-	35	M	contact san	nple
	SB22/			10 201	-		\vdash														1													contact san	nple
	5822/		+				/							/																					100
	SB22/		+		+																														A Au
	SB22/		+		+																														1
	SAZY		+		_							/																			-	/	/		3
	SBZZI		+		1																														-0.50
	SBZZI		+		1							1																				/	/		1.2
	SBEZZ		+			1																										/	7		- Jen
	SBZZI		J									/																					/		1970
	5316/				+																														2
	SBZ6/				+																												/		373
	5816/											/																					/		-25
13	5B26	120			+							-																							01
	SB26/											/																						,	150
16	5826	15 A			+																						11.1						/		150
10	35 20	D.V			_			Labo	oratory	Staff									Tur	rn arou	d time							Met	hod Of	Shipm	ent			Temperatur	e on arrival:
Relinc	uishec		. 4	Rec	eived By	: 1	1	Labe	ratory	Otan																									1911
-		V	40	18	,	10	111	·W																			Cour	ier							3/4
	Time:	1	tu	Date	& Time	yw	1	1		_	. 1	2100	_		1 DAY			2 DAY		3	DAY						Hand	Delive	red					Report num	ber:
10	1/8	8/	18	Jun		18	081	18		2:	411	M			5 DAY			10 DAY		o	ther:						Post								15
Signa	ture:	111	11	Sign	nature:	111	16	(12.50								urier	Consig	nment							2

CHAIN OF CUSTODY DECORD

QS3009_R1

Issue Date: 22 August 2013

* pH fox Only (Spocas Mass Method) "Freld testile - As Page 1

eurofins

QS3009_R1

mgt

Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400

Email: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

		W 4		9			7		CH	AIN	OF	cus	TO	DY F	REC	ORD												
CLIENT DETAILS																										Page 1	of 1	
Company Name : TRACE Env	ironmental		Contact I	lame:	To	ck 1	G111	A								Purcha	se Order :								COC	lumber :	OP	6
Office Address : 793-799 New	Canterbury Roa	nd, Dulwich	Project M	lanager		· CIL	<u> </u>	0.1	~	0			1			PROJE	CT Number	er:							_	ns mgt qu		of See fo
Hill, NSW, 2203			Email for	results	: <	20	1	()/		Ou	1		J	_	_	PROJE	CT Name	:							Data o	utput form	at:	-
					J	de					Analy	ytes										Son	ne com			es (with co ation contac	rect preserva	tion).
Special Directions & Commer								×														Wa	iters				Soils	
Please email invoices to account		om & Proj	3					*	X												PTC	X, MAH,	200010	14 da	DT	X, MAH, V	vo.	14 days
Manager								_	160					1										Pes 7 day	-		nols, Pesticide	
			WALLER		51			-	50										10		_	y Metals		6 mor	-	vy Metals	nois, Pesticide	6 months
			4		1 6		00		8 4	2									S		-	cury, CrV		28 da	-	cury, CrVI		28 days
			3	, 1	-	7	2	- 1	26 1	2									4			obiologic				robiological	toeting	72 hours
			1 1	10	300	4	<	212	2 2	0														Tota 2 day	111110		lesting	28 days
			200	A E	B. E	T		50	10	77									3			is - TSS.		-			ield and FOX,	-
			5		10	0	B	~	500	5									,		- 5.5.	ous iron	100 0	7 day	-	P, TCLP	eid and i OX,	7 days
urofins mgt DI water batch nun	ber:		bestes		2 45		7		redocreen 28	(0)							- 1		Sind		1 611	ous non		/ day	9 ASI	P, ICLP		17 days
		_	3	50	2	1	3	-	3			- 1					-		0	Q	Contai	ners.		_			T	
Sample ID	Date	Matrix	2)				-	3								1		2	HOLD			25P 1	LA OmL v	25ml	Jar Ba	Sampl	e comments:
010777	11.00110	~ .1	1	-	-			-	5			_	-	+	+		_				ILI	2301 1	201	LA JOINE V	E ZOIIL /	- Dai - Dai	contact sa	mple
1 5026/6.0	10/8/18	Soil			-	-							-	-			-	-		-			_			-	contact sa	-
2 SB16/7.0	1	1			-					-		-			-								-			/	1	
3 5826/8.0		\vdash		_	_								-		-													
4 SB25/9.0	-		-		-					-	-		-	-			_	-					_					
5 SB76 NO 0				_	-		-						-	+	+	-	-	_					-					
6 SBZ7/U-Z	8/8/18						-	_	_				-	-	-	-	-				-					/	1	
7 SB27 /1.0		\vdash		_				_	4-				_	_	+	-	_	-	-						1	1	-	
8 5327/3.1			-	-	+	-	-	_	-				-	-	+		7	_					-			/	4	
9 51327 15.0		-		_	-	-		_			-		-	_	-		_	_								-	1	
10 5877 16.0	13/8/18	-		_	-								_	_	+		-						_					
11 QA)	15/8/18	-		_	-		-		-				_	_	-		_						_				1	
12 QAIA				1					-				_	-														
13 QS3		1.												-	1				/					-				
14 OS3A	1	water	1	24/	/	-			-				_									-	1	1	1			
15 CB2 16 CB3	14/8/18	water	- 4	0	/	+								_											-			
16 KB3	14/0/10	~-04			Lob	oratory	Staff								Turn ar	ound tim	e						Metho	d Of Ship	ment		Temperatu	re on arrival:
Relinquished Jack	Ales	Recei	ived By:	100	0.	N	Stati														П	ourier						
Date & Time: 14/8	18	Date	& Time:	15/6	28/	8 !	5:4	IAM			1 DAY		20	_]	3 DAY Other:						land Deli ostal					Report nu	mber:
Signature:	1111	Signa	ature:	Mil	1/1/						5 DAY		10	DAY]	Otner;					urier C	onsignm	nent :					

Issue Date: 22 August 2013

Page 1 of 1

PH FOR only (SpocAS ASS Method) "Field test" - As Page 1

.00	eur	nfi	n	c
300	Cui	UII		3

mgt

Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400 Email: EnviroSampleNSW@eurofins.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

CHAIN OF CUSTODY PECOPD

						C	IAII	01-	50310	וו וע	LOUI						-	1967	-				
CLIENT DETAILS																			10	Page	/	of 1	-
Company Name : TRACE Environmental	Contact	Name:	Jac	W E	lus						-	ase Order :	,							OC Numb	6		6
Office Address : 793-799 New Canterbury Road,	Project N	Manager:	数人	7	1	20		_		1	PROJ	ECT Number	r: [. 16)					urofins n		16	2891
Dulwich Hill, NSW, 2203	Email for	r results :	0	Del.	11	1	- 1	Jac	30		PROJ	ECT Name :	/	10	SCO	ント			D	ata output	format		0
					1		1	Analytes	1							S	ome co	ommon h For fu	nolding irther in	g times (w	th corre	ct preserva he lab	ition).
Special Directions & Con	27				×	/										V	Vaters	3				Soils	
Please email invoices to accounts@traceenviro.com & Proj Manager	Wday				1	<									В	TEX, MAH	H, VOC	14	4 day	BTEX, M	AH, VOC		14 days
	12		\			2				1 1			1 1		Т	RH, PAH,	Pheno	ls, Pes 7	days	TRH, PAI	H, Pheno	ols, Pesticide	s 14 days
	4		5	\		=	1							S	H	eavy Meta	als	6	mon	Heavy Me	etals		6 months
		_	~ -	TIDO		7 5	2				- 1		1 1	3	N	lercury, Cr	rVI	28	B day	Mercury,	CrVI		28 days
	3	9	-	7			W						1 1	4	N	licrobiolog	ical tes	ting 24	4 hou	Microbiole	ogical te	sting	72 hours
	100	25	1-1	4	X	2 Z							1 1		В	OD, Nitrat	te, Nitrit	te, Tota 2	days	Anions			28 days
	51	-	120	JW	4	26	73						1 1	60	S	olids - TSS	S, TDS	etc 7	days	SPOCAS	, pH Fie	d and FOX,	Cr 24 hours
A La Talla a Maria a Maria	Asbestos	2 2	(5)	B	1-	James 7	3			1 1			1 1		F	errous iror	n	7	days	ASLP, TO	LP		7 days
Eurofins mgt DI water batch number:	8	2 E	N	15	c	2 8	2				- 1		1 1	3									
	100	35		()		B N								361	Cor 1L	tainers:						Comp	e comments:
Sample ID Date Matrix	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			0	Meda							,	,	오 1L	250P	125P	1LA or	nL via 2	25mL / Jar	Bag	Janip	e comments.
1 SB4/0-2 14/8/18 SOIL		/																		/	/	contact sa	mple
2 587 10-75 16/8/18		1																			/	contact sa	mple
3 588 10.15					11.11																		
4 988/0.3	1																				/		
5 589 10-25		/																					
6 SB23/0.2																							
75813/0,4		1																		/	/	1	
8 5B24/0-3	/	/																		/	/		
9 5825/0-25																				/	/		
10 QA2	1	-																1000			/		
11 QAZA J.	1													1							/	Send	topas
12 Rg4 18/8/18 Wate		1					1		1 8 8														
13	7																						
14																							
15																							
16		10.0										7 10											
		j	Laborat	tory Staff	-					Tur	n around ti	me					Met	hod Of S	hipme	ent		Temperati	ire on arrival:
Relinquished Rece	eived By:	(pre)	1.10	1											,								
Sack Elly	1	ten	V					DAY [2 D/	Y 🗆	3 DAY				l l	Courier Hand De		d				Report nu	mher:
Date & Time:	& Time:	15/08	3/18	50	4/ph			DAY [10.0	AY 🗌	Other:				[Postal						rieport nu	mber.
Signature: Sign	ature:	Tun	1.					DAT L	10.0	л. Ц	Guler;				urie	r Consign	nment	1					
												-											

QS3009_R1

Issue Date: 22 August 2013

PHROX Only (SPOCASAS Method) "Field Lest" - As Page 1

Certificate of Analysis

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill NSW 2203

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ken Henderson

 Report
 614245-S

 Project name
 MASCOT

 Project ID
 1.16

 Received Date
 Aug 27, 2018

Client Sample ID			SB6/2.0	SB6/5.0	SB14/8.0	SB17/10.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B18-Au33126	B18-Au33127	B18-Au33128	B18-Au33129
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
SPOCAS Suite						
pH-KCL	0.1	pH Units	7.4	5.8	5.4	5.7
pH-OX	0.1	pH Units	6.8	4.4	3.0	3.2
Acid trail - Titratable Actual Acidity	2	mol H+/t	< 2	2.6	4.8	< 2
Acid trail - Titratable Peroxide Acidity	2	mol H+/t	< 2	10	53	24
Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	< 2	< 2	48	24
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02
sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S	< 0.02	0.02	0.08	0.04
sulfidic - TSA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	0.08	0.04
Sulfur - KCl Extractable	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Sulfur - Peroxide	0.02	% S	< 0.02	< 0.02	0.07	0.03
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	< 0.02	< 0.02	0.07	0.03
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	< 10	< 10	46	20
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Calcium - KCl Extractable	0.02	% Ca	0.04	< 0.02	< 0.02	< 0.02
Calcium - Peroxide	0.02	% Ca	0.12	< 0.02	< 0.02	0.02
Acid Reacted Calcium	0.02	% Ca	0.08	< 0.02	< 0.02	0.02
acidity - Acid Reacted Calcium	10	mol H+/t	40	< 10	< 10	11
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	0.06	< 0.02	< 0.02	0.02
Magnesium - KCl Extractable	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
Magnesium - Peroxide	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
Acid Reacted Magnesium	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
acidity - Acid Reacted Magnesium	10	mol H+/t	< 10	< 10	< 10	< 10
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Acid Neutralising Capacity (ANCE)	0.02	%CaCO3	0.25	n/a	n/a	n/a
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t	49	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite(s-ANCE)	0.02	% S	0.08	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	0.08	0.03
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	51	20
SPOCAS - Liming rate	1	kg CaCO3/t	< 1	< 1	4.0	2.0

Client Sample ID			SB6/2.0	SB6/5.0	SB14/8.0	SB17/10.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B18-Au33126	B18-Au33127	B18-Au33128	B18-Au33129
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Chromium Suite						
pH-KCL	0.1	pH Units	7.4	5.8	5.4	5.7
Acid trail - Titratable Actual Acidity	2	mol H+/t	< 2	2.6	4.8	< 2
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	< 0.005	0.051	0.022
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	< 3	32	14
Sulfur - KCl Extractable	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
HCl Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	0.12	n/a	n/a	n/a
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	23	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	0.04	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	0.05	0.02
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	36	14
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	< 1	< 1	2.7	1.0
Extraneous Material						
<2mm Fraction	0.005	g	130	93	93	110
>2mm Fraction	0.005	g	< 0.005	< 0.005	< 0.005	< 0.005
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
% Moisture	1	%	1.9	16	16	15

Client Sample ID Sample Matrix			SB20/8.0 Soil	SB20/12.0 Soil	SB22/5.0 Soil	SB26/2.0 Soil
Eurofins mgt Sample No.			B18-Au33130	B18-Au33131	B18-Au33132	B18-Au33133
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit	Not i Tovided	Not i iovided	Not i Tovided	Not i iovided
10041101010100	LUR	Unit				
SPOCAS Suite						
pH-KCL	0.1	pH Units	5.3	5.2	5.6	8.2
pH-OX	0.1	pH Units	2.8	3.2	4.2	6.2
Acid trail - Titratable Actual Acidity	2	mol H+/t	7.0	8.2	6.6	< 2
Acid trail - Titratable Peroxide Acidity	2	mol H+/t	73	82	24	< 2
Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	66	73	17	< 2
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02
sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S	0.12	0.13	0.04	< 0.02
sulfidic - TSA equiv. S% pyrite	0.02	% pyrite S	0.11	0.12	0.03	< 0.02
Sulfur - KCl Extractable	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Sulfur - Peroxide	0.02	% S	0.03	0.08	< 0.02	0.03
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	0.03	0.08	< 0.02	0.03
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	16	48	< 10	21
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a

Client Sample ID			SB20/8.0	SB20/12.0	SB22/5.0	SB26/2.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B18-Au33130	B18-Au33131	B18-Au33132	B18-Au33133
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
SPOCAS Suite	LOIT	1 Onit				
Calcium - KCl Extractable	0.02	% Ca	< 0.02	< 0.02	0.06	0.05
Calcium - Peroxide	0.02	% Ca	< 0.02	< 0.02	0.06	0.05
Acid Reacted Calcium	0.02	% Ca	< 0.02	< 0.02	< 0.02	< 0.02
acidity - Acid Reacted Calcium	10	mol H+/t		< 10	< 10	< 10
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Magnesium - KCI Extractable	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
Magnesium - Peroxide	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
Acid Reacted Magnesium	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
acidity - Acid Reacted Magnesium	10	mol H+/t		< 10	< 10	< 10
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Acid Neutralising Capacity (ANCE)	0.02	%CaCO3		n/a	n/a	n/a
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t		n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite(s-	10	IIIOITTIA	11/4	11/4	Ti/G	11/4
ANCE)	0.02	% S	n/a	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	0.04	0.09	< 0.02	< 0.02
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	23	56	< 10	< 10
SPOCAS - Liming rate	1	kg CaCO3/t	2.0	4.0	< 1	1.0
Chromium Suite						
pH-KCL	0.1	pH Units	5.3	5.2	5.6	8.2
Acid trail - Titratable Actual Acidity	2	mol H+/t	7.0	8.2	6.6	< 2
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	0.051	< 0.005	0.031
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	32	< 3	20
Sulfur - KCl Extractable	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a	n/a	n/a	0.51
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	n/a	n/a	n/a	100
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	n/a	n/a	n/a	0.16
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	0.05	< 0.02	< 0.02
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	< 10	40	< 10	< 10
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	< 1	3.0	< 1	< 1
Extraneous Material						
<2mm Fraction	0.005	g	99	120	130	120
>2mm Fraction	0.005	g	< 0.005	< 0.005	< 0.005	< 0.005
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
% Moisture	1	%	17	16	13	14

OI: 10 L ID		T		T	T	T
Client Sample ID			SB26/6.0	SB26/10.0	SB14/6.0	SB17/3.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B18-Au33134	B18-Au33135	B18-Au33136	B18-Au33137
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
SPOCAS Suite						
pH-KCL	0.1	pH Units	5.4	4.9	6.4	7.6
pH-OX	0.1	pH Units	2.9	2.5	5.4	7.4
Acid trail - Titratable Actual Acidity	2	mol H+/t	6.6	27	< 2	< 2
Acid trail - Titratable Peroxide Acidity	2	mol H+/t	57	170	< 2	< 2
Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	51	140	< 2	< 2
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	0.04	< 0.02	< 0.02
sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S	0.09	0.27	< 0.02	< 0.02
sulfidic - TSA equiv. S% pyrite	0.02	% pyrite S	0.08	0.23	< 0.02	< 0.02
Sulfur - KCl Extractable	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Sulfur - Peroxide	0.02	% S	0.03	0.14	< 0.02	0.05
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	0.03	0.14	< 0.02	0.05
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	20	90	< 10	33
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Calcium - KCl Extractable	0.02	% Ca	0.02	< 0.02	< 0.02	0.17
Calcium - Peroxide	0.02	% Ca	0.03	< 0.02	< 0.02	0.30
Acid Reacted Calcium	0.02	% Ca	< 0.02	< 0.02	< 0.02	0.12
acidity - Acid Reacted Calcium	10	mol H+/t		< 10	< 10	61
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	< 0.02	< 0.02	< 0.02	0.10
Magnesium - KCl Extractable	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
Magnesium - Peroxide	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
Acid Reacted Magnesium	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
acidity - Acid Reacted Magnesium	10	mol H+/t	1	< 10	< 10	< 10
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Acid Neutralising Capacity (ANCE)	0.02	%CaCO3	n/a	n/a	n/a	0.43
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t	n/a	n/a	n/a	86
Acid Neutralising Capacity - equivalent S% pyrite(s-ANCE)	0.02	% S	n/a	n/a	n/a	0.14
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	0.04	0.19	< 0.02	< 0.02
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	27	120	< 10	< 10
SPOCAS - Liming rate	1	kg CaCO3/t	2.0	9.0	< 1	< 1
Chromium Suite						
pH-KCL	0.1	pH Units	5.4	4.9	-	-
Acid trail - Titratable Actual Acidity	2	mol H+/t	6.6	27	-	-
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	0.04	-	-
Chromium Reducible Sulfur ^{S04}	0.005	% S	0.011	0.078	-	-
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	49	-	-
Sulfur - KCI Extractable	0.02	% S	< 0.02	< 0.02	-	-
HCl Extractable Sulfur	0.02	% S	n/a	n/a	-	-
Net Acid soluble sulfur	0.02	% S	n/a	n/a	-	-
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	-	-
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	-	-
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a	n/a	-	-
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	n/a	n/a	-	-
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	n/a	n/o	_	_
ANC Fineness Factor	0.02	% S factor	1.5	n/a 1.5	-	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SB26/6.0 Soil B18-Au33134 Not Provided	SB26/10.0 Soil B18-Au33135 Not Provided	SB14/6.0 Soil B18-Au33136 Not Provided	SB17/3.8 Soil B18-Au33137 Not Provided
Test/Reference	LOR	Unit				
Chromium Suite						
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	0.12	-	-
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	14	75	-	-
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	1.0	5.7	-	-
Extraneous Material						
<2mm Fraction	0.005	g	98	110	97	110
>2mm Fraction	0.005	g	< 0.005	< 0.005	< 0.005	1.5
Analysed Material	0.1	%	100	100	100	99
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	1.4
% Moisture	1	%	16	17	17	15

Client Sample ID			SB26/8.0	SB14/10.0	SB17/8.0	SB20/5.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B18-Au33138	B18-Au33139	B18-Au33140	B18-Au33141
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
SPOCAS Suite						
pH-KCL	0.1	pH Units	5.3	-	-	-
pH-OX	0.1	pH Units	3.0	-	-	-
Acid trail - Titratable Actual Acidity	2	mol H+/t	6.0	-	-	-
Acid trail - Titratable Peroxide Acidity	2	mol H+/t	< 2	_	-	-
Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	< 2	-	-	-
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	-	-	-
sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S	< 0.02	-	-	-
sulfidic - TSA equiv. S% pyrite	0.02	% pyrite S	< 0.02	-	-	-
Sulfur - KCl Extractable	0.02	% S	< 0.02	-	-	-
Sulfur - Peroxide	0.02	% S	0.08	-	-	-
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	0.08	-	-	-
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	48	-	-	-
HCI Extractable Sulfur	0.02	% S	n/a	-	-	-
Net Acid soluble sulfur	0.02	% S	n/a	-	-	-
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	-	-	-
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	-	-	-
Calcium - KCl Extractable	0.02	% Ca	< 0.02	-	-	-
Calcium - Peroxide	0.02	% Ca	< 0.02	-	-	-
Acid Reacted Calcium	0.02	% Ca	< 0.02	-	-	-
acidity - Acid Reacted Calcium	10	mol H+/t	< 10	-	-	-
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	< 0.02	-	-	-
Magnesium - KCl Extractable	0.02	% Mg	< 0.02	-	-	-
Magnesium - Peroxide	0.02	% Mg	< 0.02	-	-	-
Acid Reacted Magnesium	0.02	% Mg	< 0.02	-	-	-
acidity - Acid Reacted Magnesium	10	mol H+/t	< 10	-	-	-
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	< 0.02	-	-	-
Acid Neutralising Capacity (ANCE)	0.02	%CaCO3	n/a	-	-	-
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t	n/a	-	-	-
Acid Neutralising Capacity - equivalent S% pyrite(s-ANCE)	0.02	% S	n/a	-	-	-
ANC Fineness Factor		factor	1.5	-	-	-

Client Sample ID			SB26/8.0	SB14/10.0	SB17/8.0	SB20/5.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B18-Au33138	B18-Au33139	B18-Au33140	B18-Au33141
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
SPOCAS Suite						
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	0.09	-	-	-
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	54	-	-	-
SPOCAS - Liming rate	1	kg CaCO3/t	4.0	-	-	-
Chromium Suite						
pH-KCL	0.1	pH Units	-	5.6	5.7	5.7
Acid trail - Titratable Actual Acidity	2	mol H+/t	-	2.3	< 2	3.5
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	-	< 0.02	< 0.02	< 0.02
Chromium Reducible Sulfur ^{S04}	0.005	% S	-	0.016	0.007	< 0.005
Chromium Reducible Sulfur -acidity units	3	mol H+/t	-	< 3	< 3	< 3
Sulfur - KCl Extractable	0.02	% S	-	n/a	n/a	n/a
HCl Extractable Sulfur	0.02	% S	-	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	-	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	-	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	-	n/a	n/a	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	-	n/a	n/a	n/a
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	-	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	-	n/a	n/a	n/a
ANC Fineness Factor		factor	-	1.5	1.5	1.5
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	-	0.02	< 0.02	< 0.02
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	-	12	< 10	< 10
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	-	< 1	< 1	< 1
Extraneous Material						
<2mm Fraction	0.005	g	120	110	120	110
>2mm Fraction	0.005	g	< 0.005	< 0.005	< 0.005	< 0.005
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
% Moisture	1	%	18	17	17	16

Client Sample ID Sample Matrix Eurofins mgt Sample No.			SB22/3.0 Soil B18-Au33142
Date Sampled Test/Reference Chromium Suite	LOR	Unit	Not Provided
pH-KCL	0.1	pH Units	6.1
Acid trail - Titratable Actual Acidity	2	mol H+/t	-
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3
Sulfur - KCl Extractable	0.02	% S	n/a
HCl Extractable Sulfur	0.02	% S	n/a
Net Acid soluble sulfur	0.02	% S	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a

Client Sample ID Sample Matrix			SB22/3.0 Soil
Eurofins mgt Sample No.			B18-Au33142
Date Sampled			Not Provided
Test/Reference	LOR	Unit	
Chromium Suite			
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	n/a
ANC Fineness Factor		factor	1.5
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	< 0.02
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	< 10
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	< 1
Extraneous Material			
<2mm Fraction	0.005	g	100
>2mm Fraction	0.005	g	< 0.005
Analysed Material	0.1	%	100
Extraneous Material	0.1	%	< 0.1
% Moisture	1	%	2.5

Report Number: 614245-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
SPOCAS Suite			
SPOCAS Suite	Brisbane	Aug 28, 2018	6 Week
- Method: LTM-GEN-7050			
Chromium Reducible Sulfur Suite			
Chromium Suite	Brisbane	Aug 28, 2018	6 Week
- Method: LTM-GEN-7070			
Extraneous Material	Brisbane	Aug 28, 2018	6 Week
- Method: LTM-GEN-7050/7070			
% Moisture	Brisbane	Aug 27, 2018	14 Day

⁻ Method: LTM-GEN-7080 Moisture

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name:

Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Aug 27, 2018 11:20 AM Sep 3, 2018 5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Moisture Set			×				×	×	×	×	×	×	×	×	×
Chromium Reducible Sulfur Suite			×				×	×	×	×	×	×	×	×	×
SPOCAS Suite			×				×	×	×	×	×	×	×	×	×
						LAB ID	B18-Au33126	B18-Au33127	B18-Au33128	B18-Au33129	B18-Au33130	B18-Au33131	B18-Au33132	B18-Au33133	B18-Au33134
	71					Matrix	Soil								
Sample Detail	# 1254 & 142	8217	20794	36		Sampling Time									
Sam	ry - NATA Site	NATA Site # 1	- NATA Site #	ATA Site # 237		Sample Date	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided
	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	External Laboratory	Sample ID	SB6/2.0	SB6/5.0	SB14/8.0	SB17/10.0	SB20/8.0	SB20/12.0	SB22/5.0	SB26/2.0	SB26/6.0
	Melb	Sydn	Brisb	Perth	Exter	N _o	1	2	က	4	5	9	7	80	6

Page 9 of 13

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736 **Brisbane** 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Aug 27, 2018 11:20 AM Sep 3, 2018 5 Day Ken Henderson Due: Priority: Contact Name: Received:

02 8960 0555

614245

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name:

Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Moisture Set			×		×	×	×	×	×	×	×	×	17
Chromium Reducible Sulfur Suite			X		×				X	X	X	×	14
SPOCAS Suite			X		×	X	X	X					13
					B18-Au33135	B18-Au33136	B18-Au33137	B18-Au33138	B18-Au33139	B18-Au33140	B18-Au33141	B18-Au33142	
tail	k 14271				Soil								
Sample Detail	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	
	ourne Laborato	ey Laboratory -	ane Laboratory	Laboratory - N	SB26/10.0	SB14/6.0	SB17/3.8	SB26/8.0	SB14/10.0	SB17/8.0	SB20/5.0	SB22/3.0	Test Counts
	Melb	Sydn	Brisb	Perth	10	11	12	13	14	15	16	17	Test

Page 10 of 13

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotien

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

Date Reported: Sep 03, 2018

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

 Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172
 Page 11 of 13

 ABN : 50 005 085 521 Telephone: +61 7 3902 4600
 Report Number: 614245-S

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							T		
Chromium Suite									
Chromium Reducible Sulfur			%	93			70-130	Pass	
Acid Neutralising Capacity (ANCbt)	<u> </u>		%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	B18-Au33126	CP	%	1.9	1.9	<1	30%	Pass	
Duplicate							_		
SPOCAS Suite			•	Result 1	Result 2	RPD			
pH-KCL	B18-Au33132	CP	pH Units	5.6	5.7	<1	30%	Pass	
pH-OX	B18-Au33132	CP	pH Units	4.2	4.1	1.0	30%	Pass	
Acid trail - Titratable Actual Acidity	B18-Au33132	CP	mol H+/t	6.6	6.4	3.7	30%	Pass	
Acid trail - Titratable Peroxide Acidity	B18-Au33132	СР	mol H+/t	24	23	1.0	30%	Pass	
Acid trail - Titratable Sulfidic Acidity	B18-Au33132	CP	mol H+/t	17	17	<1	30%	Pass	
sulfidic - TAA equiv. S% pyrite	B18-Au33132	CP	% pyrite S	< 0.02	< 0.02	<1	30%	Pass	
sulfidic - TPA equiv. S% pyrite	B18-Au33132	CP	% pyrite S	0.04	0.04	1.0	30%	Pass	
sulfidic - TSA equiv. S% pyrite	B18-Au33132	CP	% pyrite S	0.03	0.03	<1	30%	Pass	
Sulfur - Peroxide	B18-Au33132	CP	% S	< 0.02	< 0.02	<1	30%	Pass	
Sulfur - Peroxide Oxidisable Sulfur	B18-Au33132	CP	% S	< 0.02	< 0.02	<1	30%	Pass	
acidity - Peroxide Oxidisable Sulfur	B18-Au33132	CP	mol H+/t	< 10	< 10	<1	30%	Pass	
Calcium - KCl Extractable	B18-Au33132	CP	% Ca	0.06	0.06	1.0	30%	Pass	
Calcium - Peroxide	B18-Au33132	CP	% Ca	0.06	0.05	5.0	30%	Pass	
Acid Reacted Calcium	B18-Au33132	СР	% Ca	< 0.02	< 0.02	<1	30%	Pass	
acidity - Acid Reacted Calcium	B18-Au33132	CP	mol H+/t	< 10	< 10	<1	30%	Pass	
sulfidic - Acid Reacted Ca equiv. S% pyrite	B18-Au33132	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
Magnesium - KCl Extractable	B18-Au33132	СР	% Mg	< 0.02	< 0.02	<1	30%	Pass	
Magnesium - Peroxide	B18-Au33132	СР	% Mg	< 0.02	< 0.02	<1	30%	Pass	
Acid Reacted Magnesium	B18-Au33132	СР	% Mg	< 0.02	< 0.02	<1	30%	Pass	
acidity - Acid Reacted Magnesium	B18-Au33132	СР	mol H+/t	< 10	< 10	<1	30%	Pass	
sulfidic - Acid Reacted Mg equiv. S% pyrite	B18-Au33132	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
Acid Neutralising Capacity (ANCE)	B18-Au33132	CP	%CaCO3	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity - Acidity units (a-ANCE)	B18-Au33132	CP	mol H+/t				30%	Pass	
ANC Fineness Factor	B18-Au33132	CP	factor	n/a 1.5	n/a 1.5	<u>n/a</u> <1	30%	Pass	
SPOCAS - Liming rate	B18-Au33132	CP	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
Duplicate	B10-Au33132	L CF	kg CaCO3/t				3076	_ Fa55	
Chromium Suite				Pocult 1	Result 2	DDD	T		
Chromium Suite Chromium Reducible Sulfur	B18-Au33132	СР	% S	Result 1 < 0.005	< 0.005	RPD <1	30%	Pass	
Chromium Reducible Sulfur -acidity									
units	B18-Au33132	CP	mol H+/t	< 3	< 3	<1	30%	Pass	
Acid Neutralising Capacity (ANCbt)	B18-Au33132	CP	%CaCO3	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt)	B18-Au33132	СР	% S	n/a	n/a	n/a	30%	Pass	
CRS Suite - Net Acidity (Sulfur Units)	B18-Au33132	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
CRS Suite - Net Acidity (Acidity Units)	B18-Au33132	СР	mol H+/t	< 10	< 10	<1	30%	Pass	
CRS Suite - Liming Rate	B18-Au33132	СР	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	B18-Au33136	СР	%	17	17	2.0	30%	Pass	

Comments

Sample Integrity

. ,	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
S01	Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3'
S02	Retained Acidity is Reported when the pHKCl is less than pH 4.5
S03	Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5
S04	Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period

Authorised By

Nibha Vaidya Analytical Services Manager Steven Trout Senior Analyst-Metal (QLD)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: e41 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarine QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sydney Unit 73, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 2900 8400 NATA# 1261 Sile# 18277

Received: Due: Priority: Contact Name:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Aug 27, 2018 11:20 AM Sep 3, 2018 5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

Moisture Set			×				×	×	×	×	×	×	×	×	×
Chromium Reducible Sulfur Suite			×				×	×	×	×	×	×	×	×	×
SPOCAS Suite			×				×	×	×	×	×	×	×	×	×
						LAB ID	B18-Au33126	B18-Au33127	B18-Au33128	B18-Au33129	B18-Au33130	B18-Au33131	B18-Au33132	B18-Au33133	B18-Au33134
	71					Matrix	Soil								
Sample Detail	# 1254 & 142	8217	20794	36		Sampling Time									
s S	ry - NATA Site	NATA Site # 1	- NATA Site #	ATA Site # 237		Sample Date	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided
	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	External Laboratory	Sample ID	SB6/2.0	SB6/5.0	SB14/8.0	SB17/10.0	SB20/8.0	SB20/12.0	SB22/5.0	SB26/2.0	SB26/6.0
	Melb	Sydn	Brisb	Perth	Exter	9	1	2	3	4	5	9	7	8	6

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: e41 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 6lie # 18217

Brisbane 1/21 Smallwood Place Murarine QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Aug 27, 2018 11:20 AM Sep 3, 2018 5 Day Ken Henderson Received: Due: Priority: Contact Name:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

Moisture Set			×		×	×	×	×	×	×	×	×	17
Chromium Reducible Sulfur Suite			×		×				×	X	×	×	14
SPOCAS Suite			×		×	×	×	×					13
					B18-Au33135	B18-Au33136	B18-Au33137	B18-Au33138	B18-Au33139	B18-Au33140	B18-Au33141	B18-Au33142	
Sample Detail	1254 & 14271	217	0794	9	Soil								
Sam	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	
	ourne Laborato	ey Laboratory	vane Laborator	Laboratory - N	SB26/10.0	SB14/6.0	SB17/3.8	SB26/8.0	SB14/10.0	SB17/8.0	SB20/5.0	SB22/3.0	Test Counts
	Melb	Sydr	Brisk	Pert	10	11	12	13	14	15	16	17	Test

National Nat

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e,mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: Trace Environmental P/L

Contact name: Ken Henderson Project name: **MASCOT** Project ID: 1.16

COC number: Not provided

Turn around time: 5 Day

Aug 27, 2018 11:20 AM Date/Time received:

Eurofins | mgt reference: 614245

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \square Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 2.6 degrees Celsius.
- V All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{Z} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \square Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Ken Henderson - ken@traceenviro.com.

Enviro Sample Bris

From:

Andrew Black

Sent:

Monday, 27 August 2018 11:27 AM

To:

Enviro Sample Bris

Subject:

5 DAY TAT ADDITIONAL: FW: Eurofins | mgt Test Results, Invoice - Report 612428 :

Site MASCOT (1.16)

Follow Up Flag:

Follow up

Flag Status:

Flagged

Hi Team

Additional acid sulphate testing please for this job on standard TAT.

Andrew Black

Phone: +61 410 220 750

Email: AndrewBlack@eurofins.com

From: Ken Henderson [mailto:ken@traceenviro.com]

Sent: Monday, 27 August 2018 11:18 AM

To: Andrew Black Cc: Jack Ellis

Subject: RE: Eurofins | mgt Test Results, Invoice - Report 612428 : Site MASCOT (1.16)

EXTERNAL EMAIL*

Hi Andrew,

For this work order, can I please have additional assessment for Acid Sulfate as follows:

- SPOCAS & Cr Suite samples SB6/2.0; SB6/5.0; SB14/8.0; SB17/10.0; SB20/8.0; SB20/12.0; SB22/5.0; SB26/2.0; SB26/6.0; and SB26/10.0
- SPOCAS only samples SB14/6.0; SB17/3.8; and SB26/8.0
- Cr Suite only samples SB14/10.0; SB17/8.0; SB20/5.0; and SB22/3.0

Standard TAT is requested.

Thank you, please ring if any questions.

Regards,

Ken

27/6/16 27/6/16 N:30 AM

TRACE ENVIRONMENTAL

Ken Henderson Principal Environmental Scientist

TRACE Environmental

- C 02 8960 0555 ± 0432 382 141
- Shop 2, 793-799 New Canterbury Road Dulwich Hill N5W 2203
- Www.traceenviro.com & ken@traceenviro.com

MOTICE:

This e-mail and any files transmitted with it are the property of 1974 (L.C. inconversion), and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail memage, and any files transmitted with it, is intended for the sea of the recipient for any above. If the received this e-mail is error and that any review, distribution or copyrigh of this e-mail in error, and that any review, distribution or copyrigh of this e-mail in error, please notify the vender of copyrigh of this e-mail in error, please notify the vender immediately and desete the original measure and any files transmitted.

From: AndrewBlack@eurofins.com < AndrewBlack@eurofins.com >

Sent: Monday, 27 August 2018 9:40 AM

To: Ken Henderson < ken@traceenviro.com >
Cc: Ramya Tunikipati < ramya@traceenviro.com >

Subject: Eurofins | mgt Test Results, Invoice - Report 612428 : Site MASCOT (1.16)

Regards

Andrew Black

Analytical Services Manager

Eurofins | mgt Unit 7 7 Friesian Close SANDGATE NSW 2304 AUSTRALIA Phone: +61 299 008 490

Phone: +61 299 008 490 Mobile: +61 410 220 750

Email: <u>AndrewBlack@eurofins.com</u>
Website: <u>environment.eurofins.com.au</u>
<u>EnviroNote 1078 - Targeting the Unknowns</u>?

EnviroNote 1077 - Soil Vapour Sampling - NATA Accreditation

Are you on TOP of PFASs? Find out more by reading Eurofins | mgt's Environote by clicking here

EnviroNote 1075 – for Eurofins | mgt Christmas Shutdown Dates, click here

Click here to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any

Certificate of Analysis

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill NSW 2203

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ken Henderson

 Report
 615646-L

 Project name
 MASCOT

 Project ID
 1.16

 Received Date
 Sep 04, 2018

Client Sample ID			SB21/0.15	SB07/0.25
Sample Matrix			US Leachate	US Leachate
Eurofins mgt Sample No.			M18-Se03012	M18-Se03013
Date Sampled			Aug 13, 2018	Aug 13, 2018
Test/Reference	LOR	Unit		
Heavy Metals				
Chromium	0.01	mg/L	-	< 0.01
Lead	0.01	mg/L	0.10	0.36
Nickel	0.01	mg/L	-	0.14
USA Leaching Procedure				
Leachate Fluid ^{C01}		comment	1.0	1.0
pH (initial)	0.1	pH Units	7.6	7.9
pH (Leachate fluid)	0.1	pH Units	5.1	5.1
pH (off)	0.1	pH Units	5.1	5.4
pH (USA HCl addition)	0.1	pH Units	2.0	2.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Sep 04, 2018	180 Day

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Report Number: 615646-L

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900 8400 NATA # 1261 Site # 18277

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Due: Priority: Contact Name: Received:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name:

Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Sep 4, 2018 9:43 AM Sep 7, 2018 3 Day Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

USA Leaching Procedure	×						X	×	2
Nickel	×							×	1
Lead	×						×	×	2
Chromium	×							×	-
						LAB ID	M18-Se03012	M18-Se03013	
	71					Matrix	US Leachate	US Leachate	
Sample Detail	# 1254 & 142	8217	20794	36		Sampling Time			
s S	ry - NATA Site	- NATA Site #1	/ - NATA Site #	IATA Site # 237		Sample Date	Aug 13, 2018	Aug 13, 2018	
	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	External Laboratory	Sample ID	SB21/0.15	SB07/0.25	Test Counts
	Melba	Sydn	Brisb	Perth	Exter	No	_	2	Test

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotien

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

Date Reported: Sep 07, 2018

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 Page 4 of 6
ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 615646-L

Quality Control Results

Tes	t		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Chromium			mg/L	< 0.01			0.01	Pass	
Lead			mg/L	< 0.01			0.01	Pass	
Nickel			mg/L	< 0.01			0.01	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	M18-Se04918	NCP	%	101			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Chromium	M18-Se04918	NCP	%	101			75-125	Pass	
Nickel	M18-Se04918	NCP	%	99			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	M18-Se04918	NCP	mg/L	0.04	0.05	2.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Chromium	M18-Se04918	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Nickel	M18-Se04918	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised By

Nibha Vaidya Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for ioss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 615646-L

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900 8400 NATA # 1261 Site # 18277

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736 **Brisbane** 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sep 4, 2018 9:43 AM Sep 7, 2018 3 Day Ken Henderson Received:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Due: Priority: Contact Name:

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

me Laboratory	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 20794 Brisbane Laboratory - NATA Site # 20794	Sample Detail ite # 1254 & 142 # 18217 9 # 20794	2		hromium	ead ×	ickel	SA Leaching Procedure
Laborato	Brisbane Laboratory - NATA Site # 20 Perth I aboratory - NATA Site # 20	20794						
External Laboratory	V	3						
Sample ID	Sample Date	Sampling Time	Matrix	LABID				
SB21/0.15	Aug 13, 2018		US Leachate	M18-Se03012		``	×	×
SB07/0.25	Aug 13, 2018		US Leachate	M18-Se03013	X	×		X
Test Counts					1	2		1

Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e,mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: Trace Environmental P/L

Contact name: Ken Henderson Project name: **MASCOT** Project ID: 1.16

COC number: Not provided

Turn around time: 3 Day

Sep 4, 2018 9:43 AM Date/Time received:

Eurofins | mgt reference: 615646

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC. \square
- \mathbf{Z} COC has been completed correctly.
- \square Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{Z} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Ken Henderson - ken@traceenviro.com.

Enviro Sample Vic

From:

Nibha Vaidya

Sent:

Tuesday, 4 September 2018 9:43 AM

To:

Enviro Sample Vic

Subject:

3 DAY TAT - FW: Eurofins | mgt Test Results, Invoice - Report 612428 : Site MASCOT

(1.16)

Attachments:

612428-S_report.pdf; image002.jpg

Another additional TCLP please - 3 day TAT

Kind Regards,

Nibha Vaidva

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email : NibhaVaidya@eurofins.com

From: Ken Henderson [mailto:ken@traceenviro.com]

Sent: Tuesday, 4 September 2018 8:10 AM

To: Nibha Vaidya Cc: Jack Ellis

Subject: FW: Eurofins | mgt Test Results, Invoice - Report 612428 : Site MASCOT (1.16)

EXTERNAL EMAIL*

Hi Nibha,

For this report, can I please have TCLP analysis for the following:

Sample SB21/0.15 – TCLP Lead

Au18863.

Sample SB7/0.25 – TCLP Lead Aul 8 868 Sample SB7/0.25 – TCLP Chromium, TCLP Lead and TCLP Nickel Aul 8881.

Would we be able to get 3-day TAT?

Thank you.

Regards,

Ken

G. G. W. 419 615646

Certificate of Analysis

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill NSW 2203

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ken Henderson

 Report
 615672-L

 Project name
 MASCOT

 Project ID
 1.16

 Received Date
 Sep 04, 2018

Client Sample ID			SB1/0.5	SB6/1.0	SB-14/1.2	SB18/1.0
Sample Matrix			US Leachate	US Leachate	US Leachate	US Leachate
Eurofins mgt Sample No.			M18-Se03174	M18-Se03175	M18-Se03176	M18-Se03177
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	-	-	< 0.001	-
Acenaphthylene	0.001	mg/L	-	-	< 0.001	-
Anthracene	0.001	mg/L	-	-	< 0.001	_
Benz(a)anthracene	0.001	mg/L	-	-	< 0.001	-
Benzo(a)pyrene	0.001	mg/L	-	-	< 0.001	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	-	-	< 0.001	-
Benzo(g.h.i)perylene	0.001	mg/L	-	-	< 0.001	_
Benzo(k)fluoranthene	0.001	mg/L	-	-	< 0.001	_
Chrysene	0.001	mg/L	-	-	< 0.001	-
Dibenz(a.h)anthracene	0.001	mg/L	-	-	< 0.001	_
Fluoranthene	0.001	mg/L	-	-	< 0.001	-
Fluorene	0.001	mg/L	-	-	< 0.001	_
Indeno(1.2.3-cd)pyrene	0.001	mg/L	-	-	< 0.001	-
Naphthalene	0.001	mg/L	-	-	< 0.001	-
Phenanthrene	0.001	mg/L	-	-	< 0.001	_
Pyrene	0.001	mg/L	-	-	< 0.001	_
Total PAH*	0.001	mg/L	-	-	< 0.001	-
2-Fluorobiphenyl (surr.)	1	%	-	-	94	_
p-Terphenyl-d14 (surr.)	1	%	-	-	109	_
Heavy Metals						
Lead	0.01	mg/L	0.24	0.04	1.1	1.4
Nickel	0.01	mg/L	-	0.41	-	-
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
oH (initial)	0.1	pH Units	7.0	7.5	6.1	8.3
pH (Leachate fluid)	0.1	pH Units	5.1	5.1	5.1	5.1
pH (off)	0.1	pH Units	5.3	5.9	5.3	5.6
pH (USA HCl addition)	0.1	pH Units	2.0	1.8	1.9	1.9

Client Sample ID Sample Matrix			SB19/1.5 US Leachate	SB20/1.0 US Leachate	SB26/1.5-2.0 US Leachate
Eurofins mgt Sample No.			M18-Se03178	M18-Se03179	M18-Se03180
Date Sampled			Aug 10, 2018	Aug 10, 2018	Aug 10, 2018
Test/Reference	LOR	Unit			
Heavy Metals					
Lead	0.01	mg/L	-	-	3.4
Nickel	0.01	mg/L	0.29	0.44	0.28
USA Leaching Procedure					
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0
pH (initial)	0.1	pH Units	8.0	7.7	7.7
pH (Leachate fluid)	0.1	pH Units	5.1	5.1	5.1
pH (off)	0.1	pH Units	5.3	5.1	5.6
pH (USA HCI addition)	0.1	pH Units	2.0	2.0	2.0

Report Number: 615672-L

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 06, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Heavy Metals	Melbourne	Sep 04, 2018	180 Day

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Report Number: 615672-L

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +618 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

SydneyUnit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Sep 4, 2018 7:57 AM Sep 7, 2018 3 Day

Received:

Order No.: Report #: Phone: Fax:

Shop 2, 793-799 New Canterbury Road Dulwich Hill

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Trace Environmental P/L

Company Name:

Address:

Due: Priority: Contact Name:

Ken Henderson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

USA Leaching Procedure

Nickel

Lead

Polycyclic Aromatic Hydrocarbons

Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217

×

×

×

Brisbane Laboratory - NATA Site # 20794

Perth Laboratory - NATA Site # 23736

External Laboratory

Matrix Sample Date Sample ID å

M18-Se03174 LAB ID US Leachate Sampling Time Aug 10, 2018 SB1/0.5

US Leachate US Leachate Aug 10, 2018 Aug 10, 2018 SB-14/1.2 SB6/1.0

Aug 10, 2018 Aug 10, 2018 SB18/1.0 SB19/1.5

M18-Se03176 M18-Se03180 M18-Se03175 M18-Se03177 M18-Se03178 M18-Se03179 US Leachate US Leachate US Leachate US Leachate Aug 10, 2018 SB26/1.5-2.0 Aug 10, 2018

SB20/1.0

Test Counts

×

× × ×

×

4

×

× × ×

×

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 4 of 7 Report Number: 615672-L

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS
Laboratory Control Sample - reported as percent recovery.

CRM
Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotien

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

Date Reported: Sep 07, 2018

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 Page 5 of 7

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 615672-L

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead	mg/L	< 0.01			0.01	Pass			
Nickel			mg/L	< 0.01			0.01	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	M18-Se04918	NCP	%	101			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Nickel	M18-Se03180	CP	%	97			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	M18-Au39064	NCP	mg/L	< 0.001	0.001	35	30%	Fail	Q15
Pyrene	M18-Au39064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate			Ĭ						
Heavy Metals				Result 1	Result 2	RPD			
Lead	M18-Se03180	СР	mg/L	3.4	3.4	<1	30%	Pass	
Nickel	M18-Se03180	CP	mg/L	0.28	0.29	2.0	30%	Pass	

Report Number: 615672-L

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted Nο

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

N07

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Euroffins, Impl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company resulting from the use of any information or interpretation given in this report. In occase shall Euroffins, Impg be liable for consequential damages including, but not limited to, lost profess, damages for shall result on sheet designations and lost production arising from the list person. The included except in full and relates on by the liems tested. Unless indicated better wise performed on the samples as received.

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900 8400 NATA # 1261 Site # 18277

Received: Due: Priority: Contact Name:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Sep 4, 2018 7:57 AM Sep 7, 2018 3 Day Ken Henderson

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

USA Leaching Procedure	×						×	×	×	×	×	×	×	7
Polycyclic Aromatic Hydrocarbons	×								×					-
Nickel	×							X			×	×	×	4
Lead	X						×	X	×	×			×	2
						LAB ID	M18-Se03174	M18-Se03175	M18-Se03176	M18-Se03177	M18-Se03178	M18-Se03179	M18-Se03180	
Sample Detail						Matrix	US Leachate							
			20794	36		Sampling Time								
			- NATA Site #	ATA Site # 237;		Sample Date	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	Aug 10, 2018	
	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	External Laboratory	Sample ID	SB1/0.5	SB6/1.0	SB-14/1.2	SB18/1.0	SB19/1.5	SB20/1.0	SB26/1.5-2.0	Test Counts
	Melba	Sydn	Brisb	Perth	Exter	No	1	2	3	4	2	9	7	Test

Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e,mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: Trace Environmental P/L

Contact name: Ken Henderson Project name: **MASCOT** Project ID: 1.16

COC number: Not provided

Turn around time: 3 Day

Sep 4, 2018 7:57 AM Date/Time received:

Eurofins | mgt reference: 615672

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC. \square
- \mathbf{Z} COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{Z} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Ken Henderson - ken@traceenviro.com.

Enviro Sample Vic

From:

Nibha Vaidya

Sent:

Tuesday, 4 September 2018 9:40 AM

To:

Enviro Sample Vic

Subject:

3 DAY TAT - FW: Eurofins | mgt Test Results, Invoice - Report 612025 : Site MASCOT

(1.16)

Attachments:

612025-S_report.pdf; image001.jpg

Additional TCLP please - 3 day TAT

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

From: Ken Henderson [mailto:ken@traceenviro.com]

Sent: Tuesday, 4 September 2018 7:57 AM

To: Nibha Vaidya Cc: Jack Ellis

Subject: FW: Eurofins | mgt Test Results, Invoice - Report 612025 : Site MASCOT (1.16)

EXTERNAL EMAIL*

Hi Nibha,

0-2.1018.

For this report, can I please have TCLP analysis for the following:

Sample SB1/0.5 - TCLP Lead

Sample SB6/1.0 – TCLP Lead and TCLP Nickel

Sample SB-14/1.2 – TCLP Lead and TCLP PAHs

Au16427 Au16440 6497

Sample SB18/1.0 – TCLP Lead

Sample SB19/1.5 - TCLP Nickel

Sample SB20/1.0 - TCLP Nickel Sample SB26/1.5-2.0 - TCLP Lead and TCLP Nickel

Would we be able to get 3-day TAT?

Thank you.

Regards,

Ken

Jalpa Putel 419118 7:57 Am 615672

CERTIFICATE OF ANALYSIS

Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Contact : MR KEN HENDERSON

Address : Shop 2 793-799 New Canterbury Road

Dulwich Hill NSW 2203

Telephone : ---Project : 1.16

Order number :

C-O-C number : ---Sampler : JE

Site : MASCOT

Quote number : EN/222/17

No. of samples received : 2

No. of samples analysed : 2

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Customer Services EM

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9600

Date Samples Received : 15-Aug-2018 15:00

Date Analysis Commenced : 16-Aug-2018

Issue Date : 20-Aug-2018 13:18

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Nancy Wang2IC Organic ChemistMelbourne Inorganics, Springvale, VICNancy Wang2IC Organic ChemistMelbourne Organics, Springvale, VIC

Nikki Stepniewski Senior Inorganic Instrument Chemist Melbourne Inorganics, Springvale, VIC

Page : 2 of 6 Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project · 1.16

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

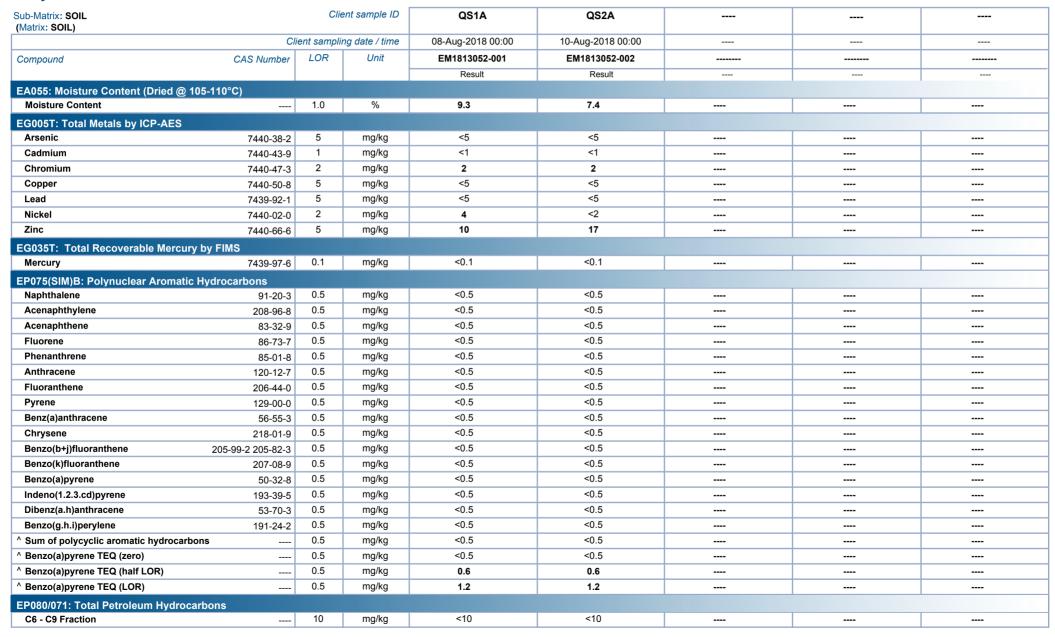
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.



Page : 3 of 6 Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

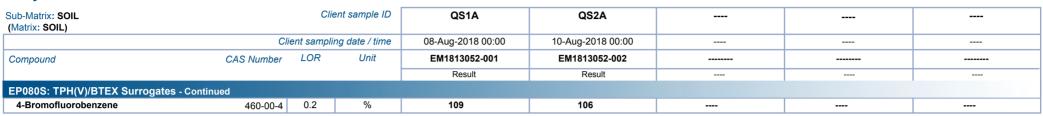
Analytical Results

Page : 4 of 6
Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Analytical Results


Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QS1A	QS2A	 	
(CI	ient sampli	ng date / time	08-Aug-2018 00:00	10-Aug-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EM1813052-001	EM1813052-002	 	
p			-	Result	Result	 	
EP080/071: Total Petroleum Hydrocark	oons - Continued						
C10 - C14 Fraction		50	mg/kg	<50	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns				
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	 	
(F1)							
>C10 - C16 Fraction		50	mg/kg	<50	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	 	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	 	
(F2)							
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	 	
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	<1	 	
EP075(SIM)S: Phenolic Compound Sui	rrogates						
Phenol-d6	13127-88-3	0.5	%	93.4	95.4	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	103	105	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	82.0	85.6	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	106	106	 	
Anthracene-d10	1719-06-8	0.5	%	110	112	 	
4-Terphenyl-d14	1718-51-0	0.5	%	104	107	 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	86.4	88.4	 	
Toluene-D8	2037-26-5	0.2	%	85.8	83.9	 	

Page : 5 of 6
Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Analytical Results

Page : 6 of 6
Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124

QUALITY CONTROL REPORT

Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Contact : MR KEN HENDERSON

Address : Shop 2 793-799 New Canterbury Road

Dulwich Hill NSW 2203

Telephone : ---Project : 1.16

Order number ·

C-O-C number : ----Sampler : JE

Site : MASCOT

Quote number : EN/222/17

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Customer Services EM

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9600

Date Samples Received : 15-Aug-2018

Date Analysis Commenced : 16-Aug-2018

Issue Date : 20-Aug-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC
Nikki Stepniewski	Senior Inorganic Instrument Chemist	Melbourne Inorganics, Springvale, VIC

Page : 2 of 6 Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Laboratory sample ID EA055: Moisture Content (Dried EM1813015-005 Anonymous EM1813059-004 Anonymous EA055: Moisture Content (Dried EM1812960-090 Anonymous EM1813055-025 Anonymous EG005T: Total Metals by ICP-AESEM1813052-001 QS1A	@ 105-110°C) (QC Lot: 1879219) EA055: Moisture Content EA055: Moisture Content @ 105-110°C) (QC Lot: 1879990) EA055: Moisture Content EA055: Moisture Content	CAS Number 7440-43-9 7440-47-3	0.1 0.1 0.1 0.1 1	Wnit % % % % mg/kg	23.6 3.8 16.4 21.9	23.8 4.1 18.0 21.6	0.536 7.56 8.94 1.10	0% - 20% No Limit 0% - 50% 0% - 20%
EM1813015-005 Anonymous EM1813059-004 Anonymous EA055: Moisture Content (Dried of EM1812960-090 Anonymous EM1813055-025 Anonymous EG005T: Total Metals by ICP-AES	EA055: Moisture Content EA055: Moisture Content @ 105-110°C) (QC Lot: 1879990) EA055: Moisture Content EA055: Moisture Content 6 (QC Lot: 1877609) EG005T: Cadmium EG005T: Chromium	7440-43-9 7440-47-3	0.1 0.1 0.1	% % %	3.8 16.4 21.9	18.0	7.56 8.94	No Limit 0% - 50%
EM1813059-004 Anonymous EA055: Moisture Content (Dried of EM1812960-090 Anonymous EM1813055-025 Anonymous EG005T: Total Metals by ICP-AES	EA055: Moisture Content @ 105-110°C) (QC Lot: 1879990) EA055: Moisture Content EA055: Moisture Content 6 (QC Lot: 1877609) EG005T: Cadmium EG005T: Chromium	7440-43-9 7440-47-3	0.1 0.1 0.1	% % %	3.8 16.4 21.9	18.0	7.56 8.94	No Limit 0% - 50%
EA055: Moisture Content (Dried of EM1812960-090 Anonymous EM1813055-025 Anonymous EG005T: Total Metals by ICP-AES	@ 105-110°C) (QC Lot: 1879990) EA055: Moisture Content EA055: Moisture Content 6 (QC Lot: 1877609) EG005T: Cadmium EG005T: Chromium	7440-43-9 7440-47-3	0.1 0.1	% %	16.4 21.9	18.0	8.94	0% - 50%
EM1812960-090 Anonymous EM1813055-025 Anonymous EG005T: Total Metals by ICP-AES	EA055: Moisture Content EA055: Moisture Content 6 (QC Lot: 1877609) EG005T: Cadmium EG005T: Chromium	7440-43-9 7440-47-3	0.1	%	21.9			
EM1813055-025 Anonymous EG005T: Total Metals by ICP-AES	EA055: Moisture Content 5 (QC Lot: 1877609) EG005T: Cadmium EG005T: Chromium	7440-43-9 7440-47-3	0.1	%	21.9			
EG005T: Total Metals by ICP-AES	EG005T: Cadmium EG005T: Chromium	7440-43-9 7440-47-3	1			21.6	1.10	0% - 20%
	EG005T: Cadmium EG005T: Chromium	7440-47-3	<u> </u>	ma/ka				
EM1813052-001 QS1A	EG005T: Chromium	7440-47-3	<u> </u>	ma/ka				
		1 1		5 5	<1	<1	0.00	No Limit
	EG005T: Nickel		2	mg/kg	2	2	0.00	No Limit
		7440-02-0	2	mg/kg	4	<2	59.9	No Limit
	EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
	EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
	EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
	EG005T: Zinc	7440-66-6	5	mg/kg	10	13	23.6	No Limit
EM1813059-004 Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
	EG005T: Chromium	7440-47-3	2	mg/kg	17	16	0.00	No Limit
	EG005T: Nickel	7440-02-0	2	mg/kg	12	11	0.00	No Limit
	EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
	EG005T: Copper	7440-50-8	5	mg/kg	14	13	0.00	No Limit
	EG005T: Lead	7439-92-1	5	mg/kg	7	6	0.00	No Limit
	EG005T: Zinc	7440-66-6	5	mg/kg	22	21	5.86	No Limit
G035T: Total Recoverable Mer	cury by FIMS (QC Lot: 1877608)							
EM1813052-001 QS1A	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EM1813059-004 Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit

Page : 3 of 6
Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydro	ocarbons (QC Lot: 1881052) - continued							
EM1813029-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	1.3	<0.5	86.8	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	1.3	<0.5	87.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	1.1	<0.5	73.2	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	s (QC Lot: 1877045)							
EM1812960-090	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	s (QC Lot: 1881053)							
EM1813029-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 1877045)							
EM1812960-090	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 1881053)							
EM1813029-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (QC	Lot: 1877045)								
EM1812960-090	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Page : 4 of 6
Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG005T: Total Metals by ICP-AES (QCLot: 1877609))									
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	91.0	79	113		
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	86.1	85	109		
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	85.0	83	109		
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	90.8	78	108		
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	94.0	78	106		
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	91.9	82	111		
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	90.9	82	111		
EG035T: Total Recoverable Mercury by FIMS (QCI	Lot: 1877608)									
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	93.0	77	104		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 1881052)									
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	104	75	131		
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	102	70	132		
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	102	80	128		
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	102	70	128		
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	105	80	128		
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	1.6 mg/kg	105	72	126		
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	103	70	128		
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	107	80	125		
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	92.4	70	130		
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	103	80	126		
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	3 mg/kg	90.0	71	124		
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	102	75	125		
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	89.3	70	125		
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	72.6	71	128		
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	72.3	72	126		
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	73.7	68	127		
EP080/071: Total Petroleum Hydrocarbons (QCLot	: 1877045)									
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	99.5	70	127		
EP080/071: Total Petroleum Hydrocarbons (QCLot	: 1881053)									
EP071: C10 - C14 Fraction		50	mg/kg	<50	806 mg/kg	99.2	80	120		
EP071: C15 - C28 Fraction		100	mg/kg	<100	3006 mg/kg	105	84	115		
EP071: C29 - C36 Fraction		100	mg/kg	<100	1584 mg/kg	93.8	80	112		
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50						

Page : 5 of 6 Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Sub-Matrix: SOIL	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCLo	ot: 1877045)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	96.4	68	125
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCLo	ot: 1881053)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1160 mg/kg	98.8	83	117
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3978 mg/kg	99.3	82	114
EP071: >C34 - C40 Fraction		100	mg/kg	<100	313 mg/kg	89.1	73	115
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50				
EP080: BTEXN (QCLot: 1877045)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	98.0	74	124
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	98.3	77	125
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	98.5	73	125
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	99.3	77	128
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	101	81	128
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	89.8	66	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	_imits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
G005T: Total Met	als by ICP-AES (QCLot: 1877609)								
EM1813052-002	QS2A	EG005T: Arsenic	7440-38-2	50 mg/kg	98.5	78	124		
		EG005T: Cadmium	7440-43-9	50 mg/kg	93.6	84	116		
		EG005T: Chromium	7440-47-3	50 mg/kg	93.0	79	121		
		EG005T: Copper	7440-50-8	50 mg/kg	94.4	82	124		
		EG005T: Lead	7439-92-1	50 mg/kg	100	76	124		
		EG005T: Nickel	7440-02-0	50 mg/kg	95.4	78	120		
		EG005T: Zinc	7440-66-6	50 mg/kg	106	74	128		
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 1877608)								
EM1813052-002	QS2A	EG035T: Mercury	7439-97-6	5 mg/kg	79.2	76	116		
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 1881052)								
EM1813029-002	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	98.2	67	117		
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	104	52	148		
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 1877045)								
EM1812960-091	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	110	42	131		

Page : 6 of 6 Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Sub-Matrix: SOIL					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 1881053)									
EM1813029-003	Anonymous	EP071: C10 - C14 Fraction		806 mg/kg	82.6	53	123			
		EP071: C15 - C28 Fraction		3006 mg/kg	92.9	70	124			
		EP071: C29 - C36 Fraction		1584 mg/kg	83.2	64	118			
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 1877045)								
EM1812960-091	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	106	39	129			
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 1881053)								
EM1813029-003	Anonymous	EP071: >C10 - C16 Fraction		1160 mg/kg	84.8	65	123			
		EP071: >C16 - C34 Fraction		3978 mg/kg	89.3	67	121			
		EP071: >C34 - C40 Fraction		313 mg/kg	73.0	44	126			
EP080: BTEXN (Q	CLot: 1877045)									
EM1812960-091	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	122	50	136			
		EP080: Toluene	108-88-3	2 mg/kg	120	56	139			

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM1813052** Page : 1 of 5

Client : TRACE ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : MR KEN HENDERSON
 Telephone
 : +61-3-8549 9600

 Project
 : 1.16
 Date Samples Received
 : 15-Aug-2018

 Site
 : MASCOT
 Issue Date
 : 20-Aug-2018

Sampler : JE No. of samples received : 2
Order number : No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Matrix: SOIL				Evaluation	n: 🗴 = Holding time	breach; ✓ = With	in holding tir	
Method	Sample Date	Ex	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content (Dried @ 105-110°C)								
oil Glass Jar - Unpreserved (EA055)								
QS1A	08-Aug-2018				16-Aug-2018	22-Aug-2018	✓	
oil Glass Jar - Unpreserved (EA055)	10 Aug 2019				17-Aug-2018	24-Aug-2018		
QS2A	10-Aug-2018				17-Aug-2016	24-Aug-2016	√	
EG005T: Total Metals by ICP-AES		1	I			I		
ioil Glass Jar - Unpreserved (EG005T) QS1A	08-Aug-2018	16-Aug-2018	04-Feb-2019	1	16-Aug-2018	04-Feb-2019	/	
oil Glass Jar - Unpreserved (EG005T)	00-Aug-2010	10-Aug-2010	04-1 65-2019	•	10-Aug-2010	04-1 CD-2019	V	
QS2A	10-Aug-2018	16-Aug-2018	06-Feb-2019	1	16-Aug-2018	06-Feb-2019	1	
EG035T: Total Recoverable Mercury by FIMS					1	<u>I</u>	<u> </u>	
oil Glass Jar - Unpreserved (EG035T)		<u> </u>			1			
QS1A	08-Aug-2018	16-Aug-2018	05-Sep-2018	1	17-Aug-2018	05-Sep-2018	1	
oil Glass Jar - Unpreserved (EG035T)								
QS2A	10-Aug-2018	16-Aug-2018	07-Sep-2018	✓	17-Aug-2018	07-Sep-2018	✓	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
oil Glass Jar - Unpreserved (EP075(SIM))								
QS1A	08-Aug-2018	17-Aug-2018	22-Aug-2018	✓	17-Aug-2018	26-Sep-2018	✓	
Soil Glass Jar - Unpreserved (EP075(SIM))			04 4 0040			00.0 0040		
QS2A	10-Aug-2018	17-Aug-2018	24-Aug-2018	✓	17-Aug-2018	26-Sep-2018	✓	
EP080/071: Total Petroleum Hydrocarbons								
oil Glass Jar - Unpreserved (EP080)			00.40040			00 4 0040		
QS1A	08-Aug-2018	16-Aug-2018	22-Aug-2018	✓	16-Aug-2018	22-Aug-2018	✓	
oil Glass Jar - Unpreserved (EP071) QS1A	08-Aug-2018	17-Aug-2018	22-Aug-2018	1	17-Aug-2018	26-Sep-2018		
oil Glass Jar - Unpreserved (EP080)	00-Aug-2010	17-Aug-2010	22-Aug-2010	•	17-Aug-2010	20-0ep-2010	✓	
Oli Glass Jar - Unpreserved (EPUSU) QS2A	10-Aug-2018	16-Aug-2018	24-Aug-2018	1	16-Aug-2018	24-Aug-2018	1	
oil Glass Jar - Unpreserved (EP071)	111111111111111111111111111111111111111			_			_	
QS2A	10-Aug-2018	17-Aug-2018	24-Aug-2018	1	17-Aug-2018	26-Sep-2018	1	

Page : 3 of 5 Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080)							
QS1A	08-Aug-2018	16-Aug-2018	22-Aug-2018	✓	16-Aug-2018	22-Aug-2018	✓
Soil Glass Jar - Unpreserved (EP071) QS1A	08-Aug-2018	17-Aug-2018	22-Aug-2018	1	17-Aug-2018	26-Sep-2018	✓
Soil Glass Jar - Unpreserved (EP080) QS2A	10-Aug-2018	16-Aug-2018	24-Aug-2018	1	16-Aug-2018	24-Aug-2018	✓
Soil Glass Jar - Unpreserved (EP071) QS2A	10-Aug-2018	17-Aug-2018	24-Aug-2018	✓	17-Aug-2018	26-Sep-2018	√
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080)							
QS1A	08-Aug-2018	16-Aug-2018	22-Aug-2018	✓	16-Aug-2018	22-Aug-2018	✓
Soil Glass Jar - Unpreserved (EP080) QS2A	10-Aug-2018	16-Aug-2018	24-Aug-2018	√	16-Aug-2018	24-Aug-2018	1

Page : 4 of 5 Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.10

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL**Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-AES	EG005T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
FRH Volatiles/BTEX	EP080	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
FRH Volatiles/BTEX	EP080	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-AES	EG005T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
FRH Volatiles/BTEX	EP080	1	5	20.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : EM1813052

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenois (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : **EM1813052**

Client : TRACE ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Melbourne

Contact : MR KEN HENDERSON Contact : Customer Services EM

Address : Shop 2 793-799 New Canterbury Road Address : 4 Westall Rd Springvale VIC Australia

Dulwich Hill NSW 2203

Telephone : ---- Telephone : +61-3-8549 9600
Facsimile : ---- Facsimile : +61-3-8549 9626

Project : 1.16 Page : 1 of 2

 Order number
 :
 Quote number
 : EB2017TRAENV0001 (EN/222/17)

 C-O-C number
 : NEPM 2013 B3 & ALS QC Standard

Site : MASCOT
Sampler : JE

Dates

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Not Available

No. of coolers/boxes : 1 Temperature : 13.2°C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 2 / 2

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Sample(s) received in non-ALS container(s).
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.

Issue Date : 16-Aug-2018

Page : 2 of 2

Work Order EM1813052 Amendment 0

Client : TRACE ENVIRONMENTAL PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the metals/TRH/BTEXN/PAH laboratory and displayed in brackets without a time component **Joisture Content** Matrix: SOIL OIL - S-26 Client sample ID Laboratory sample Client sampling date / time EM1813052-001 08-Aug-2018 00:00 QS1A EM1813052-002 10-Aug-2018 00:00 QS2A

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS

- A4 - AU Tax Invoice (INV)	Email	accounts@traceenviro.com
JACK ELLIS		
 *AU Certificate of Analysis - NATA (COA) 	Email	jack@traceenviro.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jack@traceenviro.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jack@traceenviro.com
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	jack@traceenviro.com
- Chain of Custody (CoC) (COC)	Email	jack@traceenviro.com
- EDI Format - XTab (XTAB)	Email	jack@traceenviro.com
KEN HENDERSON		
 *AU Certificate of Analysis - NATA (COA) 	Email	ken@traceenviro.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ken@traceenviro.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ken@traceenviro.com
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	ken@traceenviro.com
- A4 - AU Tax Invoice (INV)	Email	ken@traceenviro.com
- Chain of Custody (CoC) (COC)	Email	ken@traceenviro.com
- EDI Format - XTab (XTAB)	Email	ken@traceenviro.com

Enviro Sample Vic

From:

Alena Bounkeua

Sent:

Tuesday, 14 August 2018 6:54 PM

To:

Enviro Sample Vic

Cc:

Enviro Sample NSW

Subject:

FW: Eurofins | mgt - Report 612025 : Site MASCOT (1.16)

Attachments:

612025_COC.pdf; 612025_sample_receipt_coc.pdf; 612025_summary.pdf;

image001.jpg

Hi Tony,

You will receive these samples in the morning – Can you please forward 18-Au16469 & 18-Au16471 to ALS as per client request?

I have already removed them off the report.

Thanks!

RIQ.

MARK BARRANO

Warm Regards,

Alena Bounkeua Eurofins|mgt

Phone: (02) 9900 8414

Email: AlenaBounkeua@eurofins.com

8- 10/8 1:20hm

Eurofins

Environmental Division Melbourne

Work Order Reference EM1813052

From: Nibha Vaidya

Sent: Tuesday, 14 August 2018 4:54 PM

To: Alena Bounkeua

Subject: FW: Eurofins | mgt - Report 612025 : Site MASCOT (1.16)

Telephone: +81-3-8649 9865

From: Ken Henderson

Ken (a) trace enviro. com

Sent: Tuesday, 14 August 2018 4:52:53 PM (UTC+10:00) Canberra, Melbourne, Sydney

To: Nibha Vaidya Cc: Jack Ellis

Subject: FW: Eurofins | mgt - Report 612025 : Site MASCOT (1.16)

Marin (4m)

EXTERNAL EMAIL*

Hi Nibha,

Can I please amend a few things for this job:

- 1. For all samples in which we have requested asbestos, we would like the NEPM/WA quantification method.
- Please analyse metals (M8) for samples SB1/0.5, SB10/0.5, SB11/1.2 and SB14/1.2;
- 3. Please analyse NEPM Screen for Soil Classification for sample SB6/2.6;
- 4. Please analyse metals (M8) and PAHs for samples SB18/0.2, SB19/0.8 and SB20/0.3;
- 5. Please analyse Suite B7 for sample SB26/0.2;
- Please analyse the trip blank and trip spike samples for vTPH & BTEXN.

Please also HOLD the PFAS analysis for sample SB27/0.5.

Finally, please FORWARD samples QS1A and QS2A to ALS for analysis of BTEXN/TRH, PAHs, and 8 metals. These were meant to be the triplicate samples and should not be analysed by Eurofins.

CERTIFICATE OF ANALYSIS

Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Contact : MR KEN HENDERSON

Address : Shop 2 793-799 New Canterbury Road

Dulwich Hill NSW 2203

Telephone : ----

Project : 1.16 Mascot

Order number : --

C-O-C number : 180802TRACE

Sampler : ---Site : ----

Quote number : EN/222/17 (Sydney Batches)

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 17-Aug-2018 15:00

Date Analysis Commenced : 20-Aug-2018

Issue Date : 23-Aug-2018 16:49

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Gerrad Morgan Asbestos Identifier Newcastle - Asbestos, Mayfield West, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 6
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

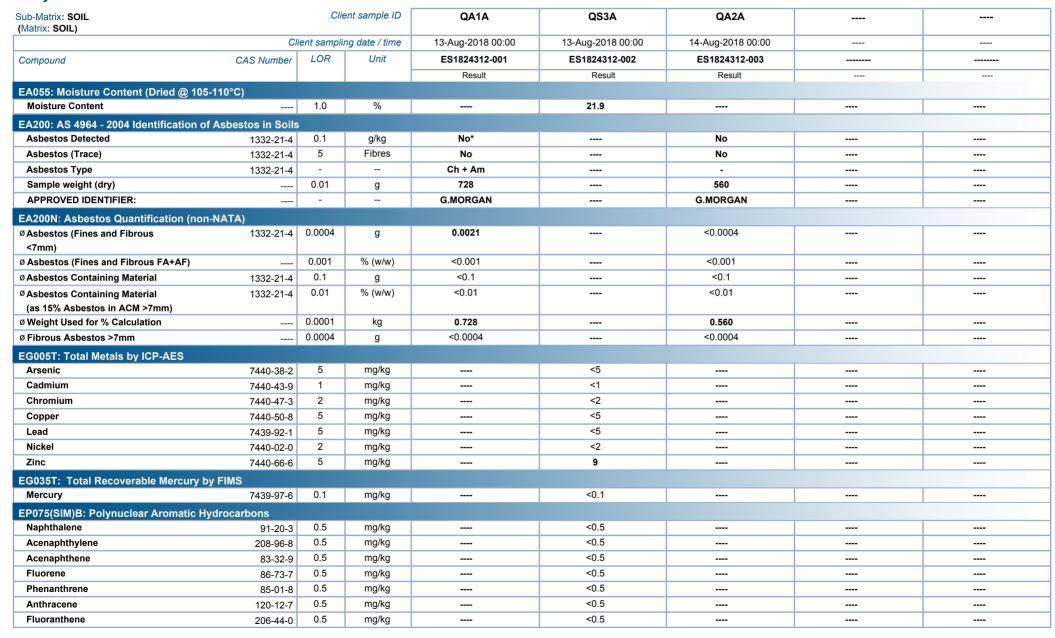
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EA200N: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation.
 - Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present)
 - The Asbestos (Fines and Fibrous) weight is calculated from the extracted Fibrous Asbestos and Asbestos Fines as an equivalent weight of 100% Asbestos
 - Percentages for Asbestos content in ACM are based on the 2013 NEPM default values.
- All calculations of percentage Asbestos under this method are approximate and should be used as a guide only.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Negative results for vinvl tiles should be confirmed by an independent analytical technique.
- EA200N: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.



Page : 3 of 6 Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Analytical Results



Page : 4 of 6 Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Analytical Results

Page : 5 of 6
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QA1A	QS3A	QA2A		
	Cli	ent sampli	ng date / time	13-Aug-2018 00:00	13-Aug-2018 00:00	14-Aug-2018 00:00		
Compound	CAS Number	LOR	Unit	ES1824312-001	ES1824312-002	ES1824312-003		
				Result	Result	Result		
EP080: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg		<0.2			
^ Total Xylenes		0.5	mg/kg		<0.5			
Naphthalene	91-20-3	1	mg/kg		<1			
EP075(SIM)S: Phenolic Compound Surrogates								
Phenol-d6	13127-88-3	0.5	%		93.6			
2-Chlorophenol-D4	93951-73-6	0.5	%		84.3			
2.4.6-Tribromophenol	118-79-6	0.5	%		66.0			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%		88.2			
Anthracene-d10	1719-06-8	0.5	%		87.2			
4-Terphenyl-d14	1718-51-0	0.5	%		81.3			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%		89.1			
Toluene-D8	2037-26-5	0.2	%		82.4			
4-Bromofluorobenzene	460-00-4	0.2	%		85.2			

Analytical Results Descriptive Results

Sub-Matrix: SOIL

Sub-iviatrix. Soil					
Method: Compound Client sample ID - Client sampling date / time A		Analytical Results			
EA200: AS 4964 - 2004 Identification of Asbesto	s in Soils				
EA200: Description	QA1A - 13-Aug-2018 00:00	Mid brown sandy soil with one piece of asbestos cement sheeting approximately 3 x 3 x 2mm.			
EA200: Description	QA2A - 14-Aug-2018 00:00	Mid brown sandy soil.			

Page : 6 of 6
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QUALITY CONTROL REPORT

Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Contact : MR KEN HENDERSON

Address : Shop 2 793-799 New Canterbury Road

Dulwich Hill NSW 2203

Telephone : ----

Project : 1.16 Mascot

Order number : ----

C-O-C number : 180802TRACE

Sampler : ----

Quote number : EN/222/17 (Sydney Batches)

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 17-Aug-2018

Date Analysis Commenced : 20-Aug-2018

Issue Date : 23-Aug-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Gerrad Morgan	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page : 2 of 7
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA055: Moisture Co	ntent (Dried @ 105-110°C)(QC Lot: 1887013)								
ES1824311-044	Anonymous	EA055: Moisture Content		0.1	%	9.6	10.1	4.56	0% - 50%	
ES1824321-001	Anonymous	EA055: Moisture Content		0.1	%	5.6	5.7	3.09	No Limit	
EG005T: Total Meta	s by ICP-AES (QC Lot: 188	9224)								
ES1824297-002	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	18	22	20.4	0% - 50%	
		EG005T: Nickel	7440-02-0	2	mg/kg	10	10	0.00	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	10	12	18.4	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	35	32	6.98	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	38	39	0.00	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	1150	1200	4.19	0% - 20%	
ES1824321-008	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	56	55	1.95	0% - 20%	
		EG005T: Nickel	7440-02-0	2	mg/kg	13	14	0.00	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	8	17.9	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	16	18	7.11	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	15	16	0.00	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	34	34	0.00	No Limit	
EG035T: Total Reco	overable Mercury by FIMS (QC Lot: 1889225)								
ES1824297-002	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
ES1824321-008	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
EP075(SIM)B: Polyn	uclear Aromatic Hydrocarbo	ons (QC Lot: 1883653)								
ES1824309-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
•	•									

Page : 3 of 7
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

EP075(SIM)B: Polynuclear Arc ES1824309-001 Anonymo	omatic Hydrocarbons (QC Lot: 1883653) - continued	86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 205-82-3 207-08-9 50-32-8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Original Result <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre></pre>	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit
ES1824309-001 Anonymo	EP075(SIM): Fluorene EP075(SIM): Phenanthrene EP075(SIM): Anthracene EP075(SIM): Fluoranthene EP075(SIM): Fluoranthene EP075(SIM): Pyrene EP075(SIM): Benz(a)anthracene EP075(SIM): Chrysene EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 205-82-3 207-08-9	0.5 0.5 0.5 0.5 0.5 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	0.00 0.00 0.00 0.00 0.00	No Limit No Limit No Limit No Limit
	EP075(SIM): Phenanthrene EP075(SIM): Anthracene EP075(SIM): Fluoranthene EP075(SIM): Pyrene EP075(SIM): Benz(a)anthracene EP075(SIM): Chrysene EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 205-82-3 207-08-9	0.5 0.5 0.5 0.5 0.5 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	0.00 0.00 0.00 0.00 0.00	No Limit No Limit No Limit No Limit
ES1824309-011 Anonymo	EP075(SIM): Anthracene EP075(SIM): Fluoranthene EP075(SIM): Pyrene EP075(SIM): Benz(a)anthracene EP075(SIM): Chrysene EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 205-82-3 207-08-9	0.5 0.5 0.5 0.5 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	0.00 0.00 0.00 0.00	No Limit No Limit No Limit
ES1824309-011 Anonymo	EP075(SIM): Fluoranthene EP075(SIM): Pyrene EP075(SIM): Benz(a)anthracene EP075(SIM): Chrysene EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 205-82-3 207-08-9	0.5 0.5 0.5 0.5	mg/kg mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5	0.00 0.00 0.00	No Limit No Limit
ES1824309-011 Anonymo	EP075(SIM): Pyrene EP075(SIM): Benz(a)anthracene EP075(SIM): Chrysene EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	129-00-0 56-55-3 218-01-9 205-99-2 205-82-3 207-08-9	0.5 0.5 0.5	mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5	<0.5 <0.5	0.00 0.00	No Limit
ES1824309-011 Anonymo	EP075(SIM): Benz(a)anthracene EP075(SIM): Chrysene EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	56-55-3 218-01-9 205-99-2 205-82-3 207-08-9	0.5 0.5	mg/kg mg/kg	<0.5 <0.5	<0.5	0.00	
ES1824309-011 Anonymo	EP075(SIM): Chrysene EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	218-01-9 205-99-2 205-82-3 207-08-9	0.5	mg/kg	<0.5			No Limit
ES1824309-011 Anonymo	EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	205-99-2 205-82-3 207-08-9		0 0		<0.5	0.00	
ES1824309-011 Anonymo	EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	205-82-3 207-08-9	0.5	mg/kg			0.00	No Limit
ES1824309-011 Anonymo	EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene				<0.5	<0.5	0.00	No Limit
ES1824309-011 Anonymo	EP075(SIM): Indeno(1.2.3.cd)pyrene	5∩ - 32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1824309-011 Anonymo		JU-JZ-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1824309-011 Anonymo	EP075(SIM): Dibenz(a.h)anthracene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1824309-011 Anonymo		53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1824309-011 Anonymo	EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1824309-011 Anonymo	EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1824309-011 Anonymo	EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	Dus EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total Petroleum H	vdrocarbons (QC Lot: 1883260)							
ES1824258-001 Anonymo			10	mg/kg	<10	<10	0.00	No Limit
ES1824443-001 Anonymo			10	mg/kg	<10	<10	0.00	No Limit

Page : 4 of 7
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 1883654)							
ES1824309-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1824309-011	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total R	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 1883260)							
ES1824258-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES1824443-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 1883654)							
ES1824309-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1824309-011	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (Q0	C Lot: 1883260)								
ES1824258-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES1824443-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Page : 5 of 7
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005T: Total Metals by ICP-AES (QCLot: 1889224	4)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	104	86	126	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	99.0	83	113	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	101	76	128	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	103	86	120	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	98.5	80	114	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	106	87	123	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	111	80	122	
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 1889225)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	79.3	70	105	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 1883653)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	89.6	77	125	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	97.8	72	124	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	91.7	73	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	93.6	72	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	96.4	75	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	90.0	77	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	90.6	73	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	97.0	74	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	95.3	69	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	93.4	75	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	98.3	68	116	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	93.1	74	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	91.4	70	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	92.0	61	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	92.1	62	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	96.7	63	121	
EP080/071: Total Petroleum Hydrocarbons (QCLot	t: 1883260)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	83.7	68	128	
EP080/071: Total Petroleum Hydrocarbons (QCLot	t: 1883654)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	97.0	75	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	96.4	77	131	
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	90.0	71	129	
EP080/071: Total Recoverable Hydrocarbons - NEP	PM 2013 Fractions (OCL)	ot: 1883260)							

Page : 6 of 7
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractions (QCL	ot: 1883260) - co	ntinued							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	88.3	68	128		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractions (QCL	ot: 1883654)								
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	94.3	77	125		
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	94.4	74	138		
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	99.6	63	131		
EP080: BTEXN (QCLot: 1883260)										
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	90.8	62	116		
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	85.2	67	121		
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	84.1	65	117		
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	84.1	66	118		
	106-42-3									
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	88.2	68	120		
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	92.3	63	119		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005T: Total Met	als by ICP-AES (QCLot: 1889224)						
ES1824297-002	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	106	70	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	106	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	108	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	108	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	112	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	108	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	# Not	70	130
					Determined		
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 1889225)						
ES1824297-002	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	90.6	70	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 1883653)						
ES1824309-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	87.5	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	94.8	70	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 1883260)						
ES1824258-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	80.1	70	130

Page : 7 of 7 Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 1883654)						
ES1824309-001	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	97.6	73	137
		EP071: C15 - C28 Fraction		2319 mg/kg	97.9	53	131
		EP071: C29 - C36 Fraction		1714 mg/kg	130	52	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	.ot: 1883260)					
ES1824258-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	80.8	70	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(QCL	ot: 1883654)					
ES1824309-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	102	73	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	124	53	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	120	52	132
EP080: BTEXN (Q	CLot: 1883260)						
ES1824258-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	76.1	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	75.4	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	77.1	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	75.6	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	79.5	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	81.3	70	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1824312** Page : 1 of 6

Client : TRACE ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : MR KEN HENDERSON
 Telephone
 : +61-2-8784 8555

 Project
 : 1.16 Mascot
 Date Samples Received
 : 17-Aug-2018

 Site
 : --- Issue Date
 : 23-Aug-2018

Sampler : --- No. of samples received : 3
Order number : --- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6 Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005T: Total Metals by ICP-AES	ES1824297002	Anonymous	Zinc	7440-66-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL	Evaluation: × = Holding time breach ; ✓ = W	ithin holding time.

Wattiv. Cole				Lvaldation	Holding time	breach, with	ir noluling time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055)							
QS3A	13-Aug-2018				21-Aug-2018	27-Aug-2018	✓
EA200: AS 4964 - 2004 Identification of Asbestos in Soils							
Snap Lock Bag (EA200)							
QA1A	13-Aug-2018				21-Aug-2018	09-Feb-2019	✓
Snap Lock Bag (EA200)							
QA2A	14-Aug-2018				21-Aug-2018	10-Feb-2019	✓
EA200N: Asbestos Quantification (non-NATA)							
Snap Lock Bag (EA200N)							
QA1A	13-Aug-2018				21-Aug-2018	09-Feb-2019	✓
Snap Lock Bag (EA200N)							
QA2A	14-Aug-2018				21-Aug-2018	10-Feb-2019	✓
EG005T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T)							
QS3A	13-Aug-2018	22-Aug-2018	09-Feb-2019	✓	22-Aug-2018	09-Feb-2019	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T)							
QS3A	13-Aug-2018	22-Aug-2018	10-Sep-2018	✓	22-Aug-2018	10-Sep-2018	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))							
QS3A	13-Aug-2018	21-Aug-2018	27-Aug-2018	✓	22-Aug-2018	30-Sep-2018	✓

Page : 3 of 6
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) QS3A	13-Aug-2018	20-Aug-2018	27-Aug-2018	1	22-Aug-2018	27-Aug-2018	✓
Soil Glass Jar - Unpreserved (EP071) QS3A	13-Aug-2018	21-Aug-2018	27-Aug-2018	✓	22-Aug-2018	30-Sep-2018	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) QS3A	13-Aug-2018	20-Aug-2018	27-Aug-2018	1	22-Aug-2018	27-Aug-2018	✓
Soil Glass Jar - Unpreserved (EP071) QS3A	13-Aug-2018	21-Aug-2018	27-Aug-2018	✓	22-Aug-2018	30-Sep-2018	√
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) QS3A	13-Aug-2018	20-Aug-2018	27-Aug-2018	1	22-Aug-2018	27-Aug-2018	✓

Page : 4 of 6 Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	entrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 6 Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Asbestos Classification and Quantitation per NEPM 2013	* EA200N	SOIL	Asbestos Classification and Quantitation per NEPM 2013 with Confirmation of Identification by AS 4964 - 2004 Gravimetric determination of Asbestos Containing Material, Fibrous Asbestos, Asbestos Fines and sample weight and calculation of percentage concentrations per NEPM protocols. Asbestos (Fines and Fibrous FA+AF) is reported as the equivalent weight in the sample received after accounting for sub-sampling (where applicable for the <7mm and/or <2mm fractions).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenois (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Page : 6 of 6
Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD

Project : 1.16 Mascot

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES1824312

Client : TRACE ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Sydney

Contact : MR KEN HENDERSON Contact : Customer Services ES

Address : Shop 2 793-799 New Canterbury Road Address : 277-289 Woodpark Road Smithfield

Dulwich Hill NSW 2203 NSW Australia 2164

 Telephone
 : --- Telephone
 : +61-2-8784 8555

 Facsimile
 : --- Facsimile
 : +61-2-8784 8500

Project : 1.16 Mascot Page : 1 of 2
Order number : ---- Quote number : ----

C-O-C number : 180802TRACE QC Level : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler :

Dates

Date

Delivery Details

 Mode of Delivery
 : Client Drop Off
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 7.7°C - Ice present

Receipt Detail : No. of samples received / analysed : 3 / 3

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Issue Date : 18-Aug-2018

Page

2 of 2 ES1824312 Amendment 0 Work Order

Client : TRACE ENVIRONMENTAL PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
Asbestos Classification and Qu	uantitation per NEPM 2013 : EA200N	
QA1A	- Snap Lock Bag	- Snap Lock Bag: Separate bag received
QA2A	- Snap Lock Bag	- Snap Lock Bag: Separate bag received

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determinasks, that are inclifing sampling default 00:00 on is provided, the	ry for the execution may contain ad ation of moisture ouded in the package. Itime is provided, the date of sampling sampling date will displayed in braches.	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	SOIL - EA055-103 Moisture Content	SOIL - EA200N Asbestos in Soils - (<1kg samples ONLY)	SOIL - S-26 8 metals/TRH/BTEXN/PAH
ES1824312-001	date / time 13-Aug-2018 00:00	QA1A	0) 2	<i>(</i>) ∢	ဟ ထ
ES1824312-002	13-Aug-2018 00:00	QS3A	1		1
ES 10243 12-002	13-Aug-2018 00:00		_	<u> </u>	V
ES1824312-003	14-Aug-2018 00:00	QA2A		✓	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS < last name >

- A4 - AU Tax Invoice (INV)	Email	accounts@traceenviro.com
KEN HENDERSON		
- *AU Certificate of Analysis - NATA (COA)	Email	ken@traceenviro.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ken@traceenviro.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ken@traceenviro.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ken@traceenviro.com
- A4 - AU Tax Invoice (INV)	Email	ken@traceenviro.com
- Chain of Custody (CoC) (COC)	Email	ken@traceenviro.com
- EDI Format - ENMRG (ENMRG)	Email	ken@traceenviro.com
- EDI Format - ESDAT (ESDAT)	Email	ken@traceenviro.com

81/8/10 signature Canterbury Road, Dulwich Hill, NSW. CLIENT DETAILS Office Address : 793-789 New eurofins Jack Elly ompany Name: TRACE Environments Contact Name: counts@traceenviro.com & Proj rofins (mgf Di water batch number: SBW/1-2 SBW/7-0 SBW/3-0 5.6/0.4 5.6/0.4 381W/0-5 Sample ID 40 Matrix Received By: mgt Project Manager: Email for results: Keyn (a) Hackenviro-com WA/NERY Sydn () 183 - 6 Buildhig F, 16 Mars Road, Lane Cove Inis: 4612 9900 8400 all: EnviroSampleNSW@etirofins.com.au thick Ellis Kenta Harriersen aboratory Staff Sube CHAIN OF CUSTODY RECORD DAY Retinquished By / Date. Comote / Courier: Organised By / Lab / Analysis: Attached By PO / Internal 10 DAY 2 DAY Environmental Division Work Order Reference ASBESTAS NEW - 61-2-8"B4 B556 Brisbane Unit 1-21 Smallwood Place, Murraria Phone: +617 3902 4600 Email: EnviroSample QLD@eurolins.com.au Other: 3 DAY Purchase Order PROJECT Name: PROJECT Number: Masco -16 1LP 250P rier Consignment BTEX, MAH, VOC Solids - TSS, TDS etc BOD, Nitrate, Nitrite, To 2 days Microbiological testing Mercury, CrVI Heavy Metals TRH. PAH, Phenois, Pe Postal Hand Delivered Courier Waters Some common holding times (with correct preservation).
For further information contact the lab 125P Method Of Shipment NUMBERSTITE 24 hai 2 Kingston Town Close, Caldeigh, V/C 3166
Phone: +613 8564 5000 Fax: +613 8564 5080 Email: EnviroSampleVic@eurofins.com.au: Eurofins | mat quote ID : COC Number : Data output format SPOCAS, pH Field and FOX, 024, hours Mercury, GrVI Microbiological testing TRH, PAH, Phenois, Pesticides 14 days STEX, MAH, VOC ASLP, TCLP Heavy Metals Melbourne Page 1868 OCTRACO contact sample contact sample Soils emperature on arrival: Sample comments: 30 28 days 72 hours 28 days

* PH ax only (SPOCAS ASS Method) "Field test" - ASS M (NATA METHOD) RECUSOR THE MISH RECUSOR TO THE MISH RECUSOR THE MISH RECUSOR THE MISH RECUSOR TO THE MISH RECUSOR THE MISH All ASS bags have been frozen. Issue Date: 22 August 2013 Page of I

										4	MA	Signature:	Signature:
		Postal urier Consignment			Other	10 DAY	SDAY	70	14/11	20	1880/	Date & Time:L	
Report number:		Courier Hand Delivered			3 DAY	2 DAY	1 DAY			711	hade	Received By:	Felinquisher Lelly Re
i dilibonamia un'aliman	Shipment	Method Of Shipment			und time	Turn around time			taff	Laboratory Staff		E	Del Indian
Tomografius on arrival:	_								1	1			01/8/8 6:0/mde 91
\			H.										26/1/10:0
	_							\			1		13 SBIF/40
/	10												12 5817/8-0
1							-	\ 					-
								1					
- The state of the			1										_
				b				/					2 2 DHILL
1										1			_
1			1				1	1					5 05W/100
			1	-			1	\	-				" 2811/2.0
			4				1	1					3 5814/6.0
7			4										2 1811/30 1
contact sample				-				`					1 58 11 60 DIG 18 SIL
Bag contact sample	iomituitesmil Jar B	ILP 250P 125P 1LA 10		-				Fie	^	J	2		Sample IQ Date Matrix
Sample comments:		Containers:	OLD					•		PA	בים בים בים	est	a vine limited in the second control
/ cays	rosya ASLP, ICUT	Tellous iron						28	V	H	te	os	Funding mot Di water batch oursbar:
THows			_						1	1	E	(
SPOCAS, pH Field and FOX, Q24 hours		Solids - TSS, TDS etc 7 days						PF.	C		W 7	W	
		Microbiological testing 2	Т	-			_	A	1		a	A i	
		Mercury, CrVI 2						5	8			Ne	
s 6 months	6 mon Heavy Metals	Heavy Motals 6						K	1.			P/	
s, Pesticide		s, Pe		-				<i>F</i> :	Ð			1)	Manager
VOC 14 days	14 day BTEX, MAH, VOC	BTEX, MAH, VOC 1	1					70	11.				THEASE BRITAIN INVOICES TO
Soils		Waters		-					4	1		1	rois Nicotions
Some common noiging times (with correct preservedors). For further information contact the lab	noiding times (with conta	Some common for fu					Analytes	9	*	(t	
nat	Data output format:	T	lasco	MC	PROJECT Name:	-	365	9	1	0	Email for results :	Email to	Canterbury Road, Dulwich Hill, NSW.
wote ID: See 1/2)	Eurofins i met quote iD :		-16)_	PROJECT Number:	7	7	15	18	3	3	Project	Office Address : 793-799 New
202 6	COC Number :				Purchase Order:	P			100	1		nte Contact	Company Name : TRACE Environment Contact Name:
of 1	Page 1				1							Ġ.	
					RECORD	CHAIN OF CUSTODY RECORD	AIN OF	C	ı			mg.	
2 Kingston Town Close, Oakleigh. VK 3168 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: Enviro Sample Vic@ ourofins.com.au-	2 Kingston Town Clos Phone: +613 8564 50 Email: EnviroSample	C	om.au	os, Murrañe D@eurofins.c	Unit 1-21 Smallwood Place, Murrade Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofits.com.au	Unik Phon Emai			ad, Lane Cove ins.com.au	, 16 Mars Roa 400 NSW@eurof	Sydn C 1F3 - 6 Buildhaff, 16 Mars Road, Lane Cove me: +612 9900 8400 all: EnviroSampleNSW@eurofins.com.au	B X -	eurofins
ne	Melbourne]			Brichano								

* PH Dox Only (Spochs ass Method) "Field lest" - As Page (

CLIENT DETAILS Company Name: TRACE Environment Contact Name: Canterbury Road, Dulwich Hill, NSW. Office Address : 793-799 New eurofins Jack Chis rofins | mgt Di water batch number: counts@traceenviro.com & Proj \$870/2-1818/ 5820/0.0 5820/0.0 5820/12.0 SB2016.0 530/8.0 SB21/0-15 13/8/1/8 Sample ID Date 17 Seil Matrix Received By: Project Manager: Email for results: B7 B70 C Sute B7 Sute B7 Sute B15 Sydn t F3 - 6 Buildhag F, 16 Mars Road, Lans Cove ne: 4612 8600 8400 al: EnviroSampleNSW@eurofins.com.au TO SUBJECT OF aboratory Staff Sack Del SIAIRM clus 8 CHAIN OF CUSTODY RECORD DAY Analytes 2 DAY Brisbane
Unit 1-21 Smallwood Place, Murrane
Phone: +617 3902 4600 Email: EnviroSampleQLD@eurofins.com.au 3 DAY Others PROJECT Name: PROJECT Number: Purchase Order: Masco HOLD 1LP 250P 125P Mercury, CrVI 28 day
Microbiological testing 24 hou
BOD, Nitrate, Nitrite, To 2 days fler Consignment Heavy Metals Ferrous iron TRH, PAH, Phenois, Pe 7 days BTEX, MAH, VOC Solids - TSS, TDS etc Postal Hand Delivered Waters same cammon holding times (with correct preservation)
For further information contact the lab Method Of Shipment 7 days 2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVio@eurofins.com.au Eurofins | mgt quote ID : Sap Po COC Number: Data output format: ASLP, TCLF SPOCAS, pH Field and FOX, 024 hours Microbiological testing TRH, PAH, Phenols, Posticides 14 days Mercury, CrvI Heavy Metals BTEX, MAH, VOC Melbourne Jar Bag 307 contact sample. Soils contact sample Temperature on arrival: Report number: Sample comments: 7 days 28 days 28 days 6 months 72 nours

A PH Cox only (Spocas ass Method) "Field best" - As Pay !

eurofins	t F3 - 6 Buildhig F. 16 Mars Road, Lane Cove	One 1-2 Smallwood Flace, Montaine Phore: +817 8802 4600 Email: EnviroSampleQLD@euroins.com.au		Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurolins.com.au
		CHAIN OF CUSTODY RECORD	the state of the s	April 1 common
			Page f	of 1
Company Name: TRACE Environments Contact Name:	nents Contact Name:	Purchase Order:	COC Number :	9 40 0
Office Address : 799-799 New	- CONCOL	PROJECT Number:	Eurofins mat quote iD :	uote ID: 500 /G)
Centerbury Road, Dulwich Hill, NSW.	-	PROJECT Name:	Data output format:	
			Some common holding times (with correct preservation). For further information contact the lab	rrect preservation).
Special Directions (Waters	Solls
accounts@traceenviro.com & Proj Manager	2pm			
			Heavy Metals 6 mon Heavy Metals	Heavy Metals 6 months
	-		26 da)	
	187			
			Solids - TSS, TDS etc. 7 days SPOCAS, pH	SPOCAS, pH Field and FOX, 024 hours
	A LO			7 days
	8	LO	Containers:	Canada Constitution of the
Sample ID Date Matrix	Ą	HC	1LP 250P 125P 1LA funt visitation Jar Bag	
1 350 0 0 13/8/18 E	5,1		The state of the s	-
2 5622/1-0			1	
3 5822/1-3			Y	
4 302-12-6			_	
_				
9 5022/60				1
SS				
12 5826/1-0				
13 5876/17-0				8,1
15 5826/4-0				
16 5826/5.0		Turn around time	Method Of Shipment	Temperature on arrival:
Relinquished Click	Received By:		Courier	\$1.11
90	Date & Time! (SOS) S Affin	10 PAV OTBAT	Postal	Heport numbers
VIIIV	Signature		uner Consignment:	, s

Issue Date: 22 August 2013 Page 1 of 1 * pH fox Only (Spocks Mrss Method) "Full tesit - As Page 1

eurofins	Sydney Unite's - 6 Building E., 18 Maris Read, Lane Cove Phone: -1612 9900 9409 Email: EnviroSampleNSW @gurolins.com.au	☐ Brisbane Unit 1-21 Smallwood Place, Murraria Phone: +617 3802 4800 Email: EnviroSampleQLD@eurolins.com.au	Melbourne 2 Kingston Town Citise, Oakleigh, VIC 3166 Phone: +613 8584 5000 Fax: +613 8564 5090 Email: EnviroSampleVo®eurofins.com.au
1 100	CHAIN OF CUSTODY RECORD	Y RECORD	
CLIENT DETAILS			2
Company Name: TRACE Environmental	Contact Name: To A GIII	Purchase Order:	6 J. D. S. COC Number:
Office Address : 793-799 New Canterbury Road, Dulwich	Project Manager: C C C C	PROJECT Number:	Eurolins mgt quote iD: Sit See R
Hill, NSW, 2203	Email for results: \>77	PROJECT Name:	Data output formal:
	Chnalytes		Some common holding times (with correct preservation). For further information contact the lab
Special Directions & Commen)		Waters Soils
Please email invoices to accounts@traceenviro.com & Proj Manager	PM		14 day BIEX, MAH, VOC
	<u> </u>	5_	Heavy Metals 6 mon Heavy Metals 6 months
	7.	Z.	28 day Mercury, CrVI
	ん子のちゃんこりにり	-	24 hou Microbiological testing
	2 10 PA	te	Solids - TSS, TDS etc 7 days SPOCAS, pH Field and FOX, C 24 hours
Eurofins mgt Ciwater batch number:	eshite ville ville ville vien 29 Su	nd	
Sample ID Date Matrix	45 Si weld	HOLI	Containers: Sample comments:
1 5876/6.0 10/8/18 Soil	V		1
2 8876/7-0			Contract semble
Sand			
5/18/0 O 0/8/18			
10/0			
8 S327/3:)			N.
1.			
QAIA			
114 (0534		\	
682			
2 118/0/10	Laboratory Staff	Turn around time	Method Of Shipment Temperature on arrival:
Reinquisher Sackelly Reco	Bate & Time: 1908/8 5:4/M 10AY 10AY 10AY 10AY	Others	☐ Courier ☐ Hand Delivered ☐ Report number: ☐ Postai ☐ Postai ☐ Postai
QS2009_R1 Issue Date: 22 August 2013 Page I	Page 1 of 1		

* PH poor only (Spoc4s Ass Method) "Freld Hest" - As Page !

Tess G 16/8/18 7.70 Date & Time: 14/8 /1/5 💸 eurofins Office Address : 793-799 New Canterbury Road, Dulwich Hill. NSW. 2203 CLIENT DETAILS roj Manager pecial Directions & Con lease smail invoices to accounts@traceenviro.com & empany Name: TRACE Environmental rofins | mgt DI water batch number: \$89/0.15 \$89/0.15 \$813/0.4 \$813/0.4 \$814/0.3 \$814/0.3 320/035 Sample ID Suckelly 81818 11.18/18 14/5/18 Dale mgt 3016 Matrix 133 E Received By: APAL * PHBa only (spoces As Method) "Field test" - As Page Email for results; Project Manager: (WA NEPM Sydney
Unit F3 - 6 Building F, 16 Mars Road, Lane Cove
Phone: +612 9900 8400
Email: EnviroSampleNSW@eurolins.com.au 5/8/18 X Sun? CHAIN OF CUSTODY RECORD S DAY Jan 9 1 DAY Analytes (10 DAY 2 DAY urn around time Brisbane
Unit 1-21 Smallwood Place, Murrarie
Phone: +617 3902 4600
Email: EnviroSampleQLD@aurolins.com.au S DAY Other: Purchase Order: PROJECT Name: PROJECT Number: 1.16 SEND to ALS Masco rier Consignment LP 250P 125P 1LA OmL vig25mL BOD, Nilrato, Nilrito, Told 2 days Anions 28 days Solids - TSS, TDS etc 7 days SPOCAS, pH Field and FOX, Ct 24 hours Microbiological testing TRH, PAH, Phenols, Pes 7 days BTEX, MAH, VOC Mercury, CrVI Heavy Metals Postal Counter Hand Delivered Waters mon holding times (with correct preservation). For turther information contact the lab 24 hou 7 days ASLP, TCLP 2 Kingston Town Close, Oakleigh, VIC 3168 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurolins.com.au Microbiological testing COC Number: Data output format: Eurofins | mgt quote ID : Melbourne Mercury, CrV! TRH, PAH, Phenols, Pesticides BTEX, MAH, VOC Heavy Metals Page Jar 20 9 Soils Serve contact sample contact sample Sample comments: to ALL 72 hours 14 days 28 days 14 days 6 months 20

Certificate of Analysis

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill NSW 2203 lac-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 — Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ken Henderson

 Report
 612557-W

 Project name
 MASCOT

 Project ID
 1.16

 Received Date
 Aug 15, 2018

Client Sample ID			MW1	MW2	MW3	MW4	
Sample Matrix			Water	Water	Water	Water	
Eurofins mgt Sample No.			S18-Au19998	S18-Au19999	S18-Au20000	S18-Au20001	
Date Sampled			Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	
Test/Reference	LOR	Unit	3 ,	3 ,		3 , , ,	
Total Recoverable Hydrocarbons - 2013 NEPM		1 01.110					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
BTEX							
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Toluene	0.001	mg/L	0.002	< 0.001	< 0.001	< 0.001	
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	
4-Bromofluorobenzene (surr.)	1	%	104	121	119	118	
Volatile Organics							
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	

01 mm 01 m	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	MW1 Water S18-Au19998 Aug 15, 2018 < 0.001 < 0.001 < 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	MW2 Water S18-Au19999 Aug 15, 2018 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	MW3 Water \$18-Au20000 Aug 15, 2018 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	MW4 Water \$18-Au20001 Aug 15, 2018 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 mm 01 mm 01 m 01 m 01 m 01 m 01 m 01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	\$18-Au19998 Aug 15, 2018 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	\$18-Au19999 Aug 15, 2018 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	\$18-Au20000 Aug 15, 2018 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	\$18-Au20001 Aug 15, 2018 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 mm 01 mm 01 m 01 m 01 m 01 m 01 m 01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	 Aug 15, 2018 < 0.001 < 0.001 < 0.001 < 0.005 < 0.001 < 0.005 	 Aug 15, 2018 < 0.001 < 0.005 	 Aug 15, 2018 < 0.001 	 Aug 15, 2018 < 0.001
01 mm 01 mm 01 m 01 m 01 m 01 m 01 m 01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 mm 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.005	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 01 m 01 m 01 m 01 m	mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001
01 m 01 m 01 m 01 m 05 m 01 m	mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001
01 m 01 m 05 m 01 m	mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.005	< 0.001 < 0.001 < 0.005	< 0.001 < 0.001	< 0.001 < 0.001
01 m 05 m 01 m	mg/L mg/L mg/L	< 0.001 < 0.005	< 0.001 < 0.005	< 0.001	< 0.001
05 m 01 m 01 m	mg/L mg/L	< 0.005	< 0.005		
01 m	mg/L			< 0.005	< 0.00E
01 m		< 0.001			< 0.005
	mg/L		< 0.001	< 0.001	< 0.001
ا بہ		< 0.001	< 0.001	< 0.001	< 0.001
01 m	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
01 m	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
01 m	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
01 m	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
01 m	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
01 m	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
01 m	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
					< 0.001
					< 0.001
					< 0.001
					< 0.001
					< 0.001
					< 0.001
					< 0.001
03 I m	mg/L				< 0.003
		< 0.003	< 0.003		< 0.003
03 m	ma/l				< 0.005
03 m 05 m		< 0.00E	< 0.005	< 0.005	< 0.005
03 m 05 m 05 m	mg/L %	104	121	119	118
00	001 001 001 001 001 001 001 001 003 003	001 mg/L 001 mg/L 001 mg/L 001 mg/L 001 mg/L 001 mg/L 001 mg/L 001 mg/L 001 mg/L 003 mg/L 003 mg/L 005 mg/L	mg/L < 0.001 mg/L 0.002 001 mg/L 0.002 001 mg/L < 0.001	001 mg/L < 0.001 < 0.001 001 mg/L 0.002 < 0.001	001 mg/L < 0.001 < 0.001 < 0.001 001 mg/L 0.002 < 0.001

Client Sample ID			MW1	MW2	MW3	MW4
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Au19998	S18-Au19999	S18-Au20000	S18-Au20001
Date Sampled			Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	1 2011	01111				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	54	61	55	55
p-Terphenyl-d14 (surr.)	1	%	67	77	84	70
Organochlorine Pesticides		,,,	<u> </u>			
Chlordanes - Total	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4.4'-DDD	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
4.4'-DDE	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
4.4'-DDT	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
a-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Aldrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
b-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
d-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Dieldrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endosulfan I	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endosulfan II	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endosulfan sulphate	0.0001	ma/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endrin aldehyde	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endrin ketone	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Heptachlor	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Heptachlor epoxide	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Hexachlorobenzene	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Methoxychlor	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Toxaphene	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin and Dieldrin (Total)*	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
DDT + DDE + DDD (Total)*	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibutylchlorendate (surr.)	1	%	51	56	59	53
Tetrachloro-m-xylene (surr.)	1	%	58	73	73	65

[<u> </u>	I			1		
Client Sample ID			MW1	MW2	MW3	MW4	
Sample Matrix			Water	Water	Water	Water	
Eurofins mgt Sample No.			S18-Au19998	S18-Au19999	S18-Au20000	S18-Au20001	
Date Sampled			Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	
Test/Reference	LOR	Unit					
Organophosphorus Pesticides							
Azinphos-methyl	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Bolstar	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Chlorfenvinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Chlorpyrifos	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	
Chlorpyrifos-methyl	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Coumaphos	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	
Demeton-S	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	
Demeton-O	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Diazinon	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Dichlorvos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Dimethoate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Disulfoton	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
EPN	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Ethion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Ethoprop	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Ethyl parathion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Fenitrothion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Fensulfothion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Fenthion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Malathion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Merphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Methyl parathion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Mevinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Monocrotophos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Naled	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Omethoate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Phorate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Pirimiphos-methyl	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	
Pyrazophos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Ronnel	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Terbufos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Tetrachlorvinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Tokuthion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Trichloronate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Triphenylphosphate (surr.)	1	%	66	81	79	83	
Polychlorinated Biphenyls							
Aroclor-1016	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Aroclor-1221	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Aroclor-1232	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Aroclor-1242	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Aroclor-1248	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Aroclor-1254	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Aroclor-1260	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Total PCB*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Dibutylchlorendate (surr.)	1	%	51	56	59	53	
Tetrachloro-m-xylene (surr.)	1	%	58	73	73	65	

Client Sample ID			MW1	MW2	MW3	MW4	
Sample Matrix			Water	Water	Water	Water	
Eurofins mgt Sample No.			S18-Au19998	S18-Au19999	S18-Au20000	S18-Au20001	
. • .							
Date Sampled			Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	
Test/Reference	LOR	Unit					
Phenols (Halogenated)		<u> </u>					
2-Chlorophenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	
2.4-Dichlorophenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	
2.4.5-Trichlorophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
2.4.6-Trichlorophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
2.6-Dichlorophenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	
4-Chloro-3-methylphenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Pentachlorophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Tetrachlorophenols - Total	0.03	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	
Total Halogenated Phenol*	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Phenols (non-Halogenated)							
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
2-Methyl-4.6-dinitrophenol	0.03	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	
2-Methylphenol (o-Cresol)	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	
2-Nitrophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
2.4-Dimethylphenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	
2.4-Dinitrophenol	0.03	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	< 0.006	< 0.006	< 0.006	< 0.006	
4-Nitrophenol	0.03	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	
Dinoseb	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
Phenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	
Total Non-Halogenated Phenol*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
Phenol-d6 (surr.)	1	%	40	43	40	38	
Perfluoroalkyl carboxylic acids (PFCAs)							
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05	
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	^{N09} 0.01	^{N09} 0.02	< 0.01	
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	^{N09} 0.01	^{N09} 0.02	< 0.01	
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01	
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	^{N09} 0.01	^{N09} 0.01	< 0.01	
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01	
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01	
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01	
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01	
Perfluorotridecanoic acid (PFTrDA)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01	
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01	
13C4-PFBA (surr.)	1	%	71	68	61	67	
13C5-PFPeA (surr.)	1	%	67	72	65	72	
13C5-PFHxA (surr.)	1	%	83	81	76	78	
13C4-PFHpA (surr.)	1	%	81	82	76	80	
13C8-PFOA (surr.)	1	%	84	88	82	88	
13C5-PFNA (surr.)	1	%	90	90	82	94	
13C6-PFDA (surr.)	1	%	99	108	97	103	
13C2-PFUnDA (surr.)	1	%	72	74	60	76	
13C2-PFDoDA (surr.)	1	%	62	67	50	62	
13C2-PFTeDA (surr.)	1	%	42	44	35	41	

Client Sample ID			MW1	MW2	MW3	MW4
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Au19998	S18-Au19999	S18-Au20000	S18-Au20001
Date Sampled			Aug 15. 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018
Test/Reference	LOR	Unit	Aug 10, 2010	Aug 10, 2010	Aug 10, 2010	Aug 10, 2010
Perfluoroalkyl sulfonamido substances	LOIN	Offic				
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-	0.03	ug/L	< 0.03	< 0.03	< 0.03	< 0.03
MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
I3C8-FOSA (surr.)	1	%	46	54	59	63
D3-N-MeFOSA (surr.)	1	%	34	36	33	33
D5-N-EtFOSA (surr.)	1	%	34	35	31	33
D7-N-MeFOSE (surr.)	1	%	32	37	31	31
D9-N-EtFOSE (surr.)	1	%	31	35	34	35
D5-N-EtFOSAA (surr.)	1	%	37	54	44	49
03-N-MeFOSAA (surr.)	1	%	32	49	39	41
Perfluoroalkyl sulfonic acids (PFSAs)	0.04		201	0.04	0.04	0.04
Perfluorobutanesulfonic acid (PFBS)N11	0.01	ug/L	< 0.01	< 0.01	0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01 N090.01	< 0.01 N090.02	< 0.01 N090.03	< 0.01 N090.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11} Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L ug/L	< 0.01	< 0.02	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	N090.03	< 0.01	N090.02
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.02
I3C3-PFBS (surr.)	1	% %	107	106	104	104
18O2-PFHxS (surr.)	1	%	106	105	107	106
13C8-PFOS (surr.)	1	%	96	97	96	99
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	•					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 -TSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
IH.1H.2H.2H-perfluorooctanesulfonic acid (6:2 =TSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 =TSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	42	40	30	37
13C2-6:2 FTSA (surr.)	1	%	53	54	41	45
13C2-8:2 FTSA (surr.)	1	%	75	77	36	57
PFASs Summations	1					
Sum (PFHxS + PFOS)*	0.01	ug/L	0.01	0.05	0.03	0.03
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	0.04	0.01	0.02
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	0.01	0.06	0.04	0.03
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	0.08	0.09	< 0.05
Sum of PFASs (n=28)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1
Heavy Metals				0.515		
Arsenic (filtered)	0.001	mg/L	< 0.001	0.013	0.007	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered) Copper (filtered)	0.001 0.001	mg/L mg/L	< 0.001 0.19	< 0.001 0.10	< 0.001 0.033	< 0.001 0.059

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			MW1 Water S18-Au19998 Aug 15, 2018	MW2 Water S18-Au19999 Aug 15, 2018	MW3 Water S18-Au20000 Aug 15, 2018	MW4 Water S18-Au20001 Aug 15, 2018
Test/Reference	LOR	Unit				
Heavy Metals	vy Metals					
Lead (filtered)	0.001	mg/L	0.012	0.007	0.003	0.005
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.009	0.007	0.007	0.006
Zinc (filtered)	0.005	mg/L	0.18	0.21	0.16	0.053

Client Sample ID			QW1	TRIP BLANK	R20TRIP SPIKE
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S18-Au20002	S18-Au20003	S18-Au20004
Date Sampled			Aug 15, 2018	Aug 15, 2018	Aug 15, 2018
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	85
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	75
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	-	-
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	71
TRH C10-C14	0.05	mg/L	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	-	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-	-
BTEX					
Benzene	0.001	mg/L	< 0.001	< 0.001	86
Toluene	0.001	mg/L	< 0.001	< 0.001	85
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	80
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	85
o-Xylene	0.001	mg/L	< 0.001	< 0.001	84
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	84
4-Bromofluorobenzene (surr.)	1	%	98	96	99
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	< 0.001	-	-
Acenaphthylene	0.001	mg/L	< 0.001	-	-
Anthracene	0.001	mg/L	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	-	-
Fluorene	0.001	mg/L	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	_	-

Client Sample ID			QW1	TRIP BLANK	R20TRIP SPIKE
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S18-Au20002	S18-Au20003	S18-Au20004
Date Sampled			Aug 15, 2018	Aug 15, 2018	Aug 15, 2018
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Phenanthrene	0.001	mg/L	< 0.001	_	_
Pyrene	0.001	mg/L	< 0.001	_	_
Total PAH*	0.001	mg/L	< 0.001	_	_
2-Fluorobiphenyl (surr.)	1	%	61	_	_
p-Terphenyl-d14 (surr.)	1	%	90	_	-
Phenois (Halogenated)		,,,			
2-Chlorophenol	0.003	mg/L	< 0.003	_	_
2.4-Dichlorophenol	0.003	mg/L	< 0.003	_	-
2.4.5-Trichlorophenol	0.01	mg/L	< 0.01	_	-
2.4.6-Trichlorophenol	0.01	mg/L	< 0.01	_	-
2.6-Dichlorophenol	0.003	mg/L	< 0.003	_	-
4-Chloro-3-methylphenol	0.01	mg/L	< 0.01	_	-
Pentachlorophenol	0.01	mg/L	< 0.01	_	_
Tetrachlorophenols - Total	0.03	mg/L	< 0.03	_	_
Total Halogenated Phenol*	0.01	mg/L	< 0.01	-	-
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	< 0.1	-	-
2-Methyl-4.6-dinitrophenol	0.03	mg/L	< 0.03	-	-
2-Methylphenol (o-Cresol)	0.003	mg/L	< 0.003	-	-
2-Nitrophenol	0.01	mg/L	< 0.01	-	-
2.4-Dimethylphenol	0.003	mg/L	< 0.003	-	-
2.4-Dinitrophenol	0.03	mg/L	< 0.03	-	-
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	< 0.006	-	-
4-Nitrophenol	0.03	mg/L	< 0.03	-	-
Dinoseb	0.1	mg/L	< 0.1	-	-
Phenol	0.003	mg/L	< 0.003	-	-
Total Non-Halogenated Phenol*	0.1	mg/L	< 0.1	-	-
Phenol-d6 (surr.)	1	%	43	-	-
Heavy Metals					
Arsenic (filtered)	0.001	mg/L	0.013	-	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	-	-
Chromium (filtered)	0.001	mg/L	< 0.001	-	-
Copper (filtered)	0.001	mg/L	0.057	-	-
Lead (filtered)	0.001	mg/L	0.004	-	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	-	-
Nickel (filtered)	0.001	mg/L	0.005	-	-
Zinc (filtered)	0.005	mg/L	0.17	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 17, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons	Melbourne	Aug 17, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Aug 17, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Eurofins mgt Suite B7A (filtered metals)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 21, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (Halogenated)	Melbourne	Aug 21, 2018	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8 filtered	Melbourne	Aug 17, 2018	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Volatile Organics	Melbourne	Aug 17, 2018	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Eurofins mgt Suite B15			
Organochlorine Pesticides	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Melbourne	Aug 21, 2018	7 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Melbourne	Aug 21, 2018	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Aug 20, 2018	14 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Aug 20, 2018	14 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Aug 20, 2018	14 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Aug 20, 2018	14 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61, 2, 9900, 8400 NATA # 1261 Site # 18277

Perth2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Aug 15, 2018 5:41 PM Aug 22, 2018 5 Day Ken Henderson Due: Priority: Contact Name:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Per- and Polyfluoroalkyl Substances (PFASs)			×				×	×	×	×				4
BTEXN and Volatile TRH	×											×	×	2
Eurofins mgt Suite B7A (filtered metals)	×						×	×	×	×	×			2
Volatile Organics	×						×	×	×	×				4
Eurofins mgt Suite B15	×						×	×	×	×				4
						LAB ID	S18-Au19998	S18-Au19999	S18-Au20000	S18-Au20001	S18-Au20002	S18-Au20003	S18-Au20004	
	71					Matrix	Water							
Sample Detail	# 1254 & 142	8217	20794	36		Sampling Time								
Sa	ry - NATA Site	NATA Site # 18	- NATA Site #	ATA Site # 237		Sample Date	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	
	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	External Laboratory	Sample ID	MW1	MW2	MW3	MW4	QW1	TRIP BLANK	TRIP SPIKE	Test Counts
	Melb	Sydn	Brisb	Perth	Exter	No	1	2	က	4	2	9	7	Test

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

ora/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

coc Chain of Custody SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

Date Reported: Aug 22, 2018

- Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 11 of 26 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 612557-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	tions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank	IIIg/L	1 0.000	0.000	1 433	
Volatile Organics				I	
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	Oode
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank	,g, _	0.0.	0.01	. 455	
Organophosphorus Pesticides					
Azinphos-methyl	mg/L	< 0.002	0.002	Pass	
Bolstar	mg/L	< 0.002	0.002	Pass	
Chlorfenvinphos	mg/L	< 0.002	0.002	Pass	
Chlorpyrifos	mg/L	< 0.02	0.02	Pass	
Chlorpyrifos-methyl	mg/L	< 0.002	0.002	Pass	
Coumaphos	mg/L	< 0.02	0.02	Pass	
Demeton-S	mg/L	< 0.02	0.02	Pass	
Demeton-O	mg/L	< 0.002	0.002	Pass	
Diazinon	mg/L	< 0.002	0.002	Pass	
Dichlorvos		< 0.002	0.002		
	mg/L	< 0.002	0.002	Pass	
Dimethoate	mg/L	1		Pass	
Disulfoton	mg/L	< 0.002	0.002	Pass	
EPN	mg/L	< 0.002	0.002	Pass	
Ethion	mg/L	< 0.002	0.002	Pass	
Ethoprop	mg/L	< 0.002	0.002	Pass	
Ethyl parathion	mg/L	< 0.002	0.002	Pass	
Fenitrothion	mg/L	< 0.002	0.002	Pass	
Fensulfothion	mg/L	< 0.002	0.002	Pass	
Fenthion	mg/L	< 0.002	0.002	Pass	
Malathion	mg/L	< 0.002	0.002	Pass	
Merphos	mg/L	< 0.002	0.002	Pass	
Methyl parathion	mg/L	< 0.002	0.002	Pass	
Mevinphos	mg/L	< 0.002	0.002	Pass	
Monocrotophos	mg/L	< 0.002	0.002	Pass	
Naled	mg/L	< 0.002	0.002	Pass	
Omethoate	mg/L	< 0.002	0.002	Pass	
Phorate	mg/L	< 0.002	0.002	Pass	
Pirimiphos-methyl	mg/L	< 0.02	0.02	Pass	
Pyrazophos	mg/L	< 0.002	0.002	Pass	
Ronnel	mg/L	< 0.002	0.002	Pass	
Terbufos	mg/L	< 0.002	0.002	Pass	
Tetrachlorvinphos	mg/L	< 0.002	0.002	Pass	
Tokuthion	mg/L	< 0.002	0.002	Pass	
Trichloronate	mg/L	< 0.002	0.002	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/L	< 0.001	0.001	Pass	
Aroclor-1221	mg/L	< 0.001	0.001	Pass	
Aroclor-1232	mg/L	< 0.001	0.001	Pass	
Aroclor-1242	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1248	mg/L	< 0.001	0.001	Pass	
Aroclor-1254	mg/L	< 0.001	0.001	Pass	
Aroclor-1260	mg/L	< 0.001	0.001	Pass	
Total PCB*	mg/L	< 0.001	0.001	Pass	
Method Blank					
Phenois (Halogenated)					
2-Chlorophenol	mg/L	< 0.003	0.003	Pass	
2.4-Dichlorophenol	mg/L	< 0.003	0.003	Pass	
2.4.5-Trichlorophenol	mg/L	< 0.01	0.01	Pass	
2.4.6-Trichlorophenol	mg/L	< 0.01	0.01	Pass	
2.6-Dichlorophenol	mg/L	< 0.003	0.003	Pass	
4-Chloro-3-methylphenol	mg/L	< 0.01	0.01	Pass	
Pentachlorophenol	mg/L	< 0.01	0.01	Pass	
Tetrachlorophenols - Total	mg/L	< 0.03	0.03	Pass	
Method Blank					
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	mg/L	< 0.1	0.1	Pass	
2-Methyl-4.6-dinitrophenol	mg/L	< 0.03	0.03	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.003	0.003	Pass	
2-Nitrophenol	mg/L	< 0.01	0.01	Pass	
2.4-Dimethylphenol	mg/L	< 0.003	0.003	Pass	
2.4-Dinitrophenol	mg/L	< 0.03	0.03	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.006	0.006	Pass	
4-Nitrophenol	mg/L	< 0.03	0.03	Pass	
Dinoseb	mg/L	< 0.1	0.1	Pass	
Phenol	mg/L	< 0.003	0.003	Pass	
Method Blank	mg/L	10.000	0.000	1 400	
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05	0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01	0.03	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01	0.01	Pass	
Perfluorononanoic acid (PFNA)		< 0.01	0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L			Pass	
•	ug/L	< 0.01	0.01		
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01	0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01	0.01	Pass	
Method Blank					-
Perfluoroalkyl sulfonamido substances			1	_	
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05	0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05	0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05	0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	ug/L	< 0.05	0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05	0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05	0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05	0.05	Pass	
Method Blank		1			
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01	0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01	0.01	Pass	<u> </u>
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.01	0.01	Pass	1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01	0.01	Pass	
Method Blank					
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.05	0.05	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/L	< 0.01	0.01	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	76	70-130	Pass	
Naphthalene	%	76	70-130	Pass	
TRH C6-C10	%	122	70-130	Pass	
TRH C6-C10	%	122	70-130	Pass	
TRH >C10-C16	%	86	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	125	70-130	Pass	
TRH C10-C14	%	98	70-130	Pass	
LCS - % Recovery			 		
BTEX					
Benzene	%	99	70-130	Pass	
Toluene	%	94	70-130	Pass	
Ethylbenzene	%	117	70-130	Pass	
m&p-Xylenes	%	111	70-130	Pass	
Xylenes - Total	%	112	70-130	Pass	
LCS - % Recovery			 		
Volatile Organics					
1.1-Dichloroethene	%	108	70-130	Pass	
1.1.1-Trichloroethane	%	93	70-130	Pass	
1.2-Dichlorobenzene	%	90	70-130	Pass	
1.2-Dichloroethane	%	99	70-130	Pass	
Trichloroethene	%	90	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	89	70-130	Pass	
Acenaphthylene	%	87	70-130	Pass	
Anthracene	%	77	70-130	Pass	
Benz(a)anthracene	%	105	70-130	Pass	
Benzo(a)pyrene	%	95	70-130	Pass	
Benzo(b&j)fluoranthene	%	114	70-130	Pass	
Benzo(g.h.i)perylene	%	112	70-130	Pass	
Benzo(k)fluoranthene	%	112	70-130	Pass	
Chrysene	%	107	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dibenz(a.h)anthracene	%	113	70-130	Pass	
Fluoranthene	%	100	70-130	Pass	
Fluorene	%	89	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	115	70-130	Pass	
Naphthalene	%	82	70-130	Pass	
Phenanthrene	%	91	70-130	Pass	
Pyrene	%	103	70-130	Pass	
LCS - % Recovery	70	100	70 100	1 400	
Organochlorine Pesticides					
Chlordanes - Total	%	101	70-130	Pass	
4.4'-DDD	%	99	70-130	Pass	
4.4'-DDE	%	106	70-130	Pass	
4.4'-DDE	%	73	70-130	Pass	
	%				
a-BHC		108	70-130	Pass	
Aldrin	%	103	70-130	Pass	
b-BHC	%	102	70-130	Pass	
d-BHC	%	87	70-130	Pass	
Dieldrin	%	110	70-130	Pass	
Endosulfan I	%	83	70-130	Pass	
Endosulfan II	%	98	70-130	Pass	
Endosulfan sulphate	%	83	70-130	Pass	
Endrin	%	76	70-130	Pass	
Endrin aldehyde	%	91	70-130	Pass	
Endrin ketone	%	75	70-130	Pass	
g-BHC (Lindane)	%	110	70-130	Pass	
Heptachlor	%	85	70-130	Pass	
Heptachlor epoxide	%	100	70-130	Pass	
Hexachlorobenzene	%	96	70-130	Pass	
Methoxychlor	%	87	70-130	Pass	
LCS - % Recovery					
Organophosphorus Pesticides					
Diazinon	%	111	70-130	Pass	
Dimethoate	%	92	70-130	Pass	
Ethion	%	107	70-130	Pass	
Fenitrothion	%	77	70-130	Pass	
Methyl parathion	%	76	70-130	Pass	
Mevinphos	%	89	70-130	Pass	
LCS - % Recovery	70	1 09	1 70-130	rass	
Phenois (Halogenated)			T		
• •	%	84	20.120	Door	
2-Chlorophenol			30-130	Pass	
2.4-Dichlorophenol	%	84	30-130	Pass	
2.4.5-Trichlorophenol	%	39	30-130	Pass	
2.4.6-Trichlorophenol	%	40	30-130	Pass	
2.6-Dichlorophenol	%	84	30-130	Pass	
4-Chloro-3-methylphenol	%	38	30-130	Pass	
Pentachlorophenol	%	34	30-130	Pass	
Tetrachlorophenols - Total	%	37	30-130	Pass	
LCS - % Recovery		1			
Phenois (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	%	33	30-130	Pass	
2-Methyl-4.6-dinitrophenol	%	40	30-130	Pass	
2-Methylphenol (o-Cresol)	%	67	30-130	Pass	
2-Nitrophenol	%	40	30-130	Pass	
2.4-Dimethylphenol	%	101	30-130	Pass	1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2.4-Dinitrophenol	%	32	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	%	75	30-130	Pass	
4-Nitrophenol	%	38	30-130	Pass	
Dinoseb	%	42	30-130	Pass	
Phenol	%	64	30-130	Pass	
LCS - % Recovery					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	%	97	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	103	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	93	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	95	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	95	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	93	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	91	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	95	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	90	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	91	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	94	50-150	Pass	
LCS - % Recovery	70	94	30-130	F a 3 5	
Perfluoroalkyl sulfonamido substances		Π			
Perfluorocatane sulfonamide (FOSA)	%	101	50-150	Pass	
• •	%				
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	%	97	50-150 50-150	Pass Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	% %	98		Pass	
,	%	91	50-150		
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)			50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	%	89	50-150	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	%	95	50-150	Pass	
LCS - % Recovery		T T			
Perfluoroalkyl sulfonic acids (PFSAs)	0/	0.4	50.450	_	
Perfluorobutanesulfonic acid (PFBS)	%	84	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	%	85	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	%	96	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	%	90	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	%	95	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	%	74	50-150	Pass	
LCS - % Recovery		Т		T	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)				_	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	%	95	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	%	94	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	%	92	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	%	80	50-150	Pass	
LCS - % Recovery		T T			
Heavy Metals					
Arsenic (filtered)	%	108	80-120	Pass	
Cadmium (filtered)	%	97	80-120	Pass	
Chromium (filtered)	%	100	80-120	Pass	
Copper (filtered)	%	103	80-120	Pass	
Lead (filtered)	%	102	80-120	Pass	
Mercury (filtered)	%	103	70-130	Pass	
Nickel (filtered)	%	103	80-120	Pass	
Zinc (filtered)	%	105	80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbor	ns			Result 1			
Acenaphthene	M18-Au10506	NCP	%	101	70-130	Pass	
Acenaphthylene	M18-Au10506	NCP	%	100	70-130	Pass	
Anthracene	M18-Au10506	NCP	%	112	70-130	Pass	
Benz(a)anthracene	M18-Au10506	NCP	%	120	70-130	Pass	
Benzo(a)pyrene	M18-Au10506	NCP	%	117	70-130	Pass	
Benzo(b&j)fluoranthene	M18-Au10506	NCP	%	119	70-130	Pass	
Benzo(g.h.i)perylene	M18-Au10506	NCP	%	107	70-130	Pass	
Benzo(k)fluoranthene	M18-Au10506	NCP	%	120	70-130	Pass	
Chrysene	M18-Au10506	NCP	%	120	70-130	Pass	
Dibenz(a.h)anthracene	M18-Au10506	NCP	%	107	70-130	Pass	
Fluoranthene	M18-Au10506	NCP	%	115	70-130	Pass	
Fluorene	M18-Au10506	NCP	%	105	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-Au10506	NCP	%	110	70-130	Pass	
Naphthalene	M18-Au10506	NCP	%	90	70-130	Pass	
Phenanthrene	M18-Au10506	NCP	%	109	70-130	Pass	
Pyrene	M18-Au10506	NCP	%	118	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	M18-Au14708	NCP	%	114	70-130	Pass	
4.4'-DDD	M18-Au14708	NCP	%	118	70-130	Pass	
4.4'-DDE	M18-Au14708	NCP	%	124	70-130	Pass	1
4.4'-DDT	M18-Au14708	NCP	%	90	70-130	Pass	
a-BHC	M18-Au14708	NCP	%	103	70-130	Pass	
Aldrin	M18-Au14708	NCP	%	79	70-130	Pass	
b-BHC	M18-Au14708	NCP	%	98	70-130	Pass	
d-BHC	M18-Au14708	NCP	//	95	70-130	Pass	
Dieldrin	M18-Au14708	NCP	%	116	70-130	Pass	
Endosulfan I	M18-Au14708	NCP	%	88	70-130	Pass	
Endosulfan II	M18-Au14708	NCP	// 0	103	70-130	Pass	
Endosulfan sulphate	M18-Au14708	NCP		100	70-130	Pass	
Endrin	M18-Au14708	NCP	// 0	126	70-130	Pass	-
Endrin aldehyde	M18-Au14708	NCP	// 6	87	70-130	Pass	
•		NCP	// 6	109	70-130		
Endrin ketone	M18-Au14708					Pass	
g-BHC (Lindane)	M18-Au14708	NCP NCP	%	95 105	70-130 70-130	Pass Pass	
Heptachlor	M18-Au14708			1 1 1			
Heptachlor epoxide	M18-Au14708	NCP	<u>%</u>	120	70-130	Pass	
Hexachlorobenzene Methographer	M18-Au14708	NCP	<u>%</u>	103	70-130	Pass	
Methoxychlor	M18-Au14708	NCP	<u>%</u>	96	70-130	Pass	
Spike - % Recovery				I 5 " 4 I			
Organophosphorus Pesticides	1440 4 4407	NGD	61	Result 1		 -	-
Diazinon	M18-Au11671	NCP	%	109	70-130	Pass	
Dimethoate	M18-Au11671	NCP	%	82	70-130	Pass	
Ethion	M18-Au11671	NCP	%	110	70-130	Pass	
Fenitrothion	M18-Au11671	NCP	%	90	70-130	Pass	
Methyl parathion	M18-Au11671	NCP	%	83	70-130	Pass	
Mevinphos	M18-Au11671	NCP	<u>%</u>	81	70-130	Pass	
Spike - % Recovery				T _ T		I	
Phenols (Halogenated)				Result 1			-
2-Chlorophenol	M18-Au10506	NCP	%	81	30-130	Pass	
2.4-Dichlorophenol	M18-Au10506	NCP	%	89	30-130	Pass	
2.4.5-Trichlorophenol	M18-Au10506	NCP	%	96	30-130	Pass	
2.4.6-Trichlorophenol	M18-Au10506	NCP	%	98	30-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2.6-Dichlorophenol	M18-Au10506	NCP	%	90	30-130	Pass	
4-Chloro-3-methylphenol	M18-Au10506	NCP	%	59	30-130	Pass	
Pentachlorophenol	M18-Au10506	NCP	%	80	30-130	Pass	
Tetrachlorophenols - Total	M18-Au10506	NCP	%	80	30-130	Pass	
Spike - % Recovery							
Phenols (non-Halogenated)				Result 1			
2-Cyclohexyl-4.6-dinitrophenol	M18-Au10506	NCP	%	94	30-130	Pass	
2-Methyl-4.6-dinitrophenol	M18-Au10506	NCP	%	77	30-130	Pass	
2-Methylphenol (o-Cresol)	M18-Au10506	NCP	%	76	30-130	Pass	
2-Nitrophenol	M18-Au10506	NCP	%	92	30-130	Pass	
2.4-Dimethylphenol	M18-Au10506	NCP	%	92	30-130	Pass	
2.4-Dinitrophenol	M18-Au10506	NCP	%	59	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M18-Au10506	NCP	%	82	30-130	Pass	
4-Nitrophenol	M18-Au10506	NCP	%	77	30-130	Pass	
Dinoseb	M18-Au10506	NCP	%	86	30-130	Pass	
Phenol	M18-Au10506	NCP	%	59	30-130	Pass	
Spike - % Recovery					 		
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	B18-Au23435	NCP	%	95	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B18-Au23435	NCP	%	104	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B18-Au23435	NCP	%	93	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B18-Au23435	NCP	%	95	50-150	Pass	
Perfluorooctanoic acid (PFOA)	B18-Au23435	NCP	%	92	50-150	Pass	
Perfluorononanoic acid (PFNA)	B18-Au23435	NCP	%	89	50-150	Pass	
Perfluorodecanoic acid (PFDA)	B18-Au23435	NCP	%	88	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	B18-Au23435	NCP	%	96	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	B18-Au23435	NCP	%	93	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B18-Au23435	NCP	%	85	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B18-Au23435	NCP	%	97	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	B18-Au23435	NCP	%	101	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B18-Au23435	NCP	%	120	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B18-Au23435	NCP	%	130	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	B18-Au23435	NCP	%	119	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	B18-Au23435	NCP	%	118	50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B18-Au23435	NCP	%	84	50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B18-Au23435	NCP	%	87	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonic acids (PFS)	As)	,		Result 1			
Perfluorobutanesulfonic acid (PFBS)	B18-Au23435	NCP	%	80	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B18-Au23435	NCP	%	86	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B18-Au23435	NCP	%	88	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Perfluoroheptanesulfonic acid (PFHpS)	B18-Au23435	NCP	%	89			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B18-Au23435	NCP	%	91			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B18-Au23435	NCP	%	87			50-150	Pass	
Spike - % Recovery									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B18-Au23435	NCP	%	91			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	B18-Au23435	NCP	%	96			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B18-Au23435	NCP	%	82			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B18-Au23435	NCP	%	72			50-150	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic (filtered)	M18-Au18206	NCP	%	103			70-130	Pass	
Cadmium (filtered)	M18-Au18206	NCP	%	89			70-130	Pass	
Chromium (filtered)	M18-Au18206	NCP	%	92			70-130	Pass	
Copper (filtered)	M18-Au18206	NCP	%	88			70-130	Pass	
Lead (filtered)	M18-Au18206	NCP	%	90			70-130	Pass	
Mercury (filtered)	M18-Au18206	NCP	%	102			70-130	Pass	
Nickel (filtered)	M18-Au18206	NCP	%	90			70-130	Pass	
Zinc (filtered)	M18-Au18206	NCP	%	91			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1					
Naphthalene	M18-Au22600	NCP	%	95			70-130	Pass	
TRH C6-C10	M18-Au22600	NCP	%	126			70-130	Pass	
Spike - % Recovery	1011071022000	110.	,,,	120			70 100	1 400	
Total Recoverable Hydrocarbons	. 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	M18-Au22600	NCP	%	126			70-130	Pass	
Spike - % Recovery	1011071022000	1401	70	120			70 100	1 433	
BTEX				Result 1					
Benzene	M18-Au22600	NCP	%	111			70-130	Pass	
Toluene	M18-Au22600	NCP	%	112			70-130	Pass	
Ethylbenzene	M18-Au22600	NCP	%	111			70-130	Pass	
m&p-Xylenes	M18-Au22600	NCP	%	104			70-130	Pass	
o-Xylene	M18-Au22600	NCP	%	104			70-130	Pass	
Xylenes - Total	M18-Au22600	NCP	%	104			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		200100							-500
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M18-Au20029	NCP	mg/L	1.7	2.2	23	30%	Pass	
TRH >C16-C34	M18-Au20029	NCP	mg/L	0.3	0.3	5.0	30%	Pass	
TRH >C34-C40	M18-Au20029	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	M18-Au20029	NCP	mg/L	2.3	2.9	22	30%	Pass	
TRH C15-C28	M18-Au20029	NCP	mg/L	0.4	0.4	5.0	30%	Pass	
TRH C29-C36	M18-Au20029	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

					_ 1	
٠	-	а		~	24	r
		ш	и	u	, ,	
			16	_		

Duplicate									
Polycyclic Aromatic Hydrocar		I		Result 1	Result 2	RPD			
Acenaphthene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides			T	Result 1	Result 2	RPD			
Chlordanes - Total	S18-Au14877	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4.4'-DDD	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDE	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDT	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
a-BHC	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Aldrin	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
b-BHC	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
d-BHC	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Dieldrin	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan I	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan II	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan sulphate	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin aldehyde	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin ketone	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
g-BHC (Lindane)	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor epoxide	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Hexachlorobenzene	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Methoxychlor	S18-Au14877	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Duplicate									
Organophosphorus Pesticides	S			Result 1	Result 2	RPD			
Azinphos-methyl	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Bolstar	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorfenvinphos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorpyrifos	S18-Au14877	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Chlorpyrifos-methyl	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Coumaphos	S18-Au14877	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Demeton-S	S18-Au14877	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Demeton-O	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Diazinon	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dichlorvos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	_
Dimethoate	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	_
Disulfoton	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
EPN	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	

Duplicate									
				Desult 1	Desuit 0	DDD		Ι	
Organophosphorus Pesticides	040 444077	NOD	//	Result 1	Result 2	RPD	200/	D	
Ethoprop	S18-Au14877	NCP NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethyl parathion	S18-Au14877		mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenitrothion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fensulfothion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenthion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Malathion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Merphos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methyl parathion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Mevinphos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Monocrotophos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Naled	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Omethoate	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Phorate	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Pirimiphos-methyl	S18-Au14877	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Pyrazophos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ronnel	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Terbufos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tetrachlorvinphos	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tokuthion	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Trichloronate	S18-Au14877	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Duplicate								,	
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	S18-Au14877	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4-Dichlorophenol	S18-Au14877	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4.5-Trichlorophenol	S18-Au14877	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.4.6-Trichlorophenol	S18-Au14877	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.6-Dichlorophenol	S18-Au14877	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
4-Chloro-3-methylphenol	S18-Au14877	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Pentachlorophenol	S18-Au14877	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Tetrachlorophenols - Total	S18-Au14877	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
Duplicate									
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	S18-Au14877	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S18-Au14877	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S18-Au14877	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2-Nitrophenol	S18-Au14877	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.4-Dimethylphenol	S18-Au14877	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4-Dinitrophenol	S18-Au14877	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S18-Au14877	NCP	mg/L	< 0.006	< 0.006	<1	30%	Pass	
4-Nitrophenol	S18-Au14877	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
Dinoseb	S18-Au14877	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Phenol	S18-Au14877	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate			<u> </u>						
Perfluoroalkyl carboxylic acids (Pl	-CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M18-Au20711	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M18-Au20711	NCP	ug/L ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroundecanoic acid									
(PFUnDA) Perfluorododecanoic acid	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFDoDA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate						25.5			
Perfluoroalkyl carboxylic acids (PF				Result 1	Result 2	RPD			
Perfluorotridecanoic acid (PFTrDA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate		_							
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide			_						
(FOSA)	M18-Au20711	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M18-Au20711	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M18-Au20711	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M18-Au20711	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M18-Au20711	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M18-Au20711	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M18-Au20711	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				ı	1 1		ı		
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M18-Au20711	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M18-Au20711	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				1	, ,				
Heavy Metals			1	Result 1	Result 2	RPD			
Arsenic (filtered)	M18-Au18206	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	M18-Au18206	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M18-Au18206	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M18-Au18206	NCP	mg/L	0.002	0.002	2.0	30%	Pass	
Lead (filtered)	M18-Au18206	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	M18-Au18206	NCP NCP	mg/L	< 0.0001	< 0.0001	<u><1</u>	30%	Pass	
Nickel (filtered)	M18-Au18206		mg/L	0.040	0.041	1.0	30%	Pass	
Zinc (filtered)	M18-Au18206	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate Total Recoverable Hydrocarbons -	2013 NEDM Front	ione		Result 1	Result 2	RPD			
Naphthalene	M18-Au19144	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M18-Au19144	NCP	mg/L	< 0.01	< 0.02	<1	30%	Pass	
1111100-010	W110-7413144	INOF	ı my/L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	` 1	J 30 /0	1 000	

Duplicate									
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					Result 2	RPD			
TRH C6-C9	M18-Au19144	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M18-Au19144	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M18-Au19144	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M18-Au19144	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M18-Au19144	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	•
o-Xylene	M18-Au19144	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M18-Au19144	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QACC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
N09	Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.
N11	Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.
N15	Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).
R20	This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Nibha Vaidya Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Harry Bacalis Senior Analyst-Volatile (VIC)
Jonathon Angell Senior Analyst-Organic (QLD)
Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN-50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: 461 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit 53, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 6lie # 18217

Brisbane 1/21 Smallwood Place Murarine QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth2/91 Leach Highway
Kewdale WA 6105
Phone : +61 8 9251 9600
NATA # 1261
Site # 23736

Received: Due: Priority: Contact Name:

Order No.: Report #: Phone: Fax:

Trace Environmental P/L Shop 2, 793-799 New Canterbury Road Dulwich Hill

Company Name: Address:

NSW 2203 MASCOT 1.16

Project Name: Project ID:

Aug 15, 2018 5:41 PM Aug 22, 2018 5 Day Ken Henderson

Eurofins | mgt Analytical Services Manager: Nibha Vaidya

Per- and Polyfluoroalkyl Substances (PFASs)			×				×	×	×	×				4
BTEXN and Volatile TRH	×											×	×	2
Eurofins mgt Suite B7A (filtered metals)	×						×	×	×	×	×			5
Volatile Organics	×						×	×	×	×				4
Eurofins mgt Suite B15	×						×	×	×	×				4
						LABID	S18-Au19998	S18-Au19999	S18-Au20000	S18-Au20001	S18-Au20002	S18-Au20003	S18-Au20004	
	71					Matrix	Water							
Sample Detail	# 1254 & 142	8217	20794	36		Sampling Time								
S	ry - NATA Site	NATA Site #1	- NATA Site #	ATA Site # 237		Sample Date	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	Aug 15, 2018	
	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	External Laboratory	Sample ID	MW1	MW2	MW3	MW4	QW1	TRIP BLANK	TRIP SPIKE	Test Counts
	Melbo	Sydn	Brisb	Perth	Exter	N _O	1	2	3	4	2	9	7	Test (

National Nat

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e,mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: Trace Environmental P/L

Contact name: Ken Henderson Project name: **MASCOT** Project ID: 1.16

COC number: Not provided

Turn around time: 5 Day

Date/Time received: Aug 15, 2018 5:41 PM

Eurofins | mgt reference: 612557

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \square Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 2.6 degrees Celsius.
- V All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{Z} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \square Appropriate sample containers have been used.
- \square Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- XSome samples have been subcontracted.
- Notes^{N/A} Custody Seals intact (if used).

QW1A sent to als.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Ken Henderson - ken@traceenviro.com.

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

CERTIFICATE OF ANALYSIS

Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Contact : MR JACK ELLIS

Address : Shop 2 793-799 New Canterbury Road

Dulwich Hill NSW 2203

Telephone : --Project : ---

Order number :

C-O-C number : ---Sampler : ---Site : ----

Quote number : EN/222/17 (Sydney Batches)

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 17-Aug-2018 15:00

Date Analysis Commenced : 20-Aug-2018

Issue Date : 23-Aug-2018 18:08

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Celine ConceicaoSenior SpectroscopistSydney Inorganics, Smithfield, NSWEdwandy FadjarOrganic CoordinatorSydney Organics, Smithfield, NSW

Page : 2 of 6 Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : ---

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

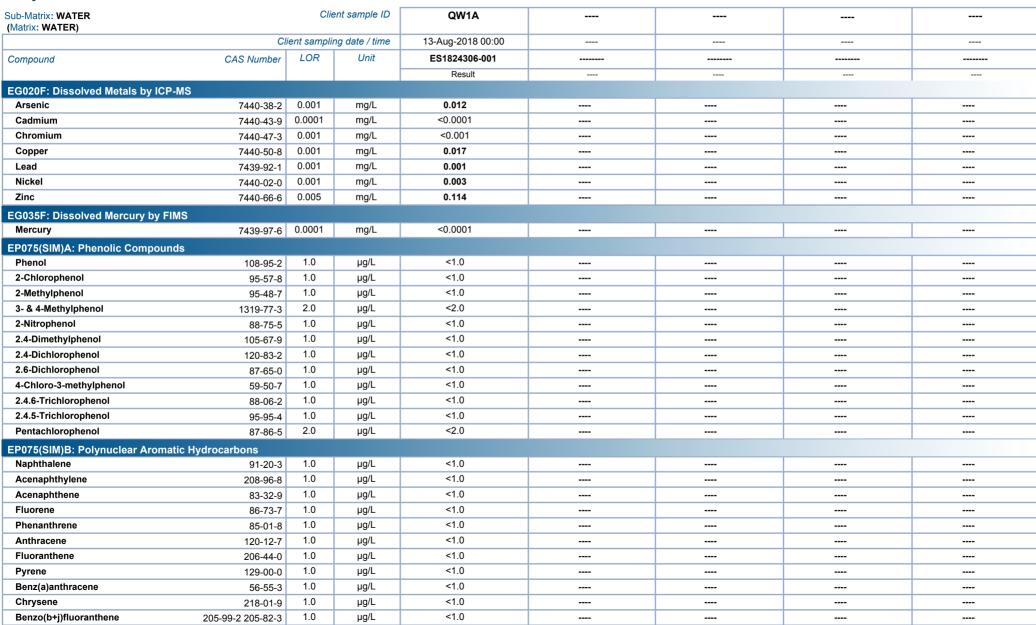
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

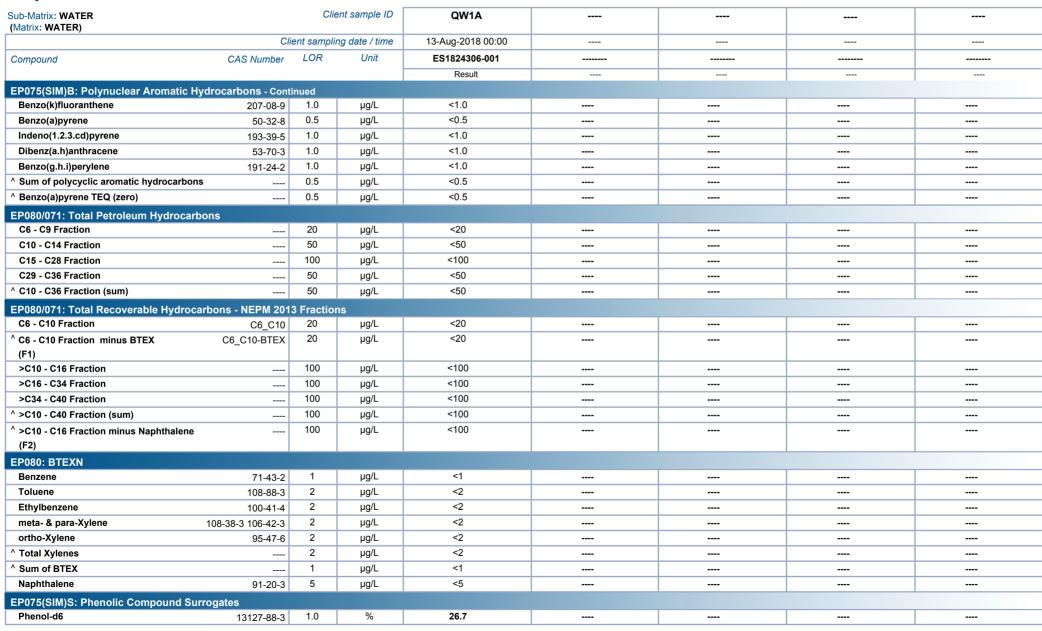

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page : 3 of 6 Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : --

Analytical Results

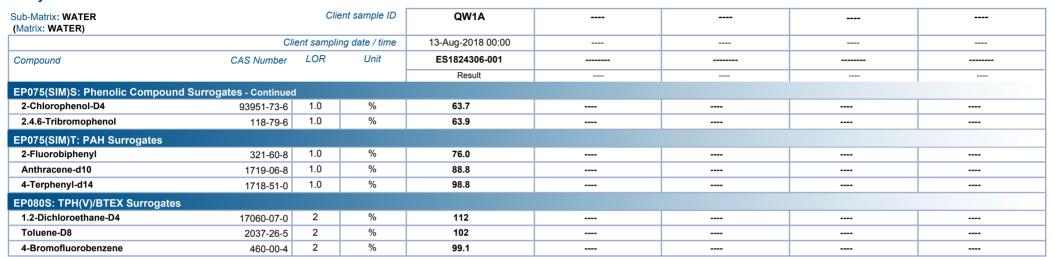


Page : 4 of 6 Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : --

Analytical Results



Page : 5 of 6
Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : --

Analytical Results

Page : 6 of 6
Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : --

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)					
Compound	CAS Number	Low	High			
EP075(SIM)S: Phenolic Compound Surrogates	;					
Phenol-d6	13127-88-3	10	44			
2-Chlorophenol-D4	93951-73-6	14	94			
2.4.6-Tribromophenol	118-79-6	17	125			
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	20	104			
Anthracene-d10	1719-06-8	27	113			
4-Terphenyl-d14	1718-51-0	32	112			
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	71	137			
Toluene-D8	2037-26-5	79	131			
4-Bromofluorobenzene	460-00-4	70	128			

QUALITY CONTROL REPORT

Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Contact : MR JACK ELLIS

Address : Shop 2 793-799 New Canterbury Road

Dulwich Hill NSW 2203

Telephone : ---

Project : -Order number :

C-O-C number : ----

Sampler : ----

Quote number : EN/222/17 (Sydney Batches)

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 17-Aug-2018

Date Analysis Commenced : 20-Aug-2018

Issue Date : 23-Aug-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

 Celine Conceicao
 Senior Spectroscopist
 Sydney Inorganics, Smithfield, NSW

 Edwandy Fadjar
 Organic Coordinator
 Sydney Organics, Smithfield, NSW

Page : 2 of 6
Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : ---

Laboratory Dunlicate (DLIP) Report

General Comments

Sub Matrix: WATER

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EG020F: Dissolved	d Metals by ICP-MS (QC	C Lot: 1886713)									
ES1824262-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0010	<0.0010	0.00	No Limit		
	EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.010	<0.010	0.00	No Limit			
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.010	<0.010	0.00	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.010	<0.010	0.00	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.010	<0.010	0.00	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.010	<0.010	0.00	No Limit		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.050	<0.050	0.00	No Limit		
ES1824156-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.001	0.001	0.00	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.002	0.002	0.00	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit		
EG035F: Dissolved	d Mercury by FIMS (QC	Lot: 1886714)									
ES1824262-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit		
ES1824156-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit		
EP080/071: Total P	etroleum Hydrocarbon	s (QC Lot: 1885653)									
ES1824156-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.00	No Limit		
ES1824156-002	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.00	No Limit		
EP080/071: Total R	Recoverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 1885653)									
ES1824156-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.00	No Limit		
ES1824156-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.00	No Limit		
EP080: BTEXN (Q	C Lot: 1885653)										
,											

Page : 3 of 6
Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : ---

Sub-Matrix: WATER		Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 1885653) - continued								
ES1824156-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit
ES1824156-002	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit

Page : 4 of 6
Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : ---

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 1886713)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	87.0	85	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	88.1	84	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	86.2	85	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	87.4	81	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	85.1	83	111
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	85.5	82	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	87.1	81	117
EG035F: Dissolved Mercury by FIMS (QCLot: 1886714)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	92.9	83	105
EP075(SIM)A: Phenolic Compounds (QCLot: 1882905)								
EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 μg/L	44.5	25	62
EP075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	<1.0	5 μg/L	70.2	52	90
EP075(SIM): 2-Methylphenol	95-48-7	1	μg/L	<1.0	5 μg/L	74.5	51	91
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	μg/L	<2.0	10 μg/L	65.8	44	88
EP075(SIM): 2-Nitrophenol	88-75-5	1	μg/L	<1.0	5 μg/L	74.0	48	100
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	μg/L	<1.0	5 μg/L	70.5	49	99
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	μg/L	<1.0	5 μg/L	77.0	53	105
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<1.0	5 μg/L	84.0	57	105
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	μg/L	<1.0	5 μg/L	71.2	53	99
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	μg/L	<1.0	5 μg/L	86.3	50	106
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<1.0	5 μg/L	71.9	51	105
EP075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<2.0	10 μg/L	30.3	10	95
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot:	1882905)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	75.5	50	94
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	96.5	64	114
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	89.4	62	113
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	90.7	64	115
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	98.3	63	116
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	97.5	64	116
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	97.4	64	118
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 μg/L	97.4	63	118
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	91.8	64	117
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 μg/L	88.6	63	116

Page : 5 of 6
Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : --

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo	ot: 188 <mark>2905</mark>) - co	ntinued						
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	μg/L	<1.0	5 μg/L	91.4	62	119
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 μg/L	95.6	63	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	95.7	63	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 μg/L	97.5	60	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	93.9	61	117
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 μg/L	90.8	59	118
EP080/071: Total Petroleum Hydrocarbons (QCLot: 18829	06)							
EP071: C10 - C14 Fraction		50	μg/L	<50	2000 μg/L	92.6	76	116
EP071: C15 - C28 Fraction		100	μg/L	<100	3000 μg/L	92.8	83	109
EP071: C29 - C36 Fraction		50	μg/L	<50	2000 μg/L	83.7	75	113
EP080/071: Total Petroleum Hydrocarbons (QCLot: 18856	53)							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	103	75	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QCL	.ot: 1882906)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	2500 μg/L	88.8	76	114
EP071: >C16 - C34 Fraction		100	μg/L	<100	3500 μg/L	86.2	81	111
EP071: >C34 - C40 Fraction		100	μg/L	<100	1500 μg/L	79.4	77	119
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QCL	.ot: 1885653)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	104	75	127
EP080: BTEXN (QCLot: 1885653)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	114	70	122
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	106	69	123
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	107	70	120
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	106	69	121
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	109	72	122
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	102	70	120

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 1886713)						
ES1824156-001	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	86.8	70	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	87.7	70	130

Page : 6 of 6
Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : --

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolve	Metals by ICP-MS (QCLot: 1886713) - continued						
ES1824156-001	Anonymous	EG020A-F: Chromium	7440-47-3	1 mg/L	86.1	70	130
		EG020A-F: Copper	7440-50-8	1 mg/L	85.0	70	130
		EG020A-F: Lead	7439-92-1	1 mg/L	85.2	70	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	85.7	70	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	83.2	70	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 1886714)						
ES1824156-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	94.2	70	130
EP080/071: Total F	etroleum Hydrocarbons (QCLot: 1885653)						
ES1824156-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	103	70	130
EP080/071: Total F	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCI	ot: 1885653)					
ES1824156-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	103	70	130
EP080: BTEXN (Q	CLot: 1885653)						
ES1824156-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	106	70	130
		EP080: Toluene	108-88-3	25 μg/L	102	70	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	102	70	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	101	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 μg/L	103	70	130
		EP080: Naphthalene	91-20-3	25 μg/L	99.9	70	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1824306** Page : 1 of 5

Client : TRACE ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : MR JACK ELLIS
 Telephone
 : +61-2-8784 8555

 Project
 : -- Date Samples Received
 : 17-Aug-2018

 Site
 : -- Issue Date
 : 23-Aug-2018

Sampler : --- No. of samples received : 1
Order number : No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 5 Work Order : ES1824306

Client: TRACE ENVIRONMENTAL PTY LTD

Project : ---

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	ple Type Count Rate (%)		Quality Control Specification		
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	13	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	20	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenois (GC/MS - SIM)	0	13	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	20	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	n: × = Holding time	breach ; ✓ = Withi	in holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) QW1A	13-Aug-2018				21-Aug-2018	09-Feb-2019	✓
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) QW1A	13-Aug-2018				21-Aug-2018	10-Sep-2018	✓
EP075(SIM)A: Phenolic Compounds							
Amber Glass Bottle - Unpreserved (EP075(SIM)) QW1A	13-Aug-2018	20-Aug-2018	20-Aug-2018	1	22-Aug-2018	29-Sep-2018	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) QW1A	13-Aug-2018	20-Aug-2018	20-Aug-2018	1	22-Aug-2018	29-Sep-2018	✓
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) QW1A	13-Aug-2018	20-Aug-2018	20-Aug-2018	✓	22-Aug-2018	29-Sep-2018	✓
Clear glass VOC vial - HCI (EP080) QW1A	13-Aug-2018	22-Aug-2018	27-Aug-2018	1	22-Aug-2018	27-Aug-2018	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) QW1A	13-Aug-2018	20-Aug-2018	20-Aug-2018	✓	22-Aug-2018	29-Sep-2018	✓
Clear glass VOC vial - HCI (EP080) QW1A	13-Aug-2018	22-Aug-2018	27-Aug-2018	1	22-Aug-2018	27-Aug-2018	√

Page : 3 of 5 Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : ---

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.	
Method	Sample Date	Extraction / Preparation				Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080: BTEXN								
Clear glass VOC vial - HCI (EP080)	42 A 2049	22 4 2049	27 Aug 2010	,	22 4 2049	27 Aug 2019		
QW1A	13-Aug-2018	22-Aug-2018	27-Aug-2018	√	22-Aug-2018	27-Aug-2018	✓	

Page : 4 of 5 Work Order ES1824306

Client · TRACE ENVIRONMENTAL PTY LTD

Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	13	0.00	10.00	æ	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	20	0.00	10.00)£	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	13	0.00	5.00	£	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	20	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : ES1824306

Client : TRACE ENVIRONMENTAL PTY LTD

Project : ---

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES1824306 Work Order

Client : TRACE ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Sydney

Contact : MR JACK ELLIS : Customer Services ES Contact

Address Address : Shop 2 793-799 New Canterbury Road 277-289 Woodpark Road Smithfield

> Dulwich Hill NSW 2203 NSW Australia 2164

E-mail : jack@traceenviro.com E-mail : ALSEnviro Sydney@alsglobal.com

Telephone Telephone : +61-2-8784 8555 Facsimile Facsimile : +61-2-8784 8500

Project Page : 1 of 2

Quote number Order number : ES2018TRAENV0003 (EN/222/17

(Sydney Batches))

24-Aug-2018

C-O-C number QC Level NEPM 2013 B3 & ALS QC Standard

Sampler

: 24-Aug-2018

Dates Date Samples Received : 17-Aug-2018 15:00 Issue Date : 18-Aug-2018 Scheduled Reporting Date

Date

Delivery Details

Client Requested Due

Mode of Delivery : Carrier Security Seal : Not Available No. of coolers/boxes Temperature : 1 : 6.5'C - Ice present

Receipt Detail No. of samples received / analysed : 1/1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Issue Date : 18-Aug-2018

Page : 2 of 2

Work Order ES1824306 Amendment 0

Client : TRACE ENVIRONMENTAL PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: WATER

 Laboratory sample
 Client sampling
 Client sample ID

 ID
 date / time

 ES1824306-001
 13-Aug-2018 00:00
 QW1A

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS		
	E	
- A4 - AU Tax Invoice (INV)	Emai l	accounts@traceenviro.com
ANDREW KITA		
- A4 - AU Tax Invoice (INV)	Email	andrew@traceenviro.com
JACK ELLIS		
 *AU Certificate of Analysis - NATA (COA) 	Email	jack@traceenviro.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Emai l	jack@traceenviro.com
 - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Emai l	jack@traceenviro.com
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	jack@traceenviro.com
- A4 - AU Tax Invoice (INV)	Emai l	jack@traceenviro.com
- Chain of Custody (CoC) (COC)	Emai l	jack@traceenviro.com
- EDI Format - XTab (XTAB)	Email	jack@traceenviro.com
KEN HENDERSON		
 *AU Certificate of Analysis - NATA (COA) 	Emai l	ken@traceenviro.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Emai l	ken@traceenviro.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Emai l	ken@traceenviro.com
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	ken@traceenviro.com
- A4 - AU Tax Invoice (INV)	Emai l	ken@traceenviro.com
- Chain of Custody (CoC) (COC)	Emai l	ken@traceenviro.com
- EDI Format - XTab (XTAB)	Emai l	ken@traceenviro.com

FRH/BTEXN/PAH/Phenols/8 Metals

QS3009_R1 : eurofins Office Address : 793-799 New Camerbury Road, Dulwich Hill, NSW, 2209 refinquished lease email involces to accounts@tracesnviro.com & Proj Manager Company Name : TRACE Environmental iroline | mgt Di water batch number pecial Directions & Comments Sample ID Sachelly Issue Date: 22 August 2013 Date mgt Page 1 of 1 Matrix Jate & Time: Suite B7a Suite B15 Project Manager: Key Hexologyou emell for results: Kence bace environ com Sydney
Unit F3 - 6 Building F, 16 Mars Road, Lane Cove
Phone: +512 9300 9400
Emall: EnviroSampleNSW@eurofins.com.au 17/6/18 . 11:45AM Hall w Tessa VO C PFAS JACK ELLID 28 BTEX CHAIN OF CUSTODY RECORD S DAY X 1 DAY Analytes 17/6/18 6-5c 10 DAY 2DAY Turn around time Brisbane
Unit 1-21 Smallwood Place, Murrarie
Phone: +617 3902 4600
Email: EnviroSampleOLD@eurofins.com.au 3 DAY PROJECT Number: PROJECT Name: Purchase Order: rascor 6 Courter Microbiological testing BOD, Nifrate, Nitrite, Tota Solids - TSS, TDS etc. rier Consignment f Ferrous iron Mercury, CrvI Heavy Metals BTEX, MAH, VOC 14 day BTEX, MAH, VOC
TRH, PAH, Phenois, Pes 7 days TRH, PAH, Phenois, Pesticides Postal Hand Delivered 250P 126P Waters Viethod Of Shipment non holding times (with correct preservation). For lurther information contact the lab 24 hou 28 day Mercury, Crvi OmLygizamLy Jar Bag 6 mon Heavy Metals 7 days ASLP, TOLP Environmental Division Sydney Work Order Reference ES1824306 Melbourne 2 Kingston Town Close, Dakleigh, VIC 3168 Phone: +613 8564 5000 Fax: +618 8564 5080 Email: EnviroSampleVic@eurotins.com.av day Mercury, CrVI 28 days

NOL Microbiological testing 72 hours

NS Anions 28 days

NS SPOCAS, pH Field and FOX, Cr 24 hours COC Number : Data output format: jurofins | mgt quote ID: 1808027KA Page 1 201 Temperature on arrival: contact sample Soils of d ontact sample Sample comments: 14 days 6 months 14 days

"asphone: - 61-2-8784 8555

Appendix I

QA/QC
Summary &
Calibration
Certificates

Appendix I – Quality Assurance/Quality Control Program

1.1 Field QA Procedures

To ensure that the data obtained meets the DQIs of precision, accuracy, representativeness, completeness and comparability, the following field procedures and QA measures were implemented as part of the investigation fieldwork:

- Field staff undertaking the fieldwork were appropriately qualified and experience;
- Locations of sampling points were appropriately determined prior to conducting fieldworks to ensure adequate site characterisation, and based on a review of site history;
- Field documentation included the completion of standard field forms including Daily Field Reports
 documenting the field activities undertaken throughout each day in the field, gauging sheets and
 purging logs and the use of Chain of Custody (COC) documentation for all field samples;
- Field instruments were maintained in good order and appropriately calibrated and/or challenged in accordance with the manufacturer's instructions prior to conducting fieldworks;
- Soil samples were collected in laboratory supplied washed / certified clean glass 250 mL glass
 jars with Teflon lined lids. Waterproof labels were affixed to the body of the jars, and included the
 job number, unique sample identification, and date of sample collection
- Groundwater samples were collected in laboratory washed / certified bottles appropriate for the analytes tested. Waterproof labels were affixed to the body of the jars, and included the job number, unique sample identification, and date of sample collection;
- Sampling was done in a manner to ensure that any volatile organic compound (VOC) losses were minimal. Immediately after each sample was collected, the vial was sealed with zero headspace to prevent any VOC losses;
- In accordance with AS 4482.1 (2005), soil and groundwater samples were stored in a cool esky containing ice immediately after collection;
- Samples were submitted to the laboratory immediately following fieldwork to ensure that sample
 holding times could be met. Primary and QA/QC samples were analysed by NATA accredited
 laboratories by the appropriate analytical methods and LORs; and
- Reusable sampling equipment was decontaminated between sampling locations and new gloves were worn for the collection of each sample to prevent cross contamination.

1.2 Field QA/QC Data Evaluation

1.2.1 Replicate Samples

A QC blind duplicate sample is a sub-sample of the parent sample taken in the field and submitted to the primary laboratory for analysis to enable measurement of the overall precision of the sampling procedure (how representative the result is of the true field conditions) and the precision of the laboratory analytical methods. A QC blind triplicate sample is also a sub-sample of the parent sample taken in the field, but this sample is submitted to a secondary laboratory for analysis to enable assessment of the accuracy of the analytical results between different laboratories.

The primary laboratory for soil and groundwater analyses was Eurofins-mgt in Lane Cove, NSW. The intra-laboratory duplicates were also analysed by Eurofins-mgt. The inter-laboratory duplicates were analysed by ALS Environmental in Smithfield, NSW.

1.2.2 Soil and Groundwater Replicate Data

The soil and groundwater duplicate and triplicate samples collected during the site validation works, and submitted for laboratory testing, are shown in **Table I-1**, below.

Table I-1: Soil and Groundwater Duplicate/Triplicate Summary

Parent Sample	Date	Blind Duplicate	Blind Triplicate	Analysis
SB11-0.75	10 August 2018	QS1	QS1A	TPH/TRH, BTEX, PAH, metals
SB19-2.5	8 August 2018	QS2	QS2A	TPH/TRH, BTEX, PAH, metals
SB22-6.0	13 August 2018	QS3	QS3A	TPH/TRH, BTEX, PAH, metals
SB13-0.2	13 August 2018	QA1	QA1A	Asbestos
SB6-0.2	14 August 2018	QA2	QA2A	Asbestos
MW-2	15 August 2018	QW1	QW1A	TPH/TRH, BTEX, PAH, metals, phenols

In total, 87 primary soil samples were analysed for the COPCs at the site, equating to a frequency of one soil duplicate/triplicate per 19 samples.

In total, four primary groundwater samples were collected during the GME, equating to a frequency of one duplicate/triplicate groundwater sample per four primary samples.

In order to evaluate the data obtained for the replicate samples, the RPD between replicate and parent samples is calculated using the following equation.

Relative Percentage Difference =
$$\frac{X^1 - X^2}{\left(\frac{X^1 + X^2}{2}\right)} \times 100$$

Standards AS 4482.1-1997, AS 4482.2-1999, AS/NZ 5667.1-1998, AS/NZ 5667.11-1998 and NEPM (2013) state that replicate and original sample RPDs should generally be within 30%. However, this variation can be expected to be higher for organic compounds than for inorganics. In addition, greater variation is observed where low concentrations of analytes are present. Therefore, the following RPD acceptance criteria were adopted during this DSI:

- Inorganics 30% RPD;
- Organics 50% RPD; and
- If primary and/or duplicate concentration <10 × LOR No Limit.

If replicate RPDs are determined to be outside this range, the reasons and potential impact on site data validity are discussed.

As shown on **Tables 11 and 13**, the RPD between the primary and duplicate/triplicate soil and groundwater samples were within the acceptable ranges.

1.2.3 Trip Blank/Trip Spike

Trip blank and trip spike samples were prepared and transported with primary samples to ensure cross contamination of samples has not occurred during transportation of the samples for the soil and groundwater sampling events.

The trip spike/trip blank analytical results are summarised in **Table 12**. No COPCs were detected at concentrations above the laboratory LORs in any of the trip blanks analysed during the works. The trip spike recoveries were found to be in acceptable ranges for all samples.

1.2.4 Rinsate

The use of rinsate blank samples enables the assessment of potential cross-contamination of the samples during the field handling and are collected during field decontamination procedures by rinsing decontaminated equipment with clean deionised water. Detection of contaminants in a rinsate sample may indicate cross-contamination between sampling locations

One rinsate water sample was submitted for each day of soil sampling, with the exception of soil sampling completed 9 and 10 August 2018 (see below for further details), with analysis of rinsate water associated with the decontaminated hand auger. The rinsate analytical results are summarised in **Table 12**. COPCs were not detected at concentrations exceeding the laboratory LORs in any of the rinsate blanks, indicating the potential for cross contamination of samples from decontaminated equipment was low and decontamination between sampling locations was adequate for the remaining COPCs.

Additionally, given the nature of material encountered in soil bores advanced at the site (i.e. fill), the observed anthropogenic material (i.e. bricks and concrete) and the absence of COPC concentrations reported above laboratory LORs in natural soil samples collected on 9 and 10 August 2018, the reported COPC concentrations in soil samples collected on 9 and 10 August are likely to be representative of soil conditions at the site. Therefore, the absence of rinsate blanks during field works completed on 9 and 10 August 2018 is considered unlikely to affect the interpretation of results and the outcomes of this DSI.

No reusable sampling equipment was used during the groundwater sampling as samples were collected using disposable, single use sampling equipment. Therefore, no rinsate samples were collected during the GME.

1.2.5 Sample Holding Times

Holding times are the length of time a sample can be stored after collection and prior to analysis without significantly affecting the analytical results. Holding times vary with the analyte, sample matrix, and analytical methodology used to quantify the analytes concentration. A review of the laboratory analytical reports indicates that all soil and groundwater samples were extracted and/or analysed within the appropriate holding times.

1.2.6 Sample Integrity

The COCs and sample receipt documentation received with each sample batch is included with the laboratory reports (**Appendix H**). A review of this documentation indicates that samples were received at the primary and secondary laboratories at appropriate temperatures. Samples for VOC analysis were received in airtight sample containers and with no headspace remaining.

1.2.7 Sample Containers

A review of the laboratory reports (**Appendix H**) indicates all soil and groundwater samples were submitted to the laboratory in the appropriate containers.

2 Laboratory QA/QC Data Evaluation

The chosen analytical laboratories undertake internal QA/QC procedures that include the analysis of method blanks, internal duplicate samples, laboratory control samples, matrix spikes and surrogate recovery. Additionally, laboratory QA/QC procedures include sample receipt, logging, storage, preservation and analysis within the method specified holding time, and samples were received and stored appropriately, and all samples were analysed within the specified holding time. A review of the laboratory QA/QC procedures indicated that laboratory QA/QC samples percent recoveries were within specified ranges for all samples, with the exception of those discussed below. A review of the identified laboratory QA/QC exceedance indicated that these are not considered to affect the interpretation of results or the outcome of the DSI and are justified below.

Soil Investigation

- Report 612025-S:
 - One matrix spike recovery was outside of the recommended acceptance criteria for lead. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

3 Data Useability

The data validation procedure employed in the assessment of the field and laboratory QA/QC data indicated that the reported analytical results are representative of the conditions at the sample locations and that the analytical data can be relied upon for the purpose of the site assessment. It is concluded that overall the quality of the analytical data produced is reliable for the purpose of this DSI.

Instrument

MX6

Serial No.

12091J1-019

Sensors

O2, PID, LEL

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments			
Battery	Charge Condition	✓				
	Fuses	1				
	Capacity	1				
	Recharge OK?	1				
Switch/keypad	Operation	1				
Display	Intensity	1				
	Operation (segments)	1				
Switch/keypad Display Grill Filter Pump PCB Connectors Sensor Alarms Software Datalogger	Condition	1				
	Seal	1				
Pump	Operation	N/A				
	Filter	N/A				
	Flow	N/A				
	Valves, Diaphragm	N/A				
PCB	Condition	✓				
Connectors	Condition	1				
			Low	High	TWA	STEL
Sensor	02	✓	19.5%	23.5%	N/A	N/A
	PID	/	50ppm	100ppm	10ppm	25ppm
	LEL	1	5%	10.00%	N/A	N/A
Alarms	Beeper	1				
	Settings	✓				
Software	Version	1				
Datalogger	Operation	/				
Download	Operation	1				
Other tests:	1780-0					

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Aspirated mode				
Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
	20.90%		Fresh Air	20.8%
	98ppm	NATA	SY137	96.3ppm
	50% LEL Methane	NATA	SY174	48%
		Serial no Calibration gas and concentration 20.90% 98ppm	Serial no Calibration gas and concentration 20.90% 98ppm NATA	Serial no Calibration gas and concentration No 20.90% Fresh Air 98ppm NATA SY137

Calibrated by:

Sarah Lian

Calibration date:

07-Aug-18

Next calibration due:

03-Feb-19

airmet

Instrument

YSI Quatro Pro Plus

Serial No.

10H100317

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	1	
	Fuses	1	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	1	
	Operation (segments)	/	
Grill Filter	Condition	1	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	1	
	2. mV	1	
	3. EC	1	
	4. D.O	1	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 10.00		pH 10.00		320322	pH 9.35
1. pH 7.00		pH 7.00		307928	pH 6.89
2. pH 4.00		pH 4.00		307927	pH 4.32
3. mV		234mV		311901/311902	234mV
4. EC		2.76mS		306341	2.77mS
5. D.O		0.00ppm		5656	0.04ppm
6. Temp		20.7°C	1	MultiTherm	20.2°C

Calibrated by:

Southa

Sarah Lian

Calibration date:

6/08/2018

Next calibration due:

5/09/2018